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Abstract. Let A be a DG algebra and B = A〈X | dX = t〉 be an extended DG algebra
of A by the adjunction of a variable of positive even degree n. Let N be a semi-free DG
B-module that is assumed to be bounded below as a graded module. In this article, we
discuss a lifting problem for N in the situation A → B. We explain how to construct an
obstruction for lifting N to A as an element of Extn+1

B (N,N).

1. Introduction

This report is based on a joint work with Yuji Yoshino[7].
M. Auslander, S. Ding and Ø. Solberg [1] studied liftings and weak liftings of finitely

generated modules over a commutative Noetherian algebra. Recently, S. Nasseh and S.
Sather-Wagstaff [5], and S. Nasseh and Y. Yoshino [6] extended them to the case of DG
modules over commutative DG algebras.

We fix a commutative ring R. Let A be a commutative DG R-algebra and X be a
variable of degree |X|. Then one can construct B = A〈X |dX = t〉 denotes an extended
DG R-algebra by adding the variable X with relation dX = t. See §2 below for more
details. There is a natural DG algebra homomorphism A → B.

We concern a lifting problem for A → B = A〈X |dX = t〉. In the both papers[5, 6],
they only considered the lifting problem in such cases but with the assumption that |X|
is odd. In this case, B is a Koszul complexes of A. They actually construct an obstruction
for weakly lifting a semi-free DG B-module N to A as an element of Ext|X|+1(N,N).

In contrast, our main target in the present article is the lifting problem for A → B =
A〈X |dX = t〉 where |X| is positive and even. In this case, B is is a free algebra over A
with a divided powers variable X that resemble a polynomial ring over A. Let N be a
semi-free DG B-module that is assumed to be bounded below as a graded module. The
aim of this article is to explain how to construct an obstruction for lifting N to A as
an element of Ext|X|+1

B (N,N). To do this, we introduce a certain operator on the set of
graded R-linear endomorphisms on N , which is called the j-operator. Furethermore, we
prove that such a lifting module is unique up to DG A-isomorphisms if Ext|X|

B (N,N) = 0.

The detailed version of this paper will be submitted for publication elsewhere.
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2. DG algebras and DG modules

In this article, R always means a commutative ring. All DG R-algebra in this article are
meant to be a commutative DG algebra over R. We omit definitions of a DG R-algebra
and a DG module; see [2, 4].

In this section, we summarize some materials which we will use in the next section. For
a DG R-algebra A and a DG A-module M , we often denote by A\ the underlying graded
R-algebra of A and by M \ the underlying graded A\-module of M .

Let M and N be a DG module over a DG R-algebra A. We define the DG A-module
HomA(M,N) as HomA(M,N)\ =

⊕
n∈ZHomGrmodA\(M \, N \(n)) where GrmodA\ denotes

the category of graded A\-modules and N \(n) denotes the twist of N by n. The differential
on HomA(M,N) is given by

∂HomA(M,N)(f) = ∂N ◦ f − (−1)|f |f ◦ ∂M

where f is a homogeneous A\-linear homomorphism and |f | denotes the degree of f .
A DG A-module F is said to be semi-free if F \ has a graded A\-free basis E which

decomposes as a disjoint union E =
⊔

i=0Ei and satisfies ∂F (Ei) ⊆
∑

j<i AEj for i = 0.
For a semi-free DG A-module F and an integer n, we define the n-th self extension module
by

ExtnA(F, F ) := H−n(HomA(F, F )).

One can define the n-th extension module ExtnA(M,N) for arbitrary DG A-modules M
and N by a different condition. See [3] for more detail.

Let A → B be a DG algebra homomorphism and M be a DG A-module. The DG
A-module B ⊗A M is defined as follows: the underling module (B ⊗A M)\ is the tensor
product B\ ⊗A\ M \ of graded A\-modules and its differential is given by

∂B⊗AM(b⊗m) = dB(b)⊗m+ (−1)|b|b⊗ ∂M(m)

where b is a homogeneous element in B and |b| denotes the degree of b. Then B ⊗A M is
regarded as a DG B-module via action b(b′ ⊗m) = bb′ ⊗m for b, b′ ∈ B and m ∈ M .

Definition 1. Let A → B be a DG algebra homomorphism.
(1) A semi-free DG B-module N is liftable to A if there is a semi-free DG A-module

M such that N ∼= B ⊗A M as DG B-modules. In this case, M is called a lifting
of N to A.

(2) A semi-free DG B-module N is weakly liftable to A if there is a semi-free DG
A-module M such that N is a direct summand of the DG B-module B ⊗A M .

The following DG algebras are main objects of this article. Let A be a DG R-algebra
and t be a cycle in A, i.e. dA(t) = 0. We construct an extended DG algebra B of A by
the adjunction of a variable X with |X| = |t|+ 1 to kill the cycle t in the following way.
See [2, 4, 8] for details. In both cases, we denote B by A〈X | dX = t〉.

(1) If |X| is odd, then B\ = A\ ⊕XA\ is the graded free A\-module with basis {1, X}
and with a multiplication structure: (a+Xb)(a′+Xb′) = aa′+X(ba′+(−1)|a|ab′)
for a, b, a′, b′ ∈ A. The differential on B is defined by dB(a +Xb) = dA(a) + tb−
XdA(b) for a, b ∈ A.



(2) If |X| is even, then B\ =
⊕

i=0X
(i)A\ is the graded free A\-module with basis

{X(i) : |X(i)| = i|X|}i=0 and with a multiplication rule X(i)X(j) =
(
i+j
j

)
X(i+j) for

i, j ∈ Z. Here we use the convention X(0) = 1, X(1) = X. The differential on B is
defined by dB(X(i)) = tX(i−1) for i = 1.

In each case, there is a natural DG R-algebra homomorphism A → B = A〈X | dX = t〉.
As we have mentioned in the introduction, we concern the lifting problem in the situ-

ation A → B = A〈X | dX = t〉 where |X| is even. Recently, S. Nasseh and Y. Yoshino
have studied a weakly liftable condition for semi-free DG B-modules in the case where
|X| is odd. See [6, Theorem 3.6].

3. Main Results

We begin by establishing some notation to be used in this section.

Notation 2. Let A be a DG R-algebra and t be a cycle in A of odd degree. We denote
by B = A〈X | dX = t〉 an extended DG algebra of A by the adjunction of a variable
X that kills the cycle t. Note that |X| = |t| + 1 is positive even. Let N be a semi-free
DG B-module. Since N is a graded free B\-module, there is a graded free A\-module M
satisfying N \ = B\ ⊗A\ M as graded B\-modules.

In the rest of this article, we work in the setting of Notation 2.
Since |X| is even, note that

(3.1) B\ =
⊕
i=0

X(i)A\

where the right hand side is a direct sum of right A\-modules. From the decomposition
(3.1), N \ can be described as follows;

(3.2) N \ =
⊕
i=0

X(i)M.

Now let r be an integer and let f be a graded R-linear homomorphism from N \ to N \(r),
that is, f is R-linear with f(Nn) ⊆ Nn+r for all n ∈ Z. Given such an f , we consider the
restriction of f on M . Along the decomposition (3.2), one can decompose f |M into the
following form:

(3.3) f |M =
∑
i≥0

X(i)fi,

where each fi is a graded R-linear homomorphism from M to M(r − i|X|). For m ∈ M ,
there is a unique decomposition f(m) =

∑
i X

(i)mi with mi ∈ M along (3.2). Then fi is
defined by fi(m) = mi. Note that the decomposition (3.3) is unique as long as we work
under the fixed setting (3.2). We call the equality (3.3) the expansion of f |M and often
call f0 the constant term of f |M .

Taking the expansion of f |M as in (3.3), we consider a graded R-linear homomorphism
d

dX
f |M =

∑
i≥0

X(i)fi+1.



Note that d
dX

f |M is a mapping from M to N(r − |X|). The mapping d
dX

f |M can be
extended to an R-linear mapping j(f) on N by setting j(f)(X(i)mi) = X(i) d

dX
f |M(mi)

for each i ≥ 0 and mi ∈ M . Thus we have a graded R-linear homomorphism j(f) from
N to N(r − |X|).

Summing up the argument above, we define the j-operator on HomR(N,N) as follows:

Definition 3. We work in the setting of Notation 2. Then one can define a graded R-
linear mapping j : HomR(N,N) → HomR(N,N)(−|X|), which we call the j-operator on
HomR(N,N).

Remark 4. The notion of j-operator was first introduced by J. Tate in the paper [8] and
extensively used by T.H. Gulliksen and G. Levin [4].

We say that a graded R-linear mapping δ : N → N(−1) is a B-derivation if it satisfies
δ(bn) = dB(b)n+(−1)|b||δ|bδ(n) for b ∈ B and n ∈ N . Then DerB(N) denotes the set of all
B-derivations on N . Recall that HomB(N,N) is a set of the all B\-linear endomorphisms
on N . We note that both HomB(N,N) and DerB(N) are subsets of HomR(N,N).

Lemma 5. The following assertions hold for f, g ∈ HomB(N,N) and δ, δ′ ∈ DerB(N).
(1) f = g if and only if f |M = g|M .
(2) δ = δ′ if and only if δ|M = δ′|M .

We summarize some properties of the j-operator.

Lemma 6. The following assertions hold.
(1) If f is in HomB(N,N), then so is j(f).
(2) If δ is in DerB(N), then j(δ) is in HomB(N,N) and the constant term δo of the

expansion of δ|M is an A-derivation on M .

Lemma 7. The following equalities hold for f, g ∈ HomB(N,N) and δ, δ′ ∈ DerB(N).
(1) j(fg) = j(f)g + fj(g).
(2) j(δδ′)|M = j(δ)δ′|M + δj(δ′)|M .
(3) If f is invertible, then j(fδf−1) = j(f)δf−1 + fj(δ)f−1 + fδj(f−1).

The differential mapping ∂N on N is a B-derivation. From Lemma 7, we see that j(∂N)
is B\-linear. This specific element of HomB(N,N) will be a key object when we consider
the lifting property of N in the following argument. This is the reason why we make the
following definition of ∆N as
(3.4) ∆N := j(∂N).

Recall again from Lemma 7 that ∆N is a B\-linear endomorphism on N such that |∆N | =
−|X| − 1 is an odd integer.

Remark 8. The exactly same definition was made by S. Nasseh and Y. Yoshino in the
case where |X| is odd. See [6, Convention 2.5].

Lemma 9. It holds that
∆N∂

N = −∂N∆N .

Hence ∆N is a cycle of degree −|X| − 1 in HomB(N,N).



Proof. By using Proposition 7(2), we see that 0 = j(∂N∂N)|M = j(∂N)∂N |M+∂Nj(∂N)|M .
The mapping j(∂N) is B-linear from Lemma 6. It is easily seen that j(∂N)∂N + ∂Nj(∂N)
is also B-linear. Hence we conclude that j(∂N)∂N + ∂Nj(∂N) = 0 from Lemma 5(1). By
definition, ∆N = j(∂N) is a cycle of degree −|X| − 1 in HomB(N,N). �

The following is basic and crucial for our lifting problem.

Lemma 10. In the setting of Notation 2, the following assertions are equivalent:
(1) ∆N = 0 as an element of HomB(N,N).
(2) The graded A-module M has structure of a DG A-module and N = B⊗AM holds

as an equality of DG B-modules.

Proof. We show only the implication (1) ⇒ (2). In the expansion ∂N |M =
⊕

i≥0X
(i)αi,

that ∆N = 0 implies that αi = 0 for i > 0. Therefore ∂N |M = α0 is an A-derivation
on M and (M,α0) defines a DG A-module. Moreover we have ∂N = B ⊗A α0. Thus
N = B ⊗A M as DG B-modules. Similarly, one can prove the converse (2) ⇒ (1). �

We denote by [∆N ] a cohomology class in Ext
|X|+1
B (N,N) = H−|X|−1(HomB(N,N))

which is defined by ∆N from Lemma 9. As we show in the following main theorem the
class [∆N ] gives a precise obstruction for N to be liftable to A.

Theorem 11. We work in the setting of Notation 2. We consider the following conditions:
(1) N is liftable to A.
(2) [∆N ] = 0 in Ext

|X|+1
B (N,N).

(3) N is weakly liftable to A.
Then the implications (1) ⇒ (2) ⇐ (3) hold. If N is bounded below as a graded module,
then the implications (1) ⇐ (2) ⇒ (3) hold true.

We omit the proof of Theorem 11. See [7] for details. The next proposition is a key to
prove the implication (2) ⇒ (1) in this theorem.

Proposition 12. We work in the setting of Notation 2. Let f be in HomB(N,N) of
degree −|X| and h be in HomA(M,M) of degree 0. Then there is a graded B\-linear
endomorphism g of degree 0 on N satisfying the following conditions:

(1) j(g) = gf .
(2) The constant term of the expansion of g|M is h.

We showed the uniqueness of liftings.

Theorem 13. We work in the setting of Notation 2. If N is liftable to A and Ext
|X|
B (N,N) =

0, then a lifting of N is unique up to DG isomorphisms over A.

Finally, we pose an open question.

Question 14. Let A be a DG R-algebra. We denote by B = A〈X1, · · · , Xn|dX1 =
t1, · · · , dXn = tn〉 an extended DG R-algebra obtained by repeated the adjunction of
free variables X1, · · · , Xn. Let N be a semi-free DG B-module. If ExtiB(N,N) = 0 for
i > 0, then does it hold that N is weakly liftable to A?
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