Some classes of subcategories of module categories: classifications and the relation between them

Haruhisa Enomoto (Osaka Prefecture University) partially joint work with Arashi Sakai (Nagoya University) 8 September 2021, Symposium on Ring and Representation Theory

Today's talk

- Introduce new classes of subcategories of mod Λ.
- · Give classification results of these subcategories.

Throughout this talk,

- A: a finite-dimensional k-algebra over a field k.
- mod Λ : the category of finitely generated right Λ -modules.

Slogan

Study various subcategories of mod A!

Question

- · What kinds of subcategories should we study?
- What "study" means?

(Today's) Answer

- 1. Subcategories controlled by torsion pairs.
- 2. Classify and describe poset structure.

Torsion pairs, Serre and wide subcategories

ICE-closed subcategories and torsion hearts

From tors Λ to other posets

Torsion pairs, Serre and wide subcategories

Torsion pairs

Definition (Dickson 1966)

- A subcategory T of mod A is a torsion class if it is closed under extensions and quotients.
- A subcategory *F* of mod Λ is a torsion-free class if it is closed under extensions and submodules.
- tors Λ (torf Λ): the poset of torsion(-free) classes in mod Λ .
- tors Λ and torf Λ are anti-isom by $(-)^{\perp}$ and $^{\perp}(-)$.
- If tors Λ is a finite set (*τ*-tilting finite), then there's a bijection between tors Λ and support *τ*-tilting modules [Adachi-Iyama-Reiten 2014]

Definition (Serre 1953?, Hovey 2001)

- A subcategory S of mod A is a Serre subcategory if it is closed under extensions, quotients, and submodules.
- A subcategory W of mod A is a wide subcategory if it is closed under extensions, cokernels, and kernels.
- Serre Λ (wide Λ): the posets of Serre (wide) subcategories of mod Λ.

Clearly Serre $\Lambda = \operatorname{tors} \Lambda \cap \operatorname{torf} \Lambda$ and Serre $\Lambda \subseteq \operatorname{wide} \Lambda$.

Theorem (Ingalls-Thomas 2009, Marks-Šťovíček 2017) Suppose Λ is τ -tilting finite. Then there is a bijection between tors Λ and wide Λ (but not poset-isom!). Picture

ICE-closed subcategories and torsion hearts

ICE-closed subcategories

Definition (E 2020)

A subcategory C of mod Λ is ICE-closed if it is closed under:

- Images ($f: C_1 \rightarrow C_2$ with $C_1, C_2 \in \mathcal{C} \Rightarrow \operatorname{Im} f \in \mathcal{C}$),
- Cokernels (... \Rightarrow Coker $f \in C$), and
- Extensions.

ICE Λ : the poset of ICE-closed subcategories of mod Λ .

Dually define IKE-closed subcategories (Image-Kernel-Extension-closed).

- $\bullet \ \text{tors} \ \Lambda \subseteq \text{ICE} \ \Lambda, \quad \text{torf} \ \Lambda \subseteq \text{IKE} \ \Lambda.$
- $\bullet \ \ ICE \Lambda \cap IKE \Lambda = wide \Lambda.$

ICE-closed subcategories

Example: kQ for $Q: 1 \leftarrow 2 \rightarrow 3$

Theorem (E-Sakai 2021)

Let C be a subcategory of mod Λ . Then TFAE.

- **1**. C is an ICE-closed subcategory.
- There is some wide subcategory W containing C such that C is a torsion class in W.

Classification of ICE-closed subcategories

Corollary (E-Sakai 2021)

If Λ is τ -tilting finite, then there is a bijection between:

- ICE-closed subcategories of mod ∧ and
- wide τ -tilting modules

(= $\tau_{\mathcal{W}}$ -tilting object in some wide subcat \mathcal{W}).

This generalizes Adachi-Iyama-Reiten's bijection!

Corollary (E 2020)

If Q is a Dynkin quiver, then there is a bijection between:

- ICE-closed subcategories of mod kQ and
- rigid kQ-modules

(modules M with $\operatorname{Ext}_{kQ}^{1}(M, M) = 0$).

- Easy characterization of wide *τ*-tilting modules (for non-hereditary case)?
- Interpretation of wide *τ*-tilting modules using the derived category? (silting complex for usual *τ*-tilting theory).

Torsion hearts

The proof uses the notion of torsion hearts.

Definition (Demonet-Iyama-Reading-Reiten-Thomas 2017, Tattar 2020, Asai-Pfeifer 2021, E-Sakai 2021, etc)

• To each pair $\mathcal{U}\subseteq \mathcal{T}$ in tors A, its heart is:

$$\mathcal{H}_{[\mathcal{U},\mathcal{T}]}:=\mathcal{T}\cap\mathcal{U}^{\perp}\,(="\,\mathcal{T}-\mathcal{U}"\,),$$

- A subcategory of this form is called a torsion heart.
- tors-heart Λ : the poset of torsion hearts.

The following subcategories are torsion hearts:

- Torsion(-free) classes (by $\mathcal{T} = \mathcal{H}_{[0,\mathcal{T}]}$ and its dual).
- Wide subcategories [Asai-Pfeifer 2021]
- ICE-closed subcategories (and IKE) [E-Sakai 2021].

How to obtain the poset tors-heart Λ ?

From tors A to other posets

 $\mathsf{itv}(\mathsf{tors}\,\Lambda) := \{(\mathcal{U},\mathcal{T}) \mid \mathcal{U}, \mathcal{T} \in \mathsf{tors}\,\Lambda, \quad \mathcal{U} \subseteq \mathcal{T}\}$

"Taking hearts" gives a surj $\mathcal{H}_{(-)}$: itv(tors Λ) \rightarrow tors-heart Λ .

Theorem (E, in preparation)

We can define a certain equivalence relation \sim , which depends only on the poset structure of tors A, s.t.

$$\frac{\mathsf{itv}(\mathsf{tors}\,\Lambda)}{\sim}\simeq\mathsf{tors-heart}\,\Lambda.$$

This restricts to bijections between {certain intervals}/ \sim and wide Λ or ICE $\Lambda.$

The posets tors-heart Λ , ICE Λ , IKE Λ , and wide Λ can be computed from the poset tors Λ (using computer)!

Larger picture?

- Schur_R Λ: right Schur subcategories [E 2020] (defined using one-sided Schur's lemma)
- IE Λ: Image-Extension-closed subcategories [E-Sakai, in preparation] (= T ∩ F for some T ∈ tors Λ and F ∈ torf Λ)