PURE DERIVED CATEGORIES AND WEAK BALANCED BIG COHEN–MACAULAY MODULES

TSUTOMU NAKAMURA

Abstract. We report a new approach to reach the pure derived category of flat modules over a commutative noetherian ring of finite Krull dimension. Using it, we concretely connect two different stable categories over a Gorenstein ring; the first one is the stable category of Gorenstein-projective modules, and the other is the stable category of Gorenstein-flat cotorsion modules. Although they are triangulated equivalent, we report that the latter has some advantage in terms of pure-injectivity. This advantage along with the notion of weak balanced big Cohen–Macaulay modules naturally leads us to an infinite version of Cohen-Macaulay representation theory.

1. Introduction

A specialist of model theory of modules, Gena Puninski [18] proposed an interesting study of Cohen–Macaulay representations via pure-injectivity. His idea was based on importance of infinitely generated pure-injective modules over artinian rings. As shown by Tachikawa [21, Corollary 9.5] and Auslander [2, Theorem A], a (possibly non-commutative) artinian ring A is of finite representation type if and only if any indecomposable pure-injective module is finitely generated. (See also Auslander [1, Corollary 4.8], Ringel and Tachikawa [19, Corollary 4.4] and Prest [17, §5.3.4].) This fact implies that if A is not of finite representation type, then there exists an infinitely generated pure-injective A-module which is indecomposable. Some of such modules have a role to control behavior of finitely generated modules, see Crawley-Boevey [5]. See also Benson and Krause [3] for importance of pure-injective modules in their context.

The next computation is given by Puninski [18].

Example 1. Let k be an algebraic closed field with char $k
eq 2$, and set $R = k[[x, y]]/(x^2)$. Indecomposable infinitely generated pure-injective R-modules M with Hom$_R(k, M) = 0$ are just $R_{(x)}, xR_{(x)}$ and \bar{R} up to isomorphism, where \bar{R} is the integral closure of R in the total quotient ring $R_{(x)}$.

Let (R, \mathfrak{m}, k) be a CM (Cohen–Macaulay) local ring. Puninski meant by a CM R-module an R-module M such that Ext$^i_R(k, M) = 0$ for $i < \dim R$. To avoid confusion, let us express such modules as “CM” modules. The above example computes all indecomposable infinitely generated “CM” modules over $k[[x, y]]/(x^2)$ such that they are pure-injective.

Unlike artinian rings, R having positive Krull dimension easily admits (trivial) indecomposable pure-injective modules which are infinitely generated. The localization of R at any minimal prime ideal is such an R-module, and it is always a “CM” R-module.

The detailed version of this paper will be submitted for publication elsewhere.
Moreover, if \(\dim R > 1 \), then any indecomposable injective module corresponding to a high-one prime ideal becomes a “CM” \(R \)-module, see [18, Remark 10.1]. Therefore we cannot simply extend the result of Tachikawa and Auslander. Actually, Puninski [18, Question 10.2] left the next question:

Let \(R \) be the formal power series ring in two variables over an algebraic closed field, and let \(\mathfrak{m} \) be its maximal ideal. Is any indecomposable pure-injective “CM” \(R \)-module \(M \) with \(M/\mathfrak{m}M \neq 0 \) finitely generated?

Although the last condition can avoid a lot of infinitely generated modules, this question might be still unreasonable. One reason is that the vanishing condition of \(\text{Ext}^i_R(k,M) \) for \(i < \dim R \) need not provide the smallest closed subset of the Ziegler spectrum of \(R \) containing all indecomposable finitely generated maximal CM modules up to isomorphism. A better class of modules is formed by weak balanced big CM modules in the sense of Holm [9]. His results [9, Theorem B and Proposition 2.4] can imply that the class of these modules corresponds to the smallest closed subset. Moreover, Puninski’s “CM” modules agree with Holm’s weak balanced big CM modules if \(R \) has at most dimension one. Hence we can naturally continue Puninski’s work.

However, the smallest closed subset still contains kind of trivial ones; indecomposable flat cotorsion modules. In fact, the closed subset is occupied by them if and if \(R \) is regular. Then, in terms of singularity theory, it is very natural to remove them. Sections 2 and 3 are devoted to explain that there is a natural stable category of modules to study the rest part of the closed subset.

2. The pure derived category of flat modules

The stable category of maximal CM modules is a fundamental tool in CM representation theory. It is constructed by identifying two maps whose difference factors through some finitely generated projective module. Over a Gorenstein local ring \(R \), this stable category is triangulated equivalent to the homotopy category \(K_{\text{ac}}(\text{proj} \ R) \) of acyclic complexes of finitely generated projective modules. Then, the larger category \(K_{\text{ac}}(\text{Proj} \ R) \) formed by acyclic complexes of arbitrary projective modules and its corresponding stable category consisting of Gorenstein-projective modules look natural places to discuss infinitely generated CM representations. However, focusing on only “modulo projective modules” could lose an important viewpoint of pure-injectivity. This is just because, projective modules need not be pure-injective. In this section, passing through the pure derived category of flat modules, we will arrive at another stable category, which preserves pure-injectivity nicely, and extends the stable category of maximal CM modules, see Section 3.

Let us start with an arbitrary ring \(A \). A complex \(X \) of left \(A \)-modules is said to be pure acyclic if it is acyclic (i.e. exact) and \(M \otimes_A X \) is acyclic for any right \(A \)-modules. The homotopy category \(K(\text{Flat} \ A) \) of complexes of flat left \(A \)-modules has a full subcategory \(K_{\text{pac}}(\text{Flat} \ A) \) consisting of pure acyclic complexes. The pure derived category \(D(\text{Flat} \ A) \) of flat \(A \)-modules is defined as the Verdier quotient category \(K(\text{Flat} \ A)/K_{\text{pac}}(\text{Flat} \ A) \). This category appeared in Neeman’s work [16], see also Murfet and Salarian [12]. Neeman proved that the canonical composition \(K(\text{Proj} \ A) \to K(\text{Flat} \ A) \to D(\text{Flat} \ A) \) is a triangulated equivalence.
A left A-module M is said to be \textit{cotorsion} if $\text{Ext}^i_A(F,M) = 0$ for any flat left A-module and any positive integer i. The category of cotorsion left A-modules is denoted by $\text{Cot} A$. Moreover, we set $\text{FlCot} A = \text{Flat} A \cap \text{Cot} A$; its objects are called flat cotorsion A-modules. Štovíček’s [20, Corollary 5.8] refining Gillespie’s [7, Corollary 4.10] implies that the canonical composition $K(\text{FlCot} A) \to K(\text{Flat} A) \to D(\text{Flat} A)$ is a triangulated equivalence. Consequently, it holds that

$$K(\text{Proj} A) \cong D(\text{Flat} A) \cong K(\text{FlCot} A).$$

Replacement of a complex $X \in K(\text{Proj} A)$ with $Y \in K(\text{FlCot} A)$ is given by a pure quasi-isomorphism $X \to Y$, that is, a quasi-isomorphism whose mapping cone is pure acyclic. However, we are not able to understand this replacement in detail by the general theory.

A complex X of projective (resp. flat cotorsion) left A-modules is said to be \textit{totally acyclic} if it is acyclic and $\text{Hom}_A(X,F)$ is acyclic for any projective (flat cotorsion) left A-module F. Moreover, a complex X of flat left A-modules is said to be F-\textit{totally acyclic} if it is acyclic and $E \otimes_A X$ is acyclic for any injective right A-module E. We denote by $K_{\text{tac}}(\text{Proj} A)$ and $K_{\text{tac}}(\text{FlCot} A)$ the full subcategories of $K(\text{Proj} A)$ and $K(\text{FlCot} A)$ formed by totally acyclic complexes respectively. Moreover, let $D_{\text{Ftac}}(\text{Flat} A)$ be the full subcategory of $D(\text{Flat} A)$ formed by F-totally acyclic complexes.

Suppose that A is a right coherent ring and any flat left A-module has finite projective dimension. Then any F-totally acyclic complex of projective left A-modules becomes totally acyclic. Similarly, any F-totally acyclic complex of flat cotorsion left A-modules becomes totally acyclic. Therefore, restricting the above triangulated equivalences to F-totally acyclic complexes, we get

$$K_{\text{tac}}(\text{Proj} A) \cong D_{\text{Ftac}}(\text{Flat} A) \cong K_{\text{tac}}(\text{FlCot} A).$$

A left A-module is called \textit{Gorenstein-projective} if it is the kernel of the 0th differential map of some totally acyclic complex of projective modules. The category of Gorenstein-projective modules is denoted by $\text{GProj} A$. It is well-known that this category has a Frobenius structure naturally, and hence its stable category $\text{GProj} A$ modulo projective modules becomes a triangulated category which is triangulated equivalent to $K_{\text{tac}}(\text{Proj} A)$.

A left A-module is called \textit{Gorenstein-flat} if it is the kernel of the 0th differential map of some F-totally acyclic complex of flat modules. The category of Gorenstein-flat modules is denoted by $\text{GFlat} A$. Its stable category modulo flat modules could be too huge, hence we take a smaller category

$$\text{GFlCot} A := \text{GFlat} A \cap \text{Cot} A,$$

whose objects are Gorenstein-flat cotorsion modules. As observed by Gillespie [8] essentially, this category also has a Frobenius structure, and its stable category $\text{GFlCot} A$ modulo flat cotorsion modules is triangulated equivalent to $K_{\text{tac}}(\text{FlCot} A)$. Therefore we have

$$\text{GProj} A \cong K_{\text{tac}}(\text{Proj} A) \cong K_{\text{tac}}(\text{FlCot} A) \cong \text{GFlCot} A.$$
Henceforth, \(R \) denotes a commutative noetherian ring with finite Krull dimension \(d \). We would like to provide another approach to reach the pure derived category of flat modules over \(R \). Set \(U = \text{Spec} \, R \), and \(U_i = \{ p \in U \mid \text{dim} \, R/p = i \} \). Consider the canonical morphism \(\text{id}_{\text{Mod} \, R} \rightarrow \bar{\lambda}^{U_i} = \prod_{p \in U_i} \Lambda^p(R_p \otimes_R -) \), where \(\Lambda^p \) stands for the p-adic completion functor \(\lim_{\leftarrow n \geq 1} (R/p \otimes_R -) \) on the category \(\text{Mod} \, R \) of \(R \)-modules. Using a standard construction of Čech complexes along with the natural transformations \(\text{id}_{\text{Mod} \, R} \rightarrow \bar{\lambda}^{U_i} \), we get a complex of functors:

\[
L^U = \left(\prod_{0 \leq i \leq d} \bar{\lambda}^{U_i} \rightarrow \prod_{0 \leq i < j \leq d} \bar{\lambda}^{U_j} \bar{\lambda}^{U_i} \rightarrow \cdots \rightarrow \bar{\lambda}^{U_d} \ldots \bar{\lambda}^{U_0} \right),
\]

where \(U \) stands for the family \(\{ U_i \}_{0 \leq i \leq d} \). To a complex \(X \) of \(R \)-modules, \(L^U \) naturally assigns a double complex \(L^U X \) with a canonical morphism \(X \rightarrow L^U X \). Taking their total complexes, we get a natural chain map \(\ell^U X : X \rightarrow \text{tot} L^U X \). This construction appeared in the previous work [13] with Yoshino.

For simplicity, let us write \(\lambda^U = \text{tot} L^U \), which is an endofunctor on the category \(C(\text{Mod} \, R) \) of complexes. This can be restricted to an endofunctor on the category \(C(\text{Flat} \, R) \) of complexes of flat modules. More precisely, it factors through the inclusion from the category \(C(\text{FlCot} \, R) \) of complexes of flat cotorsion modules into \(C(\text{Flat} \, R) \):

\[
C(\text{Flat} \, R) \xrightarrow{\lambda^U} C(\text{FlCot} \, R) \xrightarrow{\text{inc}} C(\text{Flat} \, R).
\]

The above sequence naturally induces a sequence of triangulated functors on homotopy categories:

\[
K(\text{Flat} \, R) \xrightarrow{\lambda^U} K(\text{FlCot} \, R) \xrightarrow{\text{inc}} K(\text{Flat} \, R).
\]

Theorem 2. The triangulated functor \(\lambda^U : K(\text{Flat} \, R) \rightarrow K(\text{FlCot} \, R) \) is a left adjoint to the inclusion \(K(\text{FlCot} \, R) \rightarrow K(\text{Flat} \, R) \), and \(\ell^U \) yields the unit morphism of this pair. The kernel of \(\lambda^U \) is the subcategory \(K_{\text{pac}}(\text{Flat} \, R) \) consisting of pure acyclic complexes.

By this theorem, we can conclude that \(\lambda^U \) induces the triangulated equivalence

\[
D(\text{Flat} \, R) \cong K(\text{FlCot} \, R).
\]

It then follows that

\[
K(\text{Proj} \, R) \xrightarrow{\lambda^U} K(\text{FlCot} \, R)
\]

is a triangulated equivalence. As a consequence, we can explicitly describe the link between the two stable categories as follow:

\[
(2.1) \quad \text{GProj} \, R \cong K_{\text{tac}}(\text{Proj} \, R) \xrightarrow{\lambda^U} K_{\text{tac}}(\text{FlCot} \, R) \cong \text{GFlCot} \, R.
\]

See [14] for more details.

3. Purity for weak balanced big Cohen–Macaulay modules

Let \((R, m, k) \) be a CM local ring. Following [9], we say that an \(R \)-module is \textit{weak balanced big Cohen–Macaulay} if any system of parameters of \(m \) is a weak \(M \)-regular sequence, see [4, Definition 1.1.1]. We denote by \(\text{wbbCM} \, R \) the category of weak balanced big CM modules. It essentially follows from [9, Proposition 2.4] that \(\text{wbbCM} \, R \) is a
definable subcategory of Mod\(R\), that is, a subcategory closed under direct limits, direct product, and pure submodules. Moreover, [9, Theorem B] says that \(\text{wbbCM} \, R\) is the smallest definable subcategory containing maximal CM modules.

We denote by the \(\text{Zg}_R\) the Ziegler spectrum of \(R\), that is, the (small) set of isomorphism classes of indecomposable pure-injective modules, where an \(R\)-module \(P\) is called pure-injective if \(\text{Hom}_R(-, P)\) preserves exactness of pure short exact sequences. The Ziegler spectrum has a natural topology defined through a functor category, see [5, §2.5]. Furthermore, there is a canonical bijection from definable subcategories of Mod\(R\) to closed subsets of \(\text{Zg}_R\), see [17, Corollary 5.1.6].

Suppose that \(R\) is \(m\)-adically complete. Then the Matlis duality implies that all finitely generated \(R\)-modules are pure-injective. Let us denote by \(\text{Zg}_R(\text{wbbCM})\) the closed subset of the Ziegler spectrum of \(R\) consisting of points represented by \(\text{wbbCM}\) (weak balanced big CM) modules. Note that \(\text{Zg}_R(\text{wbbCM})\) contains all indecomposable (maximal) CM modules up to isomorphism. Therefore, this subset provide a natural place to talk on an infinite version of CM representation theory. In this section, we explain that the stable category \(\text{GFlCot} \, R\) could be a suitable tool to study \(\text{Zg}_R(\text{wbbCM})\) when \(R\) is Gorenstein.

We first remark that \(\text{Zg}_R(\text{wbbCM})\) contains trivial points. Let us denote by \(\text{Zg}_R(\text{Flat})\) the (closed) subset of the Ziegler spectrum formed by indecomposable pure-injective flat modules; they are just the indecomposable flat cotorsion modules. Then Enochs’ [6, Theorem] yields a natural bijection

\[
\text{Zg}_R(\text{Flat}) \cong \left\{ \hat{R}_p \mid p \in \text{Spec} \, R \right\},
\]

where \(\hat{R}_p\) stands for the \(p\)-adic completion of \(R_p\). There is an inclusion

\[
\text{Zg}_R(\text{Flat}) \subseteq \text{Zg}_R(\text{wbbCM}),
\]

and the equality holds if and only if \(R\) is regular; this fact essentially follows from [9, Proposition 4.9]. Hence it is natural to take the complement \(\text{Zg}_R(\text{wbbCM}) \setminus \text{Zg}_R(\text{Flat})\).

Now, suppose that \(R\) is Gorenstein. Then we have \(\text{wbbCM} \, R = \text{GFlat} \, R\), see [9, Theorem B]. As we are now interested in pure-injective modules and all pure-injective modules are cotorsion, it is enough to treat \(\text{wbbCM}\) cotorsion modules. Writing

\[
\text{wbbCMC} \, R := \text{wbbCM} \, R \cap \text{Cot} \, R,
\]

we have \(\text{wbbCMC} \, R = \text{GFlCot} \, R\). Taking this fact into account, let us interpret \(\text{GFlCot} \, R\) as the stable category \(\text{wbbCMC} \, R\) of \(\text{wbbCM}\) cotorsion modules modulo flat cotorsion.

Note that all acyclic complexes of flat modules are \(F\)-totally acyclic since \(R\) is now Gorenstein. Hence \(K_{\text{ac}}(\text{FlCot} \, R)\) is nothing but the homotopy category \(K_{\text{ac}}(\text{FlCot} \, R)\) of acyclic complexes of flat cotorsion modules; it is triangulated equivalent to \(\text{wbbCMC} \, R\).

Example 3. Let \(R\) be as in Example 1. Consider the mapping cone of the next morphism in \(K_{\text{ac}}(\text{FlCot} \, R)\):

\[
\cdots \xrightarrow{x} R \xrightarrow{x} R \xrightarrow{x} R \xrightarrow{x} \cdots
\]

\[
\cdots \xrightarrow{x} R_{(x)} \xrightarrow{x} R_{(x)} \xrightarrow{x} R_{(x)} \xrightarrow{x} \cdots
\]
where the vertical maps are the canonical ones. Through the equivalence \(K_{ac}(\text{FICot } R) \cong \text{wbbCMC } R \), the mapping cone gives a wbbCM module, which is the integral closure \(\bar{R} \).

It essentially follows from Jørgensen’s work \[10\] that the homotopy category \(K_{ac}(\text{Proj } R) \) of acyclic complexes of projective modules is compactly generated, and so is \(\text{GFlCot } R = \text{wbbCMC } R \), see (2.1). Then, thanks to Krause’s work \[11\], we are able to talk about purity in this stable category. The next result is an analogue to the case of quasi-Frobenius rings, see \[11\, \text{Proposition } 1.16\].

Theorem 4. An \(R \)-module \(M \in \text{wbbCMC } R \) is pure-injective in \(\text{Mod}R \) if and only if \(M \) is pure-injective in \(\text{wbbCMC } R \).

This result implicitly says that we can at least make a bijection between the Ziegler spectrum of the triangulated category \(\text{wbbCMC } R \) and \(\text{Zg}_R(\text{wbbCM}) \setminus \text{Zg}_R(\text{Flat}) \), although their topological aspects have to be discussed carefully. It should be also remarked that the same statement as the theorem does not hold for Gorenstein-projective modules.

Example 1 deals with a non-isolated singularity \(k[[x, y]]/(x^2) \). To include such a case, we need to consider \(\text{wbbCM} \) modules. However, if \(R \) is a Gorenstein isolated singularity, the equivalences in (2.1) suggests that a smaller stable category is available. We denote by \(\text{bbCM}^\wedge_m R \) the subcategory of \(\text{Mod} R \) formed by \(m \)-adic completions of balanced big CM modules, where an \(R \)-module is called balanced big Cohen–Macaulay if any system of parameters of \(m \) is an \(M \)-regular sequence. When \(R \) is Gorenstein, we can show that \(\text{bbCM}^\wedge_m R \) has a Frobenius structure, where the projective-injective objects are the \(m \)-adic completions of all free \(R \)-modules. Then its stable category \(\text{bbCM}^\wedge_m R \) modulo \(m \)-adic completions of free \(R \)-modules has a triangulated structure. In fact, it is possible to show that there is a triangulated equivalence

\[
K_{ac}(\text{Proj}^\wedge_m R) \cong \text{bbCM}^\wedge_m R,
\]

where \(\text{Proj}^\wedge_m R \) stands for the subcategory of \(\text{Mod} R \) formed by \(m \)-adic completions of free \(R \)-modules.

Theorem 5. Let \((R, m)\) be a Gorenstein local ring with an isolated singularity. Then there are triangulated equivalences

\[
\text{GProj } R \cong K_{ac}(\text{Proj } R) \xrightarrow{\Lambda^m} K_{ac}(\text{Proj}^\wedge_m R) \cong \text{bbCM}^\wedge_m R.
\]

In fact, the stable category \(\text{bbCM}^\wedge_m R \) can be also obtained as a full subcategory of \(\text{wbbCMC } R \), and the above theorem implies that they are triangulated equivalent. Therefore, \(\text{Zg}_R(\text{wbbCM}) \setminus \text{Zg}_R(\text{Flat}) \) consists of points represented by indecomposable non-projective balanced big CM modules when \(R \) is a complete Gorenstein local ring with an isolated singularity. This fact leads us to a reasonable setup for a CM version of the result by Tachikawa and Auslander mentioned in the introduction. See \[15\] for more details.

References

Dipartimento di Informatica - Settore di Matematica
Università degli Studi di Verona
Strada le Grazie 15 - Ca’ Vignal, I-37134 Verona, Italy
E-mail address: tsutomu.nakamura@univr.it