Auslander correspondence for triangulated categories

Norihiro Hanihara

2018/09/19

Contents

Theorem (Auslander correspondence)

There exists a bijection between

• Finite abelian categories.

2 Finite dimensional algebras with gl. dim $\leq 2 \leq$ dom. dim.

A relationship between categorical and homological properties.

Aim

Give a triangulated analogue.

=Give a homological characterization of 'finite' triangulated categories.

Notations and setup

- *k*: field.
- 'category'=k-linear, Hom-finite, Krull-Schmidt category.
- a category $\mathcal C$ is finite if $\sharp \operatorname{ind} \mathcal C < \infty$
- for a finite category C = add M,
 End_C(M): the Auslander algebra of C.

Finiteness for triangulated categories

- Finite.
- (1) '[1]-finite'.

A homological characterization of Auslander algerbras of finite triangulated categories:

Theorem 1

k: perfect field. The following are equivalent for a basic finite dimensional *k*-algebra A:

- A is the basic Auslander algebra of a finite triangulated category.
- **2** A is self-injective and $\Omega^3 \simeq (-)_{\alpha}$ on mod A for some automorphism α of A.

Remark

Saying nothing about the triangle structures.

Proof of $(1) \Rightarrow (2)$

- A is self-injective since \mathcal{T} is.
- Each triangle

$$X \longrightarrow Y \longrightarrow Z \longrightarrow$$

in ${\mathcal T}$ yields an exact sequence

in mod $\mathcal{T} \simeq \mod A$, so $\Omega^3 M \simeq M[-1]$ in mod A.

• [1] can induce an automorphism of A since it is basic.

Sketch of $(2) \Rightarrow (1)$

We want to show that proj A admits a structure of a triangulated category.

Proposition (Amiot)

Let \mathcal{A} be a k-linear category such that $\operatorname{mod} \mathcal{A}$ is naturally Frobenius. Let S be an automorphism of \mathcal{A} and extend this to $\operatorname{mod} \mathcal{A} \to \operatorname{mod} \mathcal{A}$ (by $M \mapsto M \circ S^{-1}$). Assume there exists an exact sequence

$$0 \longrightarrow 1 \longrightarrow X^0 \longrightarrow X^1 \longrightarrow X^2 \longrightarrow S \longrightarrow 0$$

of exact functors from mod A to mod A such that the X^i 's values in A. Then, A has a structure of a triangulated category with suspension S.

The triangles are given by $X^0M \to X^1M \to X^2M \to SX^0M$ with $M \in \mod A$.

Sketch of (2) \Rightarrow (1)

Such an exact sequence of functors can be obtained by considering **bimodules** as functors.

Proposition (a variant of Green-Snashall-Solberg)

Let A be a ring-indecomposable non-semisimple finite dimensional k-alebra such that A/J_A is separable over k and n > 0. Then, the following are equivalent.

- $\ \, \Omega^n(A/J_A)\simeq A/J_A.$
- A is self-injective and Ωⁿ ≃ (−)_α on mod A for some automorphism α
 of A.
- So There exists an automorphism of α of A such that $\Omega^n_{A^e}(A) \simeq {}_1A_{\alpha}$.

Sketch of $(2) \Rightarrow (1)$

Assume A is self-injective and $\Omega^3 \simeq (-)_{\alpha}$. Then, $\Omega^3_{A^e}(A) \simeq {}_1A_{\sigma}$ for some automorphism σ , so there exists an exact sequence

$$0 \longrightarrow A \longrightarrow P^{0} \longrightarrow P^{1} \longrightarrow P^{2} \longrightarrow {}_{1}A_{\sigma^{-1}} \longrightarrow 0$$

in mod A^e with $P^i \in \text{proj } A^e$, which gives a desired exact sequence of functors.

[1]-finite triangulated categories

Another finiteness for triangulated categories:

Definition

A triangulated category \mathcal{T} is [1]-finite if

- There exists $M \in \mathcal{T}$ such that $\mathcal{T} = \operatorname{add} \{ M[i] \mid i \in \mathbb{Z} \}.$
- **2** For any $X, Y \in \mathcal{T}$, $\text{Hom}_{\mathcal{T}}(X, Y[i]) = 0$ for almost all $i \in \mathbb{Z}$.

In this case, we say M is a [1]-additive generator for \mathcal{T} .

Example

A: representation-finite hereditary algebra with $\text{mod } \Lambda = \text{add } M$. $\Rightarrow D^b(\text{mod } \Lambda) \text{ is } [1]\text{-finite, } M \text{ is a } [1]\text{-additive generator for } D^b(\text{mod } \Lambda).$ By the results of Xiao-Zhu and Riedtmann's 'knitting' argument, we know

Proposition

- \mathcal{T} : [1]-finite triangulated category over an algebraically closed field.
 - **1** The AR-quiver of \mathcal{T} is $\mathbb{Z}Q$ for some Dynkin quiver Q.
 - **2** \mathcal{T} is standard, hence $\mathcal{T} \simeq k(\mathbb{Z}Q)$ as k-linear categories.

Graded projectivization

How to build the 'Auslander algebras' for [1]-finite triangulated categories?

Recall

C: finite category with add M = C. Setting $\Gamma = \text{End}_{\mathcal{C}}(M)$, we have an equivalence

$$\operatorname{Hom}_{\mathcal{C}}(M,-)\colon \mathcal{C}\xrightarrow{\simeq}\operatorname{proj}\Gamma.$$

 Γ does not depend on M up to Morita equivalence.

Graded projectivization

Proposition

C: category with an automorphism F. Assume $C = \operatorname{add} \{F^iM \mid i \in \mathbb{Z}\}$ for some $M \in C$. Set $\Gamma = \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{C}}(M, F^iM)$. Then, there exists an equivalence

$$\bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{C}}(M, F^{i}(-)) \colon \begin{array}{c} \mathcal{C} \xrightarrow{\simeq} \operatorname{proj}^{\mathbb{Z}} \Gamma. \\ (\bigcup_{F} & () \end{array}$$

 Γ does not depend on M up to graded Morita equivalence.

Here, Graded rings A, B are graded Morita equivalent if there exists an equivalence

$$\operatorname{\mathsf{Mod}}^{\mathbb{Z}} A \xrightarrow{\simeq} \operatorname{\mathsf{Mod}}^{\mathbb{Z}} B .$$

$$() \qquad (1) \qquad (1)$$

[1]-Auslander algebra

Apply the above proposition to triangulated categories.

Definition

 \mathcal{T} : [1]-finite triangulated category with [1]-additive generator M. We call

$$C = \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(M, M[i])$$

the [1]-Auslander algebra of \mathcal{T} .

Proposition

- C is a finite dimensional algebra.
- **2** We have an equivalence $\mathcal{T} \simeq \operatorname{proj}^{\mathbb{Z}} \mathcal{C}$ such that $[1] \leftrightarrow (1)$.
- **③** *C* is self-injective and $\Omega^3 \simeq (-1)$ on $\underline{\text{mod}}^{\mathbb{Z}} C$.

Proof of (3)

- C is self-injective since \mathcal{T} is.
- Each triangle

$$X \longrightarrow Y \longrightarrow Z \longrightarrow$$

in ${\mathcal T}$ yields an exact sequence

$$(-, Z[-1]) \rightarrow (-, X) \longrightarrow (-, Y) \longrightarrow (-, Z) \rightarrow (-, X[1])$$

$$M[-1]$$

in mod $\mathcal{T} \simeq \operatorname{mod}^{\mathbb{Z}} C$, so $\Omega^3 M \simeq M(-1)$ in $\operatorname{mod}^{\mathbb{Z}} C$.

[1]-Auslander correspondence

Theorem 2

k: algebraically closed field. There exists a bijection between

- **(**1]-finite algebraic triangulated categories / triangle equivalence
- 3 Finite dimensional graded self-injective algebras such that $\Omega^3\simeq (-1)$ / graded Morita equivalence
- Solution Disjoint union of Dynkin diagrams of type A, D, and E.

The correspondences are given by

- From (1) to (2): taking the [1]-Auslander algebra.
- From (2) to (1): $C \mapsto \operatorname{proj}^{\mathbb{Z}} C$.
- From (1) to (3): taking the tree type of the AR-quiver of \mathcal{T} .
- From (3) to (1): $Q \mapsto k(\mathbb{Z}Q)$.

[1]-finite case

Uniqueness of triangle structures

(3) to (1) (or (2) to (1)) says:

Proposition

Q: Dynkin quiver, $k(\mathbb{Z}Q)$: its mesh category. Then, $k(\mathbb{Z}Q)$ has the unique structure of an algebraic triangulated category up to equivalence.

On the other hand, $k(\mathbb{Z}Q)$ has a structure of an algebraic triangulated category $D^{b} \pmod{kQ}$.

Corollary

Any [1]-finite algebraic triangulated category over an algebraically closed field k is triangle equivalent to $D^b \pmod{kQ}$ for some Dynkin quiver Q.

Remark

The uniqueness of algebraic triangle structures (up to equivalence) holds for $\mathcal{K}^{b}(\operatorname{proj} \Lambda)$ for certain ring Λ .

Graded Iwanaga-Gorenstein algebras

- A graded Noetherian algebra Λ is *Iwanaga-Gorenstein* if inj. dim Λ < ∞ on each side.
- We have the category

$$\mathsf{CM}^{\mathbb{Z}} \Lambda = \{X \in \mathsf{mod}^{\mathbb{Z}} \Lambda \mid \mathsf{Ext}_{\Lambda}^{>0}(X, \Lambda) = 0\}$$

of graded Cohen-Macaulay A-modules.

- $CM^{\mathbb{Z}} \Lambda$ is naturally Frobenius, hence the stable category $\underline{CM}^{\mathbb{Z}} \Lambda$ is algebraically triangulated.
- Λ is *CM-finite* if CM^Z Λ is finite up to degree shift.

The triangle equivalence

- $\Lambda = \bigoplus_{i \geq 0} \Lambda_i$: positively graded Iwanaga-Gorenstein algebra such that
 - each Λ_i is finite dimensional over k.
 - gl. dim $\Lambda_0 < \infty$.

Assume Λ is CM-finite.

Theorem 3

 $\underline{CM}^{\mathbb{Z}} \wedge is [1]$ -finite, and therefore, if k is algebraically closed,

- **1** The AR-quiver of $\underline{CM}^{\mathbb{Z}} \wedge is \mathbb{Z}Q$ for some Dynkin quiver Q.
- **2** There exists a triangle equivalence $\underline{CM}^{\mathbb{Z}} \wedge \simeq D^{b} (\mod kQ)$.

e.g.

- (commutative) simple singularities
- finite dimensional representation-finite self-injective algebras
- representation-finite Gorenstein orders