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Vanishing of Ext modules over Cohen-Macaulay rings

Kaito Kimura, Yuya Otake, Ryo Takahashi

Auslander and Reiten [4] proposed the generalized Nakayama conjecture, which is rooted in the
Nakayama conjecture [10]. In addition, they proposed another conjecture about projectivity of mod-
ule by vanishing of Ext modules, which is called the Auslander-Reiten conjecture, and proved that this
conjecture is true if and only if the generalized Nakayama conjecture is true. This long-standing conjec-
ture is known to be true over several classes of algebras. For example, Auslander and Reiten [4] proved the
conjecture for algebras of finite representation type. Hoshino [7] proved that it holds for symmetric Artin
algebras with radical cube zero. The Auslander-Reiten conjecture is closely related to other important
conjectures such as the Tachikawa conjecture [12].

The Auslander-Reiten conjecture remains meaningful for arbitrary commutative noetherian rings for
formalization by Auslander, Ding, and Solberg [3]:

Conjecture 1.1 (Auslander-Reiten). Let R be a commutative noetherian ring and let M be a finitely
generated R-module. If ExtiR(M,M) = ExtiR(M,R) = 0 for all i ≥ 1, then M is projective.

Conjecture 1.1 is known to hold for complete intersection local rings [3], locally excellent Cohen-
Macaulay normal rings containing the field of rational numbers [8], and Gorenstein normal rings [1].
As a subject related to Conjecture 1.1, a lot of criteria for a given module to be projective have been
described in terms of vanishing of Ext modules so far; see [1, 2, 3, 5, 6, 8, 11] for instance. In this talk, we
consider the above problems over Cohen-Macaulay rings, which form one of the most important classes
in commutative algebra.
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Large tilting objects induced by codimension functions and homomorphic images of
Cohen-Macaulay rings

Tsutomu Nakamura

This talk is based on joint work with Michal Hrbek and Jan Šťov́ıček.
Let R be a commutative noetherian ring. Denote by D(R) the unbounded derived category of R. For

each p ∈ SpecR, denote by Γp the p-torsion functor lim−→n≥1
HomR(R/pn,−) : ModR → ModR. We

will report the following result, which explicitly gives a lot of (possibly non-compact) silting objects by
a consistent way.

Theorem 1. Let f : SpecR → Z be a strictly increasing function. Then⊕
p∈SpecR

Σf(p)RΓpRp

is a silting object in D(R).

For each p ∈ SpecR, denote by R̂p the p-adic completion of Rp. Then R̂p admits a dualizing complex
D

R̂p
such that H0D

R̂p
̸= 0 and HiD

R̂p
= 0 for i < 0. The following is a dual result to the above theorem.

Theorem 2. Let f : SpecR → Z be a strictly increasing function. Then∏
p∈SpecR

Σht(p)−f(p)D
R̂p

,

is a cosilting object in D(R).

We will also explain an important connection between these theorems and the classification results in
[1] and [4]. Moreover, we discuss when the two objects above become a tilting object and a cotilting object.
A necessity condition is that f : SpecR → Z is a codimension function, i.e., f(q) − f(p) = 1 whenever
p ⊊ q and p is maximal under q. Existence of a codimension function implies that R is catenary, so not
every commutative noetherian ring can admit a codimension function. Existence of a dualizing complex
implies that R has a codimension function f, and then we can prove that

⊕
p∈SpecR Σf(p)RΓpRp and∏

p∈SpecR Σht(p)−f(p)D
R̂p

are a tilting object and a cotilting object, respectively.

On the other hand, we can also prove that if R is a homomorphic image of a Cohen-Macaulay ring of
finite Krull dimension (which may not admits a dualizing complex but can admit a codimension function
f), then

⊕
p∈SpecR Σf(p)RΓpRp and

∏
p∈SpecR Σht(p)−f(p)D

R̂p
are tilting and cotilting, respectively. This

motivates us to characterize such a ring by tilting theoretic way via Kawasaki’s work [3]. Indeed, this is
an attempt trying to find a similar result to his deep work [2], which characterizes a homomorphic image
of a Gorenstein ring of finite Krull dimension by existence of a dualizing complex.
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Positive cluster complexes and τ-tilting simplicial complexes

Yasuaki Gyoda

In this talk, we will give a generalization of Gabriel’s theorem by using cluster algebra theory. Gabriel’s
theorem is the following theorem on the classification of path algebras of finite representation type, proved
by Gabriel in 1972.

Theorem 1 ([4]).

(1) For a connected quiver Q, the path algebra KQ of Q is of finite representation type if and only if
Q is a Dynkin quiver of A,D or E type.

(2) If Q is a Dynkin quiver of A,D or E type, then the number of (isomorphic classes of) indecom-
posable modules depends only on underlying graph of Q and does not depend on the orienttation
of Q.

We focus on (2). In 1973, Bernstein-Gelfand-Ponomarev[2] gave another proof of this property by
comparing module categories of KQ and KQ′, where Q′ is obtained from Q by reversing all arrows
entering (or exiting) one sink (or source) vertex of Q. We call this opelation of a quiver the sink/source
mutation of Q.

In this talk, I will introduce the following theorem, which generalizes path algebras to cluster-tilted
algebras and indecomposable module to τ -rigid module:

Theorem 2 ([5]). Let Λ and Λ′ be cluster-tilted algebras of finite representation type such that the
corresponding quiver Q′

Λ is obtained from QΛ by a sink or source mutation. Then Λ and Λ′ has the same
number of (isomorphic classes of) basic τ -rigid modules with k direct summands for any k ∈ Z≥0.

Theorem 2 is a generalization of Theorem 1 (2), since Theorem 1 (2) follows immediately by setting
Λ to be a path algebra of Dynkin type and k = 1. The key to proving Theorem 2 is two simplicial
complexes, the positive cluster complex and the τ -tilting simplicial complex. The positive cluster complex
is a special subcomplex of a cluster complex, which is a simplicial complex in cluster algebra theory.
On the other hand, the τ -tilting simplicial complex is a simplicial complex whose vertex set consists of
indecomposable τ -rigid modules and the simplicial set consists of basic τ -tilting modules. By the works
of Adachi-Iyama-Reiten[1], Fu-Keller[6], and Cerulli Irelli-Keller-Labardini Fragoso-Plamondon[3], it is
known that these two simplicial complexes coincide. Theorem 2 is proved by using cluster algebra theory
and this coincidence.

In this talk, I will first give an overview of cluster algebra theory, then explain the cluster algebra
version of Theorem 2, and show that Theorem 2 can be obtained by the simplicial complex correspondence
described above.
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τ-tilting finite triangular matrix algebras

Takahiro Honma and Takuma Aihara

Classifying modules and subcategories with some good property is a central theme in representation
theory. For example, a finitely generated progenerator, tilting modules, indecomposable modules , torsion
classes and so on. Interestingly, modules and subcategory are closely related. In fact, a (classical) tilting
module yields the torsion class. Moreover we can obtain more torsion classes by extending to support
τ -tilting modules. If an algebra is τ -tilting finite, then there is a one-to-one correspondence between
torsion classes and isomorphism classes of support τ -tilting modules. Hence, our aim is to investigate
when an algebra is τ -tilting finite.

We focus on the τ -tilting finiteness of triangular matrix algebras. Recall that M. Auslander and
I. Reiten showed that the representation finiteness of triangular matrix algebras is equivalent to the
Auslander algebra in the paper [2]. We generalize the result to the τ -tilting finiteness. Furthermore,
we explore the silting discreteness of tensor algebras over an algebraically closed field. Note that tensor
algebras contain triangular matrix algebras.

This is a joint work with Takuma Aihara [1].

References

[1] T. Aihara and T. Honma, τ -tilting finite triangular matrix algebras. J. Pure Appl. Algebra 225 (2021), no. 12.
[2] M. Auslander and I. Reiten, On the representation type of triangular matrix rings, J. London Math. Soc. (2) 12

(1975/76), no. 3, 371–382

Graduate School of Mathematics,
Tokyo University of Science
1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 JAPAN

Email: 1119704@ed.tus.ac.jp

–4–



On almost N-projective modules and generalized N-projective modules

Yoshiharu Shibata
Isao Kikumasa

Yosuke Kuratomi

Throughout this talk, R is a ring with identity and modules are unitary right R-modules. A module
M is called lifting if, for any submodule N of M , there exists a direct sum decomposition M = X ⊕ Y
such that X ⊆ N and N ∩ Y ≪ Y . A module M is called almost N-projective for a module N if, for
any module X, any homomorphism f : M → X and any epimorphism g : N → X, either there exists
a homomorphism h : M → N such that f = gh, or there exist a nonzero direct summand N ′ of N and
a homomorphism h′ : N ′ → M such that g|N ′ = fh′. This projectivity was introduced by Harada and
Tozaki [2] in 1989. After that, Baba and Harada [1] proved that a module M =

⊕n
i=1 Hi where Hi is

an LE-lifting module is lifting if and only if Hi is almost Hj-projective for i ̸= j. In 2004, Mohamed
and Müller [4] introduced the following projectivity: a module M is called generalized N-projective for a
module N if, for any module X, any homomorphism f : M → X and any epimorphism g : N → X, there
exist direct sum decompositions M = M1 ⊕M2 and N = N1 ⊕N2, a homomorphism h1 : M1 → N1 and
an epimorphism h2 : N2 → M2 such that f |M1 = gh1 and g|N2 = fh2. After that, an equivalent condition
was given in [3] for a finite direct sum of lifting modules to be lifting with the finite internal exchange
property in terms of relative generalized projectivity. Although a generalized N -projective module is
almost N -projective, the converse is not true.

In this talk, we characterize these projectivities by certain coinvariants of homomorphisms between
projective covers ofM andN over a right perfect ring, and consider a condition for an almostN -projective
module to be generalized N -projective. Our main results are the following:

Theorem A. Let R be a right perfect ring and let M and N be modules with the projective covers
(P, νM ) and (Q, νN ), respectively. Then

(1) the following two conditions are equivalent:
(a) M is almost N -projective,
(b) for any α ∈ HomR(P,Q), either α(ker νM ) ⊆ ker νN , or there exist P ′ ≤⊕ P and Q′ ≤⊕ Q

such that α|P ′ : P ′ → Q′ is an isomorphism, (α|P ′)−1(ker νN |Q′) ⊆ ker νM |P ′ and 0 ̸=
νN (Q′) ≤⊕ N .

(2) the following two conditions are equivalent:
(a) M is generalized N -projective,
(b) for any α ∈ HomR(P,Q), there exist decompositions P = P1 ⊕ P2 and Q = Q1 ⊕ Q2

such that α(P1) ⊆ Q1, α(ker νM |P1) ⊆ ker νN |Q1 , α|P2 : P2 → Q2 is an isomorphism,
(α|P2)

−1(ker νN |Q2) ⊆ ker νM |P2 , M = νM (P1)⊕ νM (P2) and N = νN (Q1)⊕ νN (Q2).

Theorem B. Let R be a right perfect ring and let M and Ni be modules (i = 1, 2, . . . , n). If M is
lifting and almost Ni-projective, and Ni is almost Nj-projective for any distinct i, j ∈ {1, 2, . . . , n}, then
M is almost ⊕n

i=1Ni-projective.

Theorem C. Let R be a right perfect ring, let M be a quasi-discrete module and let N be a lifting
module. Then M is almost N -projective if and only if M is generalized N -projective.
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Tate-Hochschild cohomology and eventual periodicity for Gorenstein algebras

Satoshi Usui

In 1986, Buchweitz [1] introduced the notion of the singularity categories of Noetherian rings and
used it to provide a framework for Tate cohomology of Gorenstein rings, which is a generalization of
Tate cohomology of finite groups. Motivated by these notions due to Buchweitz, Wang [2] defined the
Tate-Hochschild cohomology groups of a Noetherian algebra Λ over a field k to be

ĤH
i
(Λ) := HomDsg(Λ⊗kΛop)(Λ,Λ[i]),

where i is an integer, and Dsg(Λ ⊗k Λop) denotes the singularity category of the enveloping algebra
Λ⊗k Λop of the algebra Λ. It was proved by Wang [2] that the Z-graded vector space

ĤH
•
(Λ) :=

⊕
i∈Z

ĤH
i
(Λ)

carries a structure of a graded commutative algebra. We call this graded algebra the Tate-Hochschild
cohomology ring of the algebra Λ. Moreover, he also proved in [3] that Tate-Hochschild cohomology rings
are invariants under singular equivalence of Morita type with level, which is a new equivalence introduced
by himself. Notice that recently such equivalences have been intensively studied. Therefore, it seems to
be important to investigate the Tate-Hochschild cohomology rings.

In the last decade, the above rings have been studied for finite dimensional algebras. Dotsenko, Glinas
and Tamaroff [4] showed that, for monomial Gorenstein algebras, their Tate-Hochschild cohomology
rings have invertible homogeneous elements. Moreover, Usui [5] showed that the same statement holds
for periodic algebras. In both cases, such invertible elements were obtained from the fact that each of
the algebras is an eventually periodic algebra, that is, an algebra whose minimal projective resolution as
a bimodule becomes periodic from some step.

In this talk, we first observe that there exists an eventually periodic algebra that is not Gorenstein,
while it is well-known that periodic algebras are all Gorenstein algebras. We then characterize the
eventual periodicity of a Gorenstein algebra as the existence of an invertible homogeneous element in
the Tate-Hochschild cohomology ring of the Gorenstein algebra. Moreover, we provide examples of
eventually periodic Gorenstein algebras (that are not periodic), and we explain that we can compute the
Tate-Hochschild cohomology rings for periodic algebras by using their Hochschild cohomology rings.
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Generalizations of the correspondence between
quasi-hereditary algebras and directed bocses

Yuichiro Goto

Quasi-hereditary algebras were introduced by Cline-Parshall-Scott to study the highest weight cate-
gories in Lie theory [3]. On the other hand, bocs theory was introduced by Roiter to solve tame and
wild dichotomy and Crawley-Boevey applied it to analyze the module categories over tame algebras [2].
Koenig, Külshammer and Ovsienko connected these theories by giving equivalences between the cate-
gories of modules over directed bocses and those of ∆-filtered modules over quasi-hereditary algebras [4].
Moreover Brzeziński, Koenig and Külshammer showed that exact Borel subalgebras of quasi-hereditary
algebras corresponding to directed bocses are homological [1]. Their results are as follows.

Theorem 1 ([1] Theorem 3.13, [4] Theorem 1.1, Corollary 1.3). We have a bijection

{Morita equivalence classes of quasi-hereditary algebras}
↕

{Equivalence classes of the module categories over directed bocses}.
Let a quasi-hereditary algebra A and a direct bocs B correspond via the above bijection. Then the right
Burt-Butler algebra RB of B is Morita equivalent to A. Moreover, RB has a homological exact Borel
subalgebra.

As natural generalizations of quasi-heredity algebras, there are two classes of algebras; ∆-filtered
algebras (or standardly stratified algebras) and ∆-filtered algebras. Our interest is to generalize the
above theorem for those algebras. In the case where the algebra is ∆-filtered, we obtain the result below
by using arguments similar to those of [4]. But for ∆-filtered algebras, there are two problems when we
apply their arguments. In the talk, we explain how to avoid them. Here is the main result.

Theorem 2. We have a bijection

{Morita equivalence classes of ∆-filtered (resp. ∆-filtered) algebras}
↕

{Equivalence classes of the module categories over weakly directed (resp. one-cyclic directed) bocses}.

Let a ∆-filtered (resp. ∆-filtered) algebra A and a weakly direct (resp. one-cyclic directed) bocs B cor-
respond via the above bijection. Then the right Burt-Butler algebra RB of B is Morita equivalent to A.
Moreover, RB has a homological exact Borel subalgebra (resp. a homological proper Borel subalgebra).
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NUMERICAL TORSION PAIRS AND CANONICAL DECOMPOSITIONS FOR
ELEMENTS IN THE GROTHENDIECK GROUP

Sota Asai, Osamu Iyama

Let A be a finite-dimensional algebra over an algebraically closed field K. Then, the Grothendieck
group K0(projA) of the category projA of finitely generated projective A-modules is a free abelian group,
whose canonical Z-basis is given by the non-isomorphic indecomposable projective modules P1, P2, . . . , Pn.
Let Si be the simple top of Pi for each i, then S1, S2, . . . , Sn are the non-isomorphic simple modules, and
they give the canonical Z-basis of the Grothendieck group K0(modA) of the category modA of finitely
generated A-modules.

The Euler form is the Z-bilinear form ⟨?, !⟩ : K0(projA)×K0(modA) → Z satisfying ⟨Pi, Sj⟩ = δi,j . Via
the Euler form, every element θ ∈ K0(projA) can be identified with the Z-linear form K0(modA) → Z.
These are obviously extended to the real Grothendieck groups K0(projA)R := K0(projA) ⊗Z R and
K0(modA)R := K0(modA)⊗ZR. We use these Grothendieck groups to study the torsion pairs in modA.

To each element θ ∈ K0(projA)R, we can associate the θ-semistable subcategory Wθ by King [5] and
the numerical torsion pairs (T θ,Fθ) and (Tθ,Fθ) by Baumann–Kamnitzer–Tingley [2]. These categories
are defined by linear inequalities given by θ on the dimension vectors of submodules and factor modules
of each module. By using θ-semistable subcategories, Brüstle–Smith–Treffinger [3] considered a wall-
chamber structure on K0(projA)R, which is identified with the Euclidean space Rn. In [1], the first
named speaker studied this wall-chamber structure by considering the equivalence relation called TF
equivalence on K0(projA)R, where θ and η are said to be TF equivalent if (T θ,Fθ) = (T η,Fη) and

(Tθ,Fθ) = (Tη,Fη).
On the other hand, for each θ ∈ K0(projA), we can take P1, P0 ∈ projA such that θ = [P0]− [P1] and

that P0 and P1 have no nonzero common direct summand. We define the presentation space Hom(θ) :=
HomA(P1, P0). Then, each f ∈ Hom(θ) gives two torsion pairs (T f ,Ff ) and (Tf ,Ff ) via Coker f and
Ker νf . We compare them to numerical torsion pairs in our study.

Moreover, every f ∈ Hom(θ) defines a 2-term complex Pf := (P1
f−→ P0) in the homotopy cate-

gory Kb(projA). Based on how the complex Pf is decomposed into indecomposable direct summands in
Kb(projA), Derksen–Fei [4] introduced the notions of indecomposable elements and the canonical decom-
positions θ =

⊕m
i=1 θi in the Grothendieck groupK0(projA). Derksen–Fei and Plamondon [6] showed that

any element θ ∈ K0(projA) admits a unique canonical decomposition up to reordering. We investigate
also the relationship between canonical decompositions and numerical torsion pairs.

We will talk about some of our important results on these topics.
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Subcategories and silting objects of Noetherian algebras

Osamu Iyama and Yuta Kimura

A torsion class (resp. torsionfree class) is a full subcategory of an abelian category A which is closed
under extensions and factor objects (resp. subobjects). It appears in several branches of mathematics
and plays important roles.

When A = modA for a finite dimensional algebra A over a field, there are many studies of subcate-
gories of A. Among others, a connection between torsion classes and classical tilting modules was well
understood in the last century. τ -tilting modules [1] (which we also call silting modules) plays a central
role in the recent development of tilting theory from a point of view of mutation.

When A = modR for a commutative Noetherian ring R, classification problems of subcategories of A
have been studied in many mathematicians. Serre subcategories and torsion classes of A bijectively cor-
respond to specialization closed subsets of SpecR, by Gabriel [2], Stanley-Wang [5]. Moreover, torsionfree
classes of modR bijectively corresponds to subsets of SpecR by Takahashi [6].

In this talk, we study and develop silting theory and classification problems of subcategories for Noe-
therian algebras. Let R be a commutative Noetherian ring. A Noetherian R-algebra is an R-algebra
which is finitely generated as an R-module. For a Noetherian R-algebra Λ, we study and classify subcat-
egories of modΛ by comparing them with subcategories of modules over finite dimensional algebras. We
denote by torsΛ (resp. torfΛ) the set of torsion (resp. torsionfree) classes of modΛ. Let κ(p) = Rp/pRp

and TR(Λ) =
∏

p tors(Λ⊗R κ(p)), FR(Λ) =
∏

p torf(Λ⊗R κ(p)), where p runs all prime ideals of R. Note
that these sets are partially ordered by inclusion.

Theorem 1. For a Noetherian R-algebra Λ, the following statements hold.

(1) There is an isomorphism of posets torfΛ
∼−→ FR(Λ).

(2) There is an injective morphism of posets Φ : torsΛ −→ TR(Λ).

As a corollary, we classify Serre subcategories of modΛ by using simple (Λ⊗RRp)-modules (p ∈ SpecR).
These results recover bijections by Takahashi, Stanley-Wang and Gabriel.

We next study the image of Φ. We introduce the notion of compatible elements in TR(Λ), and prove
that all elements in the image are compatible. We give a sufficient condition on Λ such that all compatible
elements belong to the image. To do this, we characterize the finiteness of tors(Λ ⊗R κ(p)) instead of
silting modules over Λ⊗R Rp. In particular, we have the following formula.

Theorem 2. Let R be a commutative Noetherian ring and Q be a Dynkin quiver. Then there is an
isomorphism of posets

tors(RQ)
∼−→ Homposet(SpecR,CQ),

where CQ is the Cambrian lattice of Q.

This talk is based on a preprint [3].
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Structure theorem for flat cotorsion modules over Noether algebras

Ryo Kanda and Tsutomu Nakamura

A right module M over a ring A is called cotorsion if Ext1A(F,M) = 0 for all flat right A-modules
F . A flat cotorsion module is a module being flat and cotorsion. The flat cover conjecture, which was
affirmatively solved by Bican, El Bashir, and Enochs [BEBE01], implies that the class of flat modules and
the class of cotorsion modules form a complete cotorsion pair. Flat cotorsion modules are those modules
that belong to the core of this cotorsion pair.

Enochs [Eno84] gave a structure theorem for flat cotorsion modules over a commutative noetherian
ring R: An R-module M is flat cotorsion if and only if M is isomorphic to∏

p∈SpecR

HomR(ER(R/p), ER(R/p)(Bp))

for some family of sets {Bp}p∈SpecR, where ER(R/p) is the injective envelope of R/p and ER(R/p)(Bp)

is the direct sum of its BP -indexed copies. The cardinality of each Bp is uniquely determined by the
isomorphism class of M .

We establish a noncommutative generalization of Enochs’ structure theorem. For a commutative
noetherian ring R, a Noether R-algebra is a ring A together with a ring homomorphism φ : R → A such
that the image of φ is contained in the center of A and A is finitely generated as an R-module. SpecA
denotes the set of prime (two-sided) ideals of A.

For each P ∈ SpecA, denote by IA(P ) the corresponding indecomposable injective right A-module,
whose only associated prime is P . Note that P ∩R := φ−1(P ) is a prime ideal of R.

Theorem 1. Let A be a Noether R-algebra. A right A-module M is flat cotorsion if and only if M is
isomorphic to ∏

P∈SpecA

HomR(IAop(P ), ER(R/(R ∩ P ))(BP ))

for some family of sets {BP }P∈SpecA. The cardinality of each BP is uniquely determined by the isomor-
phism class of M .
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On τ-tilting finiteness of tensor product algebras between simply connected algebras

Kengo Miyamoto and Qi Wang

This talk is based on joint work with Qi Wang ([1]).
Throughout, we will use the symbol k to denote an algebraically closed field, and tensor products

are always taken over k. An algebra is always assumed to be an associative basic ring-connected simply
connected finite-dimensional k-algebra.

An algebra A is τ -tilting finite if it has only finitely many support τ -tilting modules. In this talk, we
discuss the τ -tilting finiteness for the tensor product A⊗B between two τ -tilting finite simply connected
algebras A and B. If A is a simply connected path algebra, we have the following result.

Theorem 1. Let A be a path algebra of finite connected acyclic quiver with n ≥ 2 simple modules. Then,
the following statements hold.
(1) If B is hereditary, then A ⊗ B is τ -tilting finite if and only if A ≃ k(1 → 2) and B is isomorphic to
one of path algebras of A2, A3 or A4.
(2) Let B be a simply connected algebra. If k(1 → 2)⊗B is τ -tilting finite, then any connected component
of the separated quiver of the quiver of B is of type An.
(3) Assume that n ≥ 3 and B is a simply connected algebra which is not hereditary. Then, A ⊗ B is
τ -tilting finite if and only if A is isomorphic to a path algebra of A3 and B is isomorphic to a Nakayama
algebra with radical square zero.

In the case that both A and B are not hereditary, we may give a visualization table below to illustrate
the τ -tilting finiteness of A⊗B. In the table below, F means τ -tilting finite, IF means τ -tilting infinite,
and “F or IF” means that there are both cases. We denote by rad(A) the Jacobson radical of A and by
|A| the number of isomorphism classes of simple A-modules.

A ⊗ B (A,B: simply connected)

B :Nakayama
B:Not Nakayama

rad2 = 0
rad2 ̸= 0

n = 3 n ≥ 4 |B| = 3 |B| = 4 |B| ≥ 5

A:Nakayama
rad2 = 0

n = 3 F F Open F F or IF F or IF

n ≥ 4 F F F or IF F F or IF IF

rad2 ̸= 0 Open F or IF IF IF IF IF

A:Not Nakayama

|A| = 3 F F IF IF IF IF

|A| = 4 F or IF F or IF IF IF IF IF

|A| ≥ 5 F or IF IF IF IF IF IF
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Algebras associated to Noncommutative Conics
in Quantum Projective Planes

Haigang Hu

Let k be an algebraically closed field of characteristic 0. Algebras are all over k. A connected graded
algebra A is a positively graded algebra A = ⊕n≥0An such that A0 = k.

In (commutative) algebraic geometry, it is important to study the homogeneous coordinate ring
k[x1, · · · , xn]/(f) of a quadric hypersurface in the projective space Pn−1 where 0 ̸= f ∈ k[x1, · · · , xn]2.
In noncommutative algebraic geomtry, we say the quotient algebra S/(f) the noncommutative quadric
hypersurface (noncommutative conic if d = 3) where S is a d-dimensional quantum polynomial algebra
defined below and 0 ̸= f ∈ S2 a regular central element.

Definition 1. A noetherian connected graded algebra S generated in degree 1 is called a d-dimensional

quantum polynomial algebra if (1) gldimS = d, (2) ExtiS(k, S(−j)) ∼=

{
k if i = j = d,

0 otherwise,
and (3) HS(t) :=∑∞

i=0(dimk Si)t
i = 1/(1− t)d.

The classification of noncommutative quadric hypersurfaces is a big project in noncommutative alge-
braic geometry and it is far away from complete. The good thing is there are many notable developments
in the study of noncommutative quadric hypersurfaces: Smith and Van den Bergh introduce a finite di-
mensional algebra C(A) associated to A := S/(f) which determines the Cohen-Macaulay representation
of A (cf. [5]); Mori and Ueyama introduce the noncommutative matrix factorization of f over S and
they also proved the noncommutative Knörrer’s periodicity theorem (cf. [4]). He and Ye introduce the
Clifford deformation associated to the pair (S, f) which is a nonhomogeneous PBW deformation and they
showed that A is a noncommutative isolated singularity if and only if C(A) is semisimple (cf. [1]), etc.

However, there is still no complete classification of noncommutative conics even though it should be
the easiest case. Using theoretical tools above, and the fact that defining relations of all 3-dimensional
quantum polynomial algebras are given by Itaba and Matsuno (cf. [3]), it is time for us to begin to
work on the classification of noncommutative conics and it would be a good step forward to classify
noncommutative quadric hypersurfaces. In [2], we focus on the study of a noncommutative conic A such
that its quadratic dual A! is commutative. The following is the main result in this talk.

Theorem 2 ([2]). Let A = S/(f) be a noncommutative conic. Then A! is commutative if and only if S is
determined by a symmetric regular superpotential. Moreover, the set of isomorphism classes of associated
algebras C(A) is equal to the set of isomorphism classes of 4-dimensional commutative Frobenius algebras.
They are:

k4, k[u]/(u2)× k2, (k[u]/(u2))×2, k[u]/(u3)× k, k[u]/(u4), k[u, v]/(u2, v2).

References

[1] J.-W. He and Y. Ye, Clifford deformations of Koszul Frobenius algebras and noncommutative quadrics, arXiv:1905.04699
(2019).

[2] H. Hu, Classification of noncommutative conics associated to symmetric regular superpotentials, arXiv:2005.03918
(2020).

[3] Itaba, Matsuno, Defining relations of 3 dimensional quadratic AS regular algebras, Math. J. Okayama Univ. 63 (2021),
61–86.

[4] I. Mori and K. Ueyama, Noncommutative Knörrer’s periodicity and noncommutative quadric hypersurfaces, preprint
(arXiv:1905.12266).

[5] S.P. Smith and M. Van den Bergh, Noncommutative quadric surfaces, J. Noncommut. Geom. 7 (2013), 817–856.

Graduate School of Science and Technology
Shizuoka University
Ohya 836, Shizuoka 422-8529, Japan

Email: h.hu.19@shizuoka.ac.jp

–12–



Characterization of the quantum projective planes finite over their centers

Ayako Itaba and Izuru Mori

This talk is based on [5]. A quantum polynomial algebra A is a noncommutative analogue of a
commutative polynomial algebra, and a quantum projective space ProjncA in the sense of Artin-Zhang
[2] is the noncommutative projective scheme associated to a quantum polynomial algebra A. So, they
are the most basic objects to study in noncommutative algebraic geometry.

For a 3-dimensional quantum polynomial algebra A = A(E, σ), Artin-Tate-Van den Bergh [3] showed
that A is finite over its center if and only if the order |σ| of σ is finite. Also, Artin [1] showed that if A is
finite over its center and E is not a projective plane P2, then A has a fat point module, which plays an
important role in noncommutative algebraic geometry, however, the converse is not true in general. To
check the existence of a fat point, the following notion is defined in [6];

∥σ∥ := inf{i ∈ N+ | σi = ϕ|E for some ϕ ∈ AutP2}.
In fact, ProjncA has a fat point if and only if 1 < ∥σ∥ < ∞ ([1], [6]). Moreover, in [6], the notion that
ProjncA is finite over its center was introduced, and the following result was proved; let A = A(E, σ) be
a 3-dimensional quantum polynomial algebra such that E ⊂ P2 is a triangle. Then ∥σ∥ < ∞ if and only
if ProjncA is finite over its center. The purpose of this research is to extend the above theorem to all
3-dimensional quantum polynomial algebras, and the following is our main result.

Theorem 1. Let A = A(E, σ) be a 3-dimensional quantum polynomial algebra such that E ̸= P2, and
ν ∈ AutA the Nakayama automorphism of A. Then the following are equivalent:

(1) |ν∗σ3| < ∞.
(2) ∥σ∥ < ∞.
(3) ProjncA is finite over its center.
(4) ProjncA has a fat piont.

As a byproduct, we prove that |ν∗σ3| is 1 or infinite if and only if the isomorphism classes of simple
2-regular modules over the Beilinson algebra ∇A of A are parameterized by E ⊂ P2. Note that ∇A is a
typical example of 2-representation infinite algebra defined in Herschend-Iyama-Oppermann [4].
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Localization of extriangulated categories

Arashi Sakai

Abelian categories, exact categories and triangulated categories are the main categorical frameworks
used in homological algebra. Localization of these categories are frequently used in representation theory,
for example, the Serre quotient of abelian categories [1] and the Verdier quotient of triangulated categories
[6]. In recent years, the notion of extriangulated categories is introduced in [4] and unifies exact categories
and triangulated categories. So far we have not seen localization of extriangulated categories in the
literature.

In this talk, we introduce localization of extriangulated categories. In particular, we consider localiza-
tion arising from biresolving subcategories [5] and percolating subcategories [2].

Theorem 1. Let C be an extriangulated category and N a biresolving or percolating thick subcategory.
Then there is a class of morphism SN in C, and localization CSN of C by SN has a natural extriangulated
structure.

This localization covers the Serre quotient, the Verdier quotient and several other localizations in the
special cases and has the universality in some sense. This talk is based on [3], joint work with Hiroyuki
Nakaoka (Nagoya University) and Yasuaki Ogawa (Nara University of Education).
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Some classes of subcategories of module categories:
classifications and the relation between them

Haruhisa Enomoto

In the representation theory of algebras, the study of subcategories of module categories have been one
of the main topics. Among them, torsion classes (subcategories closed under quotients and extensions)
have been attracted an attention. There are another class of subcategories of module categories: wide
subcategories (subcategories closed under kernels, cokernels, and extensions). They are related to ring
epimorphisms of an algebra, and the relation between torsion classes and wide subcategories have been
studied by several authors.

Recently, I introduced some classes of subcategories of module categories which generalizes both tor-
sion classes (or torsion-free classes) and wide subcategories: ICE-closed subcategories (Image-Cokernel-
Extension-closed), and its dual IKE-closed subcategories (Image-Kernel-Extension-closed), hearts of in-
tervals of torsion classes. They are particular classes of extension-closed subcategories which can be
controlled by torsion classes. In this talk, I will talk about the classification results of these subcate-
gories, and discuss the relation between these classes of subcategories, based on [1, 2, 3]. In particular,
we can recover the poset structure of these subcategories using only the poset structure of torsion classes.
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Intervals of s-torsion pairs
in extriangulated categories with negative first extensions

Takahide Adachi, Haruhisa Enomoto and Mayu Tsukamoto

Happel, Reiten and Smalø [2] provided a construction of new t-structures through torsion pairs in
the heart of a given t-structure. This construction induces a close connection between t-structures and
torsion pairs as follows.

Theorem 1 ([2, 4]). Let D be a triangulated category with shift functor Σ. Let (U ,V) be a t-structure
on D and H := U ∩ ΣV the heart of (U ,V). Then there exists a poset isomorphism between the poset of
t-structures (U ′,V ′) on D satisfying ΣU ⊆ U ′ ⊆ U and the poset of torsion pairs in H.

Let t1 := (T1,F1) and t2 := (T2,F2) be torsion pairs in an abelian category A with T1 ⊆ T2. Let [t1, t2]
denote the interval in the poset of torsion pairs in A consisting of (T ,F) with T1 ⊆ T ⊆ T2. We call the
subcategory H[t1,t2] := T2 ∩F1 the heart of [t1, t2]. The following bijection induces fruitful results for the
poset structure of torsion pairs in A.

Theorem 2 ([1, 3]). Let A be an abelian category and [t1, t2] an interval in the poset of torsion pairs in
A. Then there exists a poset isomorphism between [t1, t2] and the poset of torsion pairs in H[t1,t2].

The aim of this talk is to show that two poset isomorphisms in Theorem 1 and Theorem 2 are
consequences of a more general poset isomorphism in extriangulated categories. Since t-structures are
exactly torsion pairs whose negative first extensions vanish, we introduce negative first extensions in
extriangulated categories, that is, an additive bifunctor E−1 satisfying a certain condition. We can
naturally regard triangulated categories and exact categories as extriangulated categories with negative
first extensions. As a common generalization of t-structures and torsion pairs (in abelian categories), we
introduce the notion of s-torsion pairs. We call a pair (T ,F) of subcategories an s-torsion pair if it is
a torsion pair (in the usual sense) and E−1(T ,F) = 0 holds. Since the set of s-torsion pairs becomes a
partially ordered set by inclusions, we can define the hearts of intervals as with torsion pairs in abelian
categories. Moreover, each heart can be naturally regarded as an extriangulated category with a negative
first extension. In this setting, we obtain the following result.

Theorem 3. Let C be an extriangulated category with a negative first extension. Let [t1, t2] be an interval
in the poset of s-torsion pairs in C and H[t1,t2] its heart. Then there exists a poset isomorphism between
[t1, t2] and the poset of s-torsion pairs in H[t1,t2].
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Examples of tilting-discrete self-injective algebras

Takahide Adachi and Ryoichi Kase

In the representation theory of algebras, the notion of mutation, which is an operation to construct
a new object from an original one by exchanging direct summands, plays a crucial role. From the
viewpoint of mutation, there are two important classes: one is silting-discrete algebras and the other is
tilting-discrete self-injective algebras. A finite dimensional algebra is called a silting-discrete (respectively,
tilting-discrete) algebra if for each positive integer d, the set of isomorphism classes of basic d-term silting
(respectively, tilting) objects of the bounded homotopy category of finitely generated projective modules
is finite. As a nice property of silting-discrete (respectively, tilting-discrete self-injective) algebras, any
two silting (respectively, tilting) objects are obtained from each other by iterated silting (respectively,
tilting) mutation ([1, 2, 3]). By definition, silting-discrete algebras always are tilting-discrete. However,
we do not know whether tilting-discrete algebras are silting-discrete. Now we propose a natural question:
Is a tilting-discrete algebra always silting-discrete?

Our aim of this talk is to give two examples for the question.

Theorem 1. Let A be a basic connected non-local self-injective algebra over an algebraically closed field
and let {e1, e2, . . . , en} be a complete set of primitive orthogonal idempotents of A. Assume that A admits
a cyclic Nakayama permutation and soc(eiA) ⊂ rad2A for all i. Then there exists a self-injective algebra

Ã such that

• it is not silting-discrete,

• {Ã[i] | i ∈ Z} coincides with the set of isomorphism classes of all basic tilting objects for Ã. In

particular, Ã it tilting-discrete.

Theorem 2. Let K be an algebraically closed field and let n,m ≥ 5 be integers with gcd(n− 1,m) = 1.
Assume that n is odd and m is not divisible by the characteristic of K. Let An,m be the stable Auslander
algebra of a self-injective Nakayama K-algebra with m simple modules (up to isomorphism) and Loewy
length n. Then An,m is a tilting-discrete self-injective algebra but not silting-discrete.
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The structure of Adams graded dg algebras and Cohen-Macaulay representations

Norihiro Hanihara

The subject of this talk is Cohen-Macaulay representation theory of Gorenstein rings, from the view-
point of tilting and cluster tilting theory. While the derived category Db(modA) of an algebra A is a
triangulated category of the canonical form endowed with a tilting object, the d-cluster category Cd(A)
of A can be seen as a counterpart for d-Calabi-Yau triangulated categories with d-cluster tilting objects.

One of the (big) problems on this subject (see [2]) is to find triangle equivalences between the stable
category of graded Cohen-Macaulay modules and the derived category of an algebra, and between the
ungraded stable category and the cluster category, realizing the stable categories as “canonical forms” of
triangulated categories.

The ideal situation is summarized in the following commutative diagram, where R is a nice graded
Gorenstein ring, and A is a finite dimensional algebra.

CMZR
≃

��

Db(modA)

��
CMR

≃
Cd(A)

Such equivalences provide a mutual understanding of representation theories of R and A, and can also
explain certain classification results (e.g. [3, 4]).

While the “graded–derived” equivalence naturally predicts the “ungraded–cluster” equivalence, it often
involves technical difficulties to actually prove. The following consequence of our result says that the latter
equivalence follows automatically from the former one.

Theorem 1. Let R =
⊕

i≥0 Ri be a positively graded commutative Gorenstein isolated singularity of
dimension d+ 1, and of Gorenstein parameter a ̸= 0 such that each Ri is finite dimensional over a field.
Suppose that CMZR has a tilting object M such that the endomorphism algebra A = EndZR(M) has global
dimension at most d. Then there exists a commutative diagram of equivalences

CMZR
≃

��

Db(modA)

��
CMZ/aZR

≃

��

Cd(A)

��
CMR

≃
C

(1/a)
d (A).

Here, the category C
(1/a)
d (A) is the triangulated hull of the orbit category of Db(modA) by a naturally

defined a-th root of νd = − ⊗L
A DA[−d] (c.f. [1]). The key ingredient toward the above theorem is

differential graded (=dg) enhancements of singularity categories of commutative Gorenstein rings (or
more generally symmetric orders), and certain Calabi-Yau property of these dg categories. We obtain
the above result as a consequence of a structure theorem for Adams graded Calabi-Yau dg categories.
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Tilting Theory for Periodic Triangulated Categories

Shunya Saito

Tilting theory gives a way to relate a triangulated category with the derived category of an algebra, and
play a central role in representation theory of algebras. However, it does not work m-periodic triangulated
category. A triangulated category T is m-periodic if its suspension functor Σ satisfies Σm ≃ 1T as
additive functors. Such categories naturally arise in representation theory of self-injective algebras and
hypersurface singularities.

In this talk, we will talk about a periodic analogue of tilting theory. We will explain m-periodic tilting
theorem, which asserts that an m-periodic triangulated category having an m-periodic tilting object is
equivalent to the m-periodic derived category under some assumptions. As an application, we give an
equivalence between the stable module category of a self-injective algebra and the 2-periodic derived
category of a hereditary algebra. This talk based on [1].
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Quaternion rings over local rings

Isao Kikumasa and Kiyoichi Oshiro

In 1843, Hamilton discovered the 4-dimensional division algebra H(R) = R ⊕ iR ⊕ jR ⊕ kR over the
field R of real numbers. Hamilton’s great discovery is the following beautiful multiplications for the basis
{1, i, j, k}:

i2 = j2 = k2 = ijk = −1 · · · · · · (∗).
Starting from given any ring R and a free right R-module R⊕ iR⊕ jR⊕kR, the quaternion ring H(R) is
canonically defined by the multiplications (∗). For nonzero elements a, b in the center of R, the generalized
quaternion ring H(R; a, b) is defined. In particular, H(R;−1,−1) is H(R). For a commutative field F
with 2 ̸= 0, H(F ) is a division ring or isomorphic to the ring of 2×2 matrices over F , that is a well known
classical theorem. In [1], [2] and [4], quaternion rings and generalized quaternion rings over division rings
or other rings are studied.

This talk is based on [3]. In this talk, from ring theoretic view points, we give fundamental results on
H(R) and H(R; a, b) over a local ring R, from which we can look over several known results over fields
or division rings.
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On support τ-tilting modules and semibricks for blocks of group algebras

Ryotaro Koshio and Yuta Kozakai

Let k be an algebraically closed field of characteristic p > 0, G̃ a finite group and G a normal subgroup
of G̃. Moreover let B be a block of kG and B̃ a block of kG̃ covering B, that is, a block of kG satisfying
the condition that 1B1B̃ ̸= 0, where 1B and 1B̃ are units of B and B̃ respectively.

The notion of support τ -tilting modules was introduced in [1] and has been studied by many re-
searchers. These modules play important roles in representation theory of finite dimensional algebras
because they correspond to many classes of representation theoretical objects, for example the two-term
silting complexes, torsion classes [1], semibricks [2] and more.

In this talk, we focus on the support τ -tilting modules and semibricks over the block B̃ under the
assumption that the quotient group G̃/G is a p-group or a cyclic group of a p-prime order, and we

compare the support τ -tilting modules and semibricks over the block B̃ to those over the block B, which
is easier to consider than B̃. Moreover, based on [3], in the case of the quotient group G̃/G being a

p-group, we explain that the set of support τ -tilting modules over B̃ is isomorphic to that over B as
partially ordered sets and that all semibricks over B̃ can be obtained from the extensions of those over
B.
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Hochschild cohomology of Nm

Tomohiro Itagaki, Kazunori Nakamoto, and Takeshi Torii

Let R be a commutative ring. Let m ≥ 3. Set

Nm(R) = {(aij) ∈ Mm(R) | a11 = a22 = · · · = amm and aij = 0 for any i > j}.
Setting x1 = E1,2, x2 = E2,3, . . . , xm−1 = Em−1,m, we have an isomorphism as R-algebras:

Nm(R) ∼= R⟨x1, x2, . . . , xm−1⟩/⟨xixj | j ̸= i+ 1⟩.
The Koszul dual Nm(R)! of Nm(R) is isomorphic to R⟨y1, y2, . . . , ym−1⟩/⟨yiyi+1 | 1 ≤ i ≤ m− 2⟩. Put

φ(d) = rankRNm(R)!d,

where |yi| = 1 and Nm(R)!d is the homogeneous part of Nm(R)! of degree d. The Poincaré series f(t) =∑
d≥0

φ(d)td can be calculated by f(t) = 1/(1 +
m−1∑
k=1

(−1)k(m− k)tk).

Theorem 1. The Hochschild cohomology HHn(Nm(R),Mm(R)/Nm(R)) is a free R-module for n ≥ 0.
The rank of HHn(Nm(R),Mm(R)/Nm(R)) for n ≥ 0 is given by

rankRHH
n(Nm(R),Mm(R)/Nm(R)) =

{
m− 1 (n = 0)

(m− 2)φ(n) (n > 0).

Theorem 2. The Hochschild cohomology HHn(Nm(R),Nm(R)) is a free R-module for n ≥ 0. The rank
of HHn(Nm(R),Nm(R)) is given by

rankRHH
n(Nm(R),Nm(R))

=


2 (n = 0)
2m− 4 (n = 1)

φ(n) + (m− 4)φ(n− 1) + (−1)mφ(n−m+ 1) +

m−1∑
k=2

(−1)k(k + 1)φ(n− k) (n ≥ 2).

Theorem 3. There is an augumentation map ϵ : HH∗(Nm(R),Nm(R)) → R as an R-algebra homomor-

phism such that the Kernel HH∗(Nm(R),Nm(R)) of ϵ satisfies

HH∗(Nm(R),Nm(R)) ·HH∗(Nm(R),Nm(R)) = 0.

In particular, HH∗(Nm(R),Nm(R)) is an infinitely generated algebra over R.
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On two-sided Harada rings

Yoshitomo Baba

In [6] M. Harada studied a left artinian ring R such that every non-small left R-module contains a
non-zero injective submodule. And in [7] K. Oshiro called the ring a left Harada ring (abbreviated left
H-ring). We can see many results on left Harada rings in [5] and many equivalent conditions in [1,
Theorem B]. In this talk, we characterize two-sided Harada rings.

First new concepts “co-H-sequence”, “H-epimorphism” and weak co-H-sequenceand are induced
and by these we characterized two-sided Harada rings. Next, from a given QF ring, we construct two-
sided Harada rings. And last we show that every indecomposable two-sided Harada ring which is not a
Nakayama ring is constructed from a QF-ring.
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Krull–Gabriel dimension of Cohen–Macaulay modules
over hypersurfaces of type (A∞)

Naoya Hiramatsu

The notion of the Krull–Gabriel dimension has been considered under the functorial approach view-
point of representation theory of finite dimensional algebras. It was introduced by Gabriel[3] and has
been studied by many authors including Geigle[4], Krause[5] and Schröer[7].

Definition 1 (Krull Gabriel dimension). Let A be a abelian category. Define A−1 = 0. For each
n ≧ 1, let An be the category of all objects which are finite length in A/An−1. We define KGdim A =
min{n | A = An} if such a minimum exists, and KGdim A = ∞ else.

The Krull–Gabriel dimension is closely related to representation types of algebras. Let A be a finite
dimensional algebra and mod(A) a category of finitely generated A-modules. We denote by mod(mod(A))
a functor category of mod(A), that is, the category of finitely presented contravariant additive functors
from mod(A) to the category of Abelian groups. It was proved by Auslander[1] that A is of finite
representation type if and only if KGdim mod(mod(A)) = 0. Krause[5] shows that there are no algebras
such that KGdim mod(mod(A)) ̸= 1, and Geigle[4] shows that every tame hereditary algebra is of
Krull–Gabriel dimension 2. Geigle[4] also shows that an algebra which is of wild representation type has
Krull–Gabriel dimension ∞.

Let R be a commutative Cohen–Macaulay local ring and C(R) the category of maximal Cohen–
Macaulay R-modules. In this paper we study the Krull–Gabriel dimension of mod(C(R)); the full sub-
category of mod(C(R)) consisting of all functors with F (R) = 0.

Theorem 2. Let R be a complete Cohen–Macaulay local ring. Then R is of finite representation type if
and only if KGdim mod(C(R)) = 0.

Let k be an algebraically closed uncountable field of characteristic not two. Next we investigate the
case where R is a hypersurface of type (A∞), that is, R is isomorphic to the ring k[[x0, x1, x2, . . . , xn]]/(f),
where f = x2

1 + x2
2 + · · ·+ x2

n. It is known that R is of countable CM representation type [2].

Theorem 3. Let k be an algebraically closed uncountable field of characteristic not two. Let R be a
hypersurface of type (A∞). Then KGdim mod(C(R)) = 2.

The study of the Krull–Gabriel dimension of maximal Cohen–Macaulay modules over a one-dimensional
hypersurface of type (A∞) is given by Puninski[6]. His study investigates the Krull–Gabriel dimension of
the definable category of maximal Cohen–Macaulay modules in Mod(R), so that our studies is different
from his results.
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Algebraic stability theorem for derived categories
of zigzag persistence modules

Yasuaki Hiraoka, Yuichi Ike and Michio Yoshiwaki

This is based on the paper arXiv:2006.06924[7], which is an interaction between representation theory
of algebras and topological data analysis, particularly the robustness for noises of data

Persistent homology [6] is one of the leading tools in topological data analysis. It provides a multi-scale
analysis of the topological features of a given data set with the so-called persistence diagram as its output.
Unlike ordinary homology, it is significant that a stability theorem holds for persistent homology [5].

The algebraic structure of persistent homology is expressed using the notion of persistence modules,
which are representations of an equioriented An-type quiver [3]. This allows for an algebraic generalization
of the stability theorem, which is called an algebraic stability theorem (AST; see [4], [1]). Namely, the
AST guarantees that the persistence diagram is robust to changes in the given persistence module.

Moreover, a zigzag persistence module [3] (a representation of an An-type quiver with arbitrary orien-
tation) can be applied to address several situations (e.g. time-series data) which are not covered by the
theory of ordinary persistence module. Our motivation is to derive an AST for zigzag persistence modules.
Botnan and Lesnick proved such a theorem by embedding the category of zigzag persistence modules into
that of 2D block decomposable persistence modules [2]. Here, we adopt a different approach: We study
distances on zigzag persistence modules from the viewpoint of derived categories and Auslander–Reiten
quivers. For two persistence modules M,N , we can define the interleaving distance dI between M and N .
We denote by B(M) the persistence diagram of M , which consists of the indecomposable representations
(we call them intervals) in the indecomposable decomposition of M . Then, the interleaving distance
induces the bottleneck distance dB between B(M) and B(N). Comparing these distances, the following
holds.

Theorem 1 (AST [4],[1]). dB(B(M),B(N)) ≤ dI(M,N).

The distances dI , dB can be extended to the derived setting dDI ,dDB . Thus, we obtain the following
main theorem for objects X•, Y • of the derived category of persistence modules.

Theorem 2 (Derived AST [7]). dDB (BD(X•),BD(Y •) ≤ dDI (X•, Y •).

The derived category of persistence modules is triangle equivalent to that of zigzag persistence mod-
ules, depending on a classical tilting module. Through this derived equivalence, we define and compute
distances on the derived category of zigzag persistence modules and proved an algebraic stability theorem.

Corollary 3 ([7]). For the derived category of zigzag persistence modules, an AST holds.

As a consequence, an AST holds for zigzag persistence modules.
Finally, we also compare our distance with the distance for purely zigzag persistence modules intro-

duced by Botnan–Lesnick and the sheaf-theoretic convolution distance due to Kashiwara–Schapira.
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