WIDE SUBCATEGORIES ARE SEMISTABLE

TOSHIYA YURIKUSA

ABSTRACT. In this note, we give that for an arbitrary finite dimensional algebra Λ , any wide subcategory of $\mathsf{mod}\Lambda$ satisfying a certain finiteness condition is θ -semistable for some stability condition θ . More generally, we give that wide subcategories of $\mathsf{mod}\Lambda$ associated with two-term presilting complexes of Λ are semistable. This provides a complement for Ingalls-Thomas-type bijections for finite dimensional algebras.

1. WIDE/SEMISTABLE SUBCATEGORIES

This is a report on results presented in [8]. Throughout this note, Λ is a finite dimensional algebra over a field k. Let mod Λ (resp., proj Λ) be the category of finitely generated right Λ -modules (resp., projective right Λ -modules).

Wide subcategories of modA are full subcategories closed under kernels, cokernels and extensions. Important examples of wide subcategories are given by geometric invariant theory for quiver representations [5]. Recall that a *stability condition* on modA is a linear form θ on $K_0(\text{mod}\Lambda) \otimes_{\mathbb{Z}} \mathbb{R}$, where $K_0(\text{mod}\Lambda)$ is the Grothendieck group of modA. We say that $M \in \text{mod}\Lambda$ is θ -semistable if $\theta(M) = 0$ and $\theta(L) \leq 0$ for any submodule L of M, or equivalently, $\theta(N) \geq 0$ for any factor module N of M. The full subcategory of θ -semistable Λ -modules is called the θ -semistable subcategory of modA. It is basic that semistable subcategories of modA are wide.

In this note, we give that any wide subcategory of $\mathsf{mod}\Lambda$ satisfying a certain finiteness condition is θ -semistable for some stability condition θ . Our original motivation comes from bijections given by Ingalls and Thomas [3].

2. INGALLS-THOMAS BIJECTIONS

We recall basic notations and definitions. Let S be a full subcategory of $\mathsf{mod}\Lambda$. For a full subcategory S of $\mathsf{mod}\Lambda$, let

$$\mathcal{S}^{\perp} := \{ M \in \mathsf{mod}\Lambda \mid \mathrm{Hom}_{\Lambda}(\mathcal{S}, M) = 0 \}, \quad {}^{\perp}\mathcal{S} := \{ M \in \mathsf{mod}\Lambda \mid \mathrm{Hom}_{\Lambda}(M, \mathcal{S}) = 0 \}.$$

We call S a torsion class (resp., torsion free class) if it is closed under extensions and quotients (resp., extensions and submodules). For subcategories \mathcal{T} and \mathcal{F} of mod Λ , a pair $(\mathcal{T}, \mathcal{F})$ is called a torsion pair if $\mathcal{T} = {}^{\perp}\mathcal{F}$ and $\mathcal{F} = \mathcal{T}^{\perp}$. Then \mathcal{T} is a torsion class and \mathcal{F} is a torsion free class. Conversely, any torsion class (resp., torsion free class) gives rise to a torsion pair. We call S functorially finite if any Λ -module admits both a left and a right S-approximation. We call S left finite if the minimal torsion class containing S is functorially finite.

The detailed version of this paper will be submitted for publication elsewhere.

For quiver representations, Ingalls and Thomas [3] gave bijections between wide/semistable subcategories and other important objects.

Theorem 1. [3] For the path algebra kQ of a finite connected acyclic quiver Q over a field k, there are bijections between the following objects, where we refer to [3] for the notion of support tilting modules.

- (1) Isomorphism classes of basic support tilting modules in mod(kQ).
- (2) Functorially finite torsion classes in mod(kQ).
- (3) Functorially finite wide subcategories of mod(kQ).
- (4) Functorially finite semistable subcategories of mod(kQ).

Later, works of Adachi-Iyama-Reiten [1] and Marks-Stovicek [6] gave a generalization of Theorem 1 (called *Ingalls-Thomas-type bijections*) for an arbitrary finite dimensional k-algebra.

3. INGALLS-THOMAS-TYPE BIJECTIONS

For an additive (resp., abelian) category \mathcal{A} , let $\mathsf{K}^{\mathsf{b}}(\mathcal{A})$ (resp., $\mathsf{D}^{\mathsf{b}}(\mathcal{A})$) be the homotopy (resp., derived) category of bounded complexes over \mathcal{A} . Let $P \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$. We call Ppresilting if $\operatorname{Hom}_{\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)}(P, P[i]) = 0$ for any i > 0. We call P silting if P is presilting and satisfies $\operatorname{thick} P = \mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$, where $\operatorname{thick} P$ is the smallest subcategory of $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$ containing P which is closed under shifts, cones and direct summands. We say that $P = (P^i, d^i)$ is two-term if $P^i = 0$ for all $i \neq 0, -1$. We denote by 2-presilt Λ (resp., 2-silt Λ) the set of isomorphism classes of basic two-term presilting (resp., silting) complexes in $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$.

For $M \in \text{mod}\Lambda$, let addM (resp., FacM, SubM) be the category of all direct summands (resp., factor modules, submodules) of finite direct sums of copies of M.

We ready to note Ingalls-Thomas-type bijections.

Theorem 2. [1, 6] There are bijections between the following objects, where we refer to [1] for the notion of support τ -tilting modules.

- (1) Isomorphism classes of basic support τ -tilting modules in mod Λ .
- (1) Isomorphism classes of basic two-term silting complexes in $K^{b}(\text{proj}\Lambda)$.
- (2) Functorially finite torsion classes in $mod\Lambda$.
- (2') Functorially finite torsion free classes in $mod\Lambda$.
- (3) Left finite wide subcategories of $\mathsf{mod}\Lambda$.

Theorem 2 are given in the following way [1, 6, 7]:

$$\begin{array}{rcl} (1') \rightarrow (1) & : & T \mapsto \mathrm{H}^{0}(T), \\ (1') \rightarrow (2) & : & T \mapsto \mathsf{FacH}^{0}(T), & (1') \rightarrow (2') & : & T \mapsto \mathsf{SubH}^{-1}(\nu T), \\ (2) \rightarrow (2') & : & \mathcal{T} \mapsto \mathcal{T}^{\perp}, & (2) \leftarrow (2') & : & {}^{\perp}\mathcal{F} \leftrightarrow \mathcal{F}, \\ (1') \rightarrow (3) & : & T \mapsto \mathcal{W}^{T} := \mathsf{FacH}^{0}(T_{\lambda}) \cap \mathrm{H}^{0}(T_{\rho})^{\perp}, \end{array}$$

where $H^{i}(T)$ is the *i*-th cohomology of T and ν is the Nakayama functor.

Notice that the statement for semistable subcategories of $\mathsf{mod}\Lambda$ is missing in Theorem 2. Our aim is to provide a complement for Theorem 2.

4. Our results

The following main theorem provides a complement for Ingalls-Thomas-type bijections.

Theorem 3. [8] The following objects are the same.

- (3) Left finite wide subcategories of $\mathsf{mod}\Lambda$.
- (4) Left finite semistable subcategories of $mod\Lambda$.

Therefore, there are bijections between (1) - (3) in Theorem 2 and (4).

Since it is basic that semistable subcategories are wide subcategories, it suffices to show the converse. To construct a stability condition θ for a given left finite wide subcategory, we need the following preparation. There are natural isomorphisms $K_0(\text{mod}\Lambda) \simeq$ $K_0(D^{\text{b}}(\text{mod}\Lambda))$ and $K_0(\text{proj}\Lambda) \simeq K_0(\mathsf{K}^{\text{b}}(\text{proj}\Lambda))$. Moreover, $K_0(\text{mod}\Lambda)$ has a basis consisting of the isomorphism classes S_i of simple Λ -modules, and $K_0(\text{proj}\Lambda)$ has a basis consisting of the isomorphism classes P_i of indecomposable projective Λ -modules, where $\operatorname{top} P_i = S_i$. The Euler form is a non-degenerate pairing between $K_0(\operatorname{proj}\Lambda)$ and $K_0(\operatorname{mod}\Lambda)$ given by

$$\langle P, X \rangle := \sum_{i \in \mathbb{Z}} (-1)^i \dim_k \operatorname{Hom}_{\mathsf{D}^{\mathrm{b}}(\mathsf{mod}\Lambda)}(P, X[i])$$

for any $P \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$ and $X \in \mathsf{D}^{\mathsf{b}}(\mathsf{mod}\Lambda)$. Then $\{P_i\}$ and $\{S_i\}$ satisfies $\langle P_i, S_j \rangle = \delta_{ij} \dim_k \operatorname{End}_{\Lambda}(S_j)$ for any i and j, where δ_{ij} is the Kronecker delta. In particular, we have a \mathbb{Z} -linear form $\langle P, - \rangle : K_0(\mathsf{mod}\Lambda) \to \mathbb{Z}$ for $P \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$. On the other hand, for $T \in 2$ -silt Λ , there is a decomposition $T = T_{\lambda} \oplus T_{\rho}$ and a triangle

 $\Lambda \to T' \to T'' \to \Lambda[1]$

in $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\Lambda)$, where $\mathsf{add}T' = \mathsf{add}T_{\lambda}$ and $\mathsf{add}T'' = \mathsf{add}T_{\rho}$ (see [2]).

Our Theorem 3 is a consequence of the following result.

Theorem 4. [8] For $T \in 2$ -silt Λ , we consider an \mathbb{R} -linear form θ defined by

$$\sum_X a_X \langle X, - \rangle : K_0(\mathsf{mod}\Lambda) \otimes_{\mathbb{Z}} \mathbb{R} \to \mathbb{R},$$

where X runs over all indecomposable direct summands of T_{ρ} , and a_X is an arbitrary positive real number for each X. Then \mathcal{W}^T is the θ -semistable subcategory of mod Λ .

We give Theorem 4 in a more general setting. Any $U \in 2$ -presilt Λ gives rise to a wide subcategory of mod Λ as follows: By [1], there are two torsion pairs

$$({}^{\perp}\mathrm{H}^{-1}(
u U),\mathsf{Sub}\mathrm{H}^{-1}(
u U)), \hspace{0.2cm} (\mathsf{Fac}\mathrm{H}^{0}(U),\mathrm{H}^{0}(U){}^{\perp})$$

in mod Λ such that ${}^{\perp}\mathrm{H}^{-1}(\nu U) \supseteq \mathsf{Fac}\mathrm{H}^{0}(U)$ and $\mathsf{Sub}\mathrm{H}^{-1}(\nu U) \subseteq \mathrm{H}^{0}(U)^{\perp}$. Note that the equalities hold if and only if $U \in 2$ -silt Λ . Then it is easy to show that

$$\mathcal{W}_U := {}^{\perp} \mathrm{H}^{-1}(\nu U) \cap \mathrm{H}^0(U)^{\perp}$$

is a wide subcategory of $\mathsf{mod}\Lambda$, which is equivalent to $\mathsf{mod}C$ for some explicitly constructed finite dimensional algebra C (see [4]).

Lemma 5. [8] Let $T = T_{\lambda} \oplus T_{\rho} \in 2$ -silt Λ . Then $\mathcal{W}^T = \mathcal{W}_{T_{\rho}}$ holds.

Our Theorem 4 is a consequence of Lemma 5 and the following result.

Theorem 6. [8] For $U \in 2$ -presilt Λ , we consider an \mathbb{R} -linear form θ defined by

$$\sum_X a_X \langle X, - \rangle : K_0(\mathsf{mod}\Lambda) \otimes_{\mathbb{Z}} \mathbb{R} \to \mathbb{R},$$

where X runs over all indecomposable direct summands of U, and a_X is an arbitrary positive real number for each X. Then W_U is the θ -semistable subcategory of mod Λ .

References

- [1] T. Adachi, O. Iyama and I. Reiten, τ -tilting theory, Compos. Math. Vol. 150, 3 (2014) 415–452.
- [2] T. Aihara and O. Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. Vol. 85 (2012) 633-668.
- [3] C. Ingalls and H. Thomas, Noncrossing partitions and representations of quivers, Compos. Math. Vol. 145, 6 (2009) 1533–1562.
- [4] G. Jasso, Reduction of τ -tilting modules and torsion pairs, Int. Math. Res. Not. IMRN 16 (2015) 7190–7237.
- [5] A. King, Moduli of representations of finite-dimensional algebras, Q. J. Math. 45, 4 (1994) 515–530.
- [6] F. Marks and J. Stovicek, Torsion classes, wide subcategories and localisations, Lond. Math. Soc. (3) 49 (2017) 405–416.
- [7] S. O. Smalø, Torsion theory and tilting modules, Bull. Lond. Math. Soc. 16 (1984) 518–522.
- [8] T. Yurikusa, Wide subcategories are semistable, arXiv:1705.07636.

GRADUATE SCHOOL OF MATHEMATICS NAGOYA UNIVERSITY NAGOYA, 464-8602, JAPAN *E-mail address*: m15049q@math.nagoya-u.ac.jp