ON LIFTABLE DG MODULES OVER A COMMUTATIVE DG ALGEBRA

MAIKO ONO

ABSTRACT. Let A be a DG algebra and $B = A\langle X | dX = t \rangle$ be an extended DG algebra of A by the adjunction of a variable of positive even degree n. Let N be a semi-free DG B-module that is assumed to be bounded below as a graded module. In this article, we discuss a lifting problem for N in the situation $A \to B$. We explain how to construct an obstruction for lifting N to A as an element of $\operatorname{Ext}_{B}^{n+1}(N, N)$.

1. INTRODUCTION

This report is based on a joint work with Yuji Yoshino[7].

M. Auslander, S. Ding and Ø. Solberg [1] studied liftings and weak liftings of finitely generated modules over a commutative Noetherian algebra. Recently, S. Nasseh and S. Sather-Wagstaff [5], and S. Nasseh and Y. Yoshino [6] extended them to the case of DG modules over commutative DG algebras.

We fix a commutative ring R. Let A be a commutative DG R-algebra and X be a variable of degree |X|. Then one can construct $B = A\langle X | dX = t \rangle$ denotes an extended DG R-algebra by adding the variable X with relation dX = t. See §2 below for more details. There is a natural DG algebra homomorphism $A \to B$.

We concern a lifting problem for $A \to B = A\langle X | dX = t \rangle$. In the both papers[5, 6], they only considered the lifting problem in such cases but with the assumption that |X| is *odd*. In this case, B is a Koszul complexes of A. They actually construct an obstruction for weakly lifting a semi-free DG B-module N to A as an element of $\text{Ext}^{|X|+1}(N, N)$.

In contrast, our main target in the present article is the lifting problem for $A \to B = A\langle X | dX = t \rangle$ where |X| is positive and *even*. In this case, B is is a free algebra over A with a divided powers variable X that resemble a polynomial ring over A. Let N be a semi-free DG B-module that is assumed to be bounded below as a graded module. The aim of this article is to explain how to construct an obstruction for lifting N to A as an element of $\operatorname{Ext}_{B}^{|X|+1}(N,N)$. To do this, we introduce a certain operator on the set of graded R-linear endomorphisms on N, which is called the *j*-operator. Furthermore, we prove that such a lifting module is unique up to DG A-isomorphisms if $\operatorname{Ext}_{B}^{|X|}(N,N) = 0$.

The detailed version of this paper will be submitted for publication elsewhere.

The author was partly supported by Foundation of Research Fellows, The Mathematical Society of Japan.

2. DG ALGEBRAS AND DG MODULES

In this article, R always means a commutative ring. All DG R-algebra in this article are meant to be a commutative DG algebra over R. We omit definitions of a DG R-algebra and a DG module; see [2, 4].

In this section, we summarize some materials which we will use in the next section. For a DG *R*-algebra *A* and a DG *A*-module *M*, we often denote by A^{\natural} the underlying graded *R*-algebra of *A* and by M^{\natural} the underlying graded A^{\natural} -module of *M*.

Let M and N be a DG module over a DG R-algebra A. We define the DG A-module $\operatorname{Hom}_A(M, N)$ as $\operatorname{Hom}_A(M, N)^{\natural} = \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\operatorname{Grmod}A^{\natural}}(M^{\natural}, N^{\natural}(n))$ where $\operatorname{Grmod}A^{\natural}$ denotes the category of graded A^{\natural} -modules and $N^{\natural}(n)$ denotes the twist of N by n. The differential on $\operatorname{Hom}_A(M, N)$ is given by

$$\partial^{\operatorname{Hom}_A(M,N)}(f) = \partial^N \circ f - (-1)^{|f|} f \circ \partial^M$$

where f is a homogeneous A^{\natural} -linear homomorphism and |f| denotes the degree of f.

A DG A-module F is said to be *semi-free* if F^{\natural} has a graded A^{\natural} -free basis E which decomposes as a disjoint union $E = \bigsqcup_{i \ge 0} E_i$ and satisfies $\partial^F(E_i) \subseteq \sum_{j < i} AE_j$ for $i \ge 0$. For a semi-free DG A-module F and an integer n, we define the n-th self extension module by

$$\operatorname{Ext}_{A}^{n}(F,F) := H_{-n}(\operatorname{Hom}_{A}(F,F)).$$

One can define the *n*-th extension module $\operatorname{Ext}_{A}^{n}(M, N)$ for arbitrary DG A-modules M and N by a different condition. See [3] for more detail.

Let $A \to B$ be a DG algebra homomorphism and M be a DG A-module. The DG A-module $B \otimes_A M$ is defined as follows: the underling module $(B \otimes_A M)^{\natural}$ is the tensor product $B^{\natural} \otimes_{A^{\natural}} M^{\natural}$ of graded A^{\natural} -modules and its differential is given by

$$\partial^{B\otimes_A M}(b\otimes m) = d^B(b) \otimes m + (-1)^{|b|} b \otimes \partial^M(m)$$

where b is a homogeneous element in B and |b| denotes the degree of b. Then $B \otimes_A M$ is regarded as a DG B-module via action $b(b' \otimes m) = bb' \otimes m$ for $b, b' \in B$ and $m \in M$.

Definition 1. Let $A \to B$ be a DG algebra homomorphism.

- (1) A semi-free DG *B*-module *N* is *liftable* to *A* if there is a semi-free DG *A*-module *M* such that $N \cong B \otimes_A M$ as DG *B*-modules. In this case, *M* is called a lifting of *N* to A.
- (2) A semi-free DG *B*-module *N* is weakly liftable to *A* if there is a semi-free DG *A*-module *M* such that *N* is a direct summand of the DG *B*-module $B \otimes_A M$.

The following DG algebras are main objects of this article. Let A be a DG R-algebra and t be a cycle in A, i.e. $d^A(t) = 0$. We construct an extended DG algebra B of A by the adjunction of a variable X with |X| = |t| + 1 to kill the cycle t in the following way. See [2, 4, 8] for details. In both cases, we denote B by $A\langle X | dX = t \rangle$.

(1) If |X| is odd, then $B^{\natural} = A^{\natural} \oplus XA^{\natural}$ is the graded free A^{\natural} -module with basis $\{1, X\}$ and with a multiplication structure: $(a + Xb)(a' + Xb') = aa' + X(ba' + (-1)^{|a|}ab')$ for $a, b, a', b' \in A$. The differential on B is defined by $d^{B}(a + Xb) = d^{A}(a) + tb - Xd^{A}(b)$ for $a, b \in A$. (2) If |X| is even, then $B^{\natural} = \bigoplus_{i \ge 0} X^{(i)} A^{\natural}$ is the graded free A^{\natural} -module with basis $\{X^{(i)} : |X(i)| = i|X|\}_{i \ge 0}$ and with a multiplication rule $X^{(i)}X^{(j)} = {i+j \choose j}X^{(i+j)}$ for $i, j \in \mathbb{Z}$. Here we use the convention $X^{(0)} = 1, X^{(1)} = X$. The differential on B is defined by $d^B(X^{(i)}) = tX^{(i-1)}$ for $i \ge 1$.

In each case, there is a natural DG *R*-algebra homomorphism $A \to B = A \langle X | dX = t \rangle$.

As we have mentioned in the introduction, we concern the lifting problem in the situation $A \to B = A\langle X | dX = t \rangle$ where |X| is even. Recently, S. Nasseh and Y. Yoshino have studied a weakly liftable condition for semi-free DG *B*-modules in the case where |X| is odd. See [6, Theorem 3.6].

3. MAIN RESULTS

We begin by establishing some notation to be used in this section.

Notation 2. Let A be a DG R-algebra and t be a cycle in A of odd degree. We denote by $B = A\langle X | dX = t \rangle$ an extended DG algebra of A by the adjunction of a variable X that kills the cycle t. Note that |X| = |t| + 1 is positive even. Let N be a semi-free DG B-module. Since N is a graded free B^{\natural} -module, there is a graded free A^{\natural} -module Msatisfying $N^{\natural} = B^{\natural} \otimes_{A^{\natural}} M$ as graded B^{\natural} -modules.

In the rest of this article, we work in the setting of Notation 2.

Since |X| is even, note that

(3.1)
$$B^{\natural} = \bigoplus_{i \ge 0} X^{(i)} A^{\natural}$$

where the right hand side is a direct sum of right A^{\natural} -modules. From the decomposition (3.1), N^{\natural} can be described as follows;

(3.2)
$$N^{\natural} = \bigoplus_{i \ge 0} X^{(i)} M.$$

Now let r be an integer and let f be a graded R-linear homomorphism from N^{\natural} to $N^{\natural}(r)$, that is, f is R-linear with $f(N_n) \subseteq N_{n+r}$ for all $n \in \mathbb{Z}$. Given such an f, we consider the restriction of f on M. Along the decomposition (3.2), one can decompose $f|_M$ into the following form:

(3.3)
$$f|_{M} = \sum_{i \ge 0} X^{(i)} f_{i},$$

where each f_i is a graded *R*-linear homomorphism from *M* to M(r - i|X|). For $m \in M$, there is a unique decomposition $f(m) = \sum_i X^{(i)}m_i$ with $m_i \in M$ along (3.2). Then f_i is defined by $f_i(m) = m_i$. Note that the decomposition (3.3) is unique as long as we work under the fixed setting (3.2). We call the equality (3.3) the expansion of $f|_M$ and often call f_0 the constant term of $f|_M$.

Taking the expansion of $f|_M$ as in (3.3), we consider a graded *R*-linear homomorphism

$$\frac{d}{dX}f|_M = \sum_{i\geq 0} X^{(i)}f_{i+1}.$$

Note that $\frac{d}{dX}f|_M$ is a mapping from M to N(r-|X|). The mapping $\frac{d}{dX}f|_M$ can be extended to an *R*-linear mapping j(f) on *N* by setting $j(f)(X^{(i)}m_i) = X^{(i)}\frac{d}{dX}f|_M(m_i)$ for each $i \geq 0$ and $m_i \in M$. Thus we have a graded *R*-linear homomorphism j(f) from N to N(r - |X|).

Summing up the argument above, we define the *j*-operator on $\operatorname{Hom}_R(N, N)$ as follows:

Definition 3. We work in the setting of Notation 2. Then one can define a graded Rlinear mapping $j : \operatorname{Hom}_R(N, N) \to \operatorname{Hom}_R(N, N)(-|X|)$, which we call the *j*-operator on $\operatorname{Hom}_{R}(N, N).$

Remark 4. The notion of *j*-operator was first introduced by J. Tate in the paper [8] and extensively used by T.H. Gulliksen and G. Levin [4].

We say that a graded R-linear mapping $\delta: N \to N(-1)$ is a B-derivation if it satisfies $\delta(bn) = d^B(b)n + (-1)^{|b||\delta|} b\delta(n)$ for $b \in B$ and $n \in N$. Then $\text{Der}_B(N)$ denotes the set of all B-derivations on N. Recall that $\operatorname{Hom}_B(N, N)$ is a set of the all B^{\natural} -linear endomorphisms on N. We note that both $\operatorname{Hom}_B(N, N)$ and $\operatorname{Der}_B(N)$ are subsets of $\operatorname{Hom}_R(N, N)$.

Lemma 5. The following assertions hold for $f, g \in \text{Hom}_B(N, N)$ and $\delta, \delta' \in \text{Der}_B(N)$.

- (1) f = g if and only if $f|_M = g|_M$. (2) $\delta = \delta'$ if and only if $\delta|_M = \delta'|_M$.

We summarize some properties of the j-operator.

Lemma 6. The following assertions hold.

- (1) If f is in $\operatorname{Hom}_B(N, N)$, then so is j(f).
- (2) If δ is in $\text{Der}_B(N)$, then $j(\delta)$ is in $\text{Hom}_B(N, N)$ and the constant term δ_o of the expansion of $\delta|_M$ is an A-derivation on M.

Lemma 7. The following equalities hold for $f, g \in \text{Hom}_B(N, N)$ and $\delta, \delta' \in \text{Der}_B(N)$.

- (1) j(fg) = j(f)g + fj(g).
- (2) $j(\delta\delta')|_M = j(\delta)\delta'|_M + \delta j(\delta')|_M$.
- (3) If f is invertible, then $j(f\delta f^{-1}) = j(f)\delta f^{-1} + fj(\delta)f^{-1} + f\delta j(f^{-1})$.

The differential mapping ∂^N on N is a B-derivation. From Lemma 7, we see that $j(\partial^N)$ is B^{\natural} -linear. This specific element of $\operatorname{Hom}_{B}(N, N)$ will be a key object when we consider the lifting property of N in the following argument. This is the reason why we make the following definition of Δ_N as

(3.4)
$$\Delta_N := j(\partial^N).$$

Recall again from Lemma 7 that Δ_N is a B^{\natural} -linear endomorphism on N such that $|\Delta_N| =$ -|X| - 1 is an odd integer.

Remark 8. The exactly same definition was made by S. Nasseh and Y. Yoshino in the case where |X| is odd. See [6, Convention 2.5].

Lemma 9. It holds that

 $\Delta_N \partial^N = -\partial^N \Delta_N.$

Hence Δ_N is a cycle of degree -|X| - 1 in Hom_B(N, N).

Proof. By using Proposition 7(2), we see that $0 = j(\partial^N \partial^N)|_M = j(\partial^N)\partial^N|_M + \partial^N j(\partial^N)|_M$. The mapping $j(\partial^N)$ is *B*-linear from Lemma 6. It is easily seen that $j(\partial^N)\partial^N + \partial^N j(\partial^N)$ is also *B*-linear. Hence we conclude that $j(\partial^N)\partial^N + \partial^N j(\partial^N) = 0$ from Lemma 5(1). By definition, $\Delta_N = j(\partial^N)$ is a cycle of degree -|X| - 1 in $\operatorname{Hom}_B(N, N)$.

The following is basic and crucial for our lifting problem.

Lemma 10. In the setting of Notation 2, the following assertions are equivalent:

- (1) $\Delta_N = 0$ as an element of Hom_B(N, N).
- (2) The graded A-module M has structure of a DG A-module and $N = B \otimes_A M$ holds as an equality of DG B-modules.

Proof. We show only the implication $(1) \Rightarrow (2)$. In the expansion $\partial^N|_M = \bigoplus_{i\geq 0} X^{(i)}\alpha_i$, that $\Delta_N = 0$ implies that $\alpha_i = 0$ for i > 0. Therefore $\partial^N|_M = \alpha_0$ is an A-derivation on M and (M, α_0) defines a DG A-module. Moreover we have $\partial^N = B \otimes_A \alpha_0$. Thus $N = B \otimes_A M$ as DG B-modules. Similarly, one can prove the converse $(2) \Rightarrow (1)$. \Box

We denote by $[\Delta_N]$ a cohomology class in $\operatorname{Ext}_B^{|X|+1}(N, N) = H_{-|X|-1}(\operatorname{Hom}_B(N, N))$ which is defined by Δ_N from Lemma 9. As we show in the following main theorem the class $[\Delta_N]$ gives a precise obstruction for N to be liftable to A.

Theorem 11. We work in the setting of Notation 2. We consider the following conditions:

- (1) N is liftable to A.
- (2) $[\Delta_N] = 0$ in $\operatorname{Ext}_B^{|X|+1}(N, N)$.
- (3) N is weakly liftable to A.

Then the implications $(1) \Rightarrow (2) \Leftarrow (3)$ hold. If N is bounded below as a graded module, then the implications $(1) \Leftarrow (2) \Rightarrow (3)$ hold true.

We omit the proof of Theorem 11. See [7] for details. The next proposition is a key to prove the implication $(2) \Rightarrow (1)$ in this theorem.

Proposition 12. We work in the setting of Notation 2. Let f be in $\operatorname{Hom}_B(N, N)$ of degree -|X| and h be in $\operatorname{Hom}_A(M, M)$ of degree 0. Then there is a graded B^{\natural} -linear endomorphism g of degree 0 on N satisfying the following conditions:

- (1) j(g) = gf.
- (2) The constant term of the expansion of $g|_M$ is h.

We showed the uniqueness of liftings.

Theorem 13. We work in the setting of Notation 2. If N is liftable to A and $\operatorname{Ext}_{B}^{|X|}(N, N) = 0$, then a lifting of N is unique up to DG isomorphisms over A.

Finally, we pose an open question.

Question 14. Let A be a DG R-algebra. We denote by $B = A\langle X_1, \dots, X_n | dX_1 = t_1, \dots, dX_n = t_n \rangle$ an extended DG R-algebra obtained by repeated the adjunction of free variables X_1, \dots, X_n . Let N be a semi-free DG B-module. If $\text{Ext}_B^i(N, N) = 0$ for i > 0, then does it hold that N is weakly liftable to A?

References

- M. AUSLANDER, S. DING AND Ø. SOLBERG, Liftings and Weak Liftings of Modules, J. Algebra 156 (1993), no. 2, 273-317.
- [2] L.L. AVRAMOV, *Infinite free resolution*, in: Six Lecture on Commutative Algebra, Bellaterra, 1996, in: Progr. Math., vol 166, Birkhäuser, Basel, 1998, pp.1–118, MR 99m:13022.
- [3] L.L. AVRAMOV AND L-C. SUN, Cohomology operators defined by a deformation, J. Algebra 204(2) (1998), 684–710.
- [4] TOR H. GULLIKSEN AND G. LEVIN, *Homology of local rings*, Queen's Paper in Pure and Applied Mathematics, vol.20, Queen's University, Kingston, Ontario, Canada, 1969.
- [5] S. NASSEH AND S. SATHER-WAGSTAFF, Liftings and quasi-liftings of DG modules, J. Algebra 373 (2013), 162–182.
- [6] S. NASSEH AND Y. YOSHINO, Weak liftings of DG modules, J. Algebra 502 (2018), 233–248.
- [7] M. Ono and Y. Yoshino, A lifting problem for DG modules, arXiv:1805.05658.
- [8] J. TATE, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14–27.

OKAYAMA UNIVERSITY OKAYAMA 700-8530 JAPAN *E-mail address*: onomaiko@s.okayama-u.ac.jp