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Notation

▶ k: an algebraically closed field of characteristic 0.
▶ All graded algebras are finitely generated in degree 1 over k .

▶ k⟨x1, . . . , xn⟩/I
(∃ homog. ideal I � k⟨x1, . . . , xn⟩, deg xi = 1, ∀i = 1, . . . , n).

▶ GrModA: the cat. of graded right A-modules.

▶ grmodA: the cat. of fin. gen. graded right A-modules.

▶ Pn−1
k (= Pn−1): the n − 1-dim. proj. space over k .
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Quantum polynomial algebras

Definition 1.1 (Artin-Schelter, 1987)

A right noetherian graded algebra A is called a d-dimensional
quantum polynomial algebra (d-dim qpa) if

(i) gldimA = d ,

(ii) ExtiA(k,A)
∼=

{
k if i = d ,

0 if i ̸= d ,
(Gorenstein condition)

(iii) HA(t) :=
∑∞

i=0(dimk Ai )t
i = (1− t)−d (Hilbert series).

Example

(1) A := k[x1, . . . , xd ]: comm. d-dim qpa.

(2) A := k⟨x1, . . . , xd⟩/(xjxi − αi ,jxixj),
(1 ≤ i < j ≤ d , αi ,j ∈ k\{0}) (Skew poly. alg.) : d-dim qpa.

(3) A: 3-dim qpa⇐⇒ A: 3-dim. quad. AS-regular alg. ([AS]).
▶ A ∼= k⟨x , y , z⟩/(f1, f2, f3), fi ∈ k⟨x , y , z⟩2 (i = 1, 2, 3).

(4) ∀d ≥ 4, A: d-dim qpa. (???)



Geometric algebras
▶ Geometric pair (E , σ): a proj. scheme E ⊂ Pn−1, σ ∈ Autk E .
▶ A = k⟨x1, . . . , xn⟩/I (I � k⟨x1, . . . , xn⟩2) : quad. algebra,

V(I2) := {(p, q) ∈ Pn−1 × Pn−1 | f (p, q) = 0, ∀f ∈ I2}.

Definition 1.2 (Mori, 2006)

A quad. algebra A is called geometric if ∃(E , σ) such that

(G1) V(I2) = {(p, σ(p)) ∈ Pn−1 × Pn−1 | p ∈ E}
(we write P(A) = (E , σ), E : the point scheme of A),

(G2) I2 = {f ∈ k⟨x1, . . . , xn⟩2 | f (p, σ(p)) = 0, ∀p ∈ E}.
(we write A = A(E , σ)).

Example

E : a triangle in P2, σ stabilizes each component.
=⇒ A = A(E , σ) = k⟨x , y , z⟩/(yz − αzy , zx − βxz , xy − γyx),
α, β, γ ∈ k\{0}, αβγ ̸= 0, 1: 3-dim geometric qpa.



ATV’s theorem

Theorem 1.3 (Artin-Tate-Van den Bergh, 1990)

Every 3-dimensional quantum polynomial algebra is geometric
where the point scheme is either P2 or a cubic divisor in P2.

Remark 1.4

Note that the classification of 3-dim qpa A = A(E , σ) reduces to
the classification of geometric pairs (E , σ).



Quantum projective spaces (quantum Pd−1)
▶ A: a right noeth. graded algebra.
▶ torsA: the full subcat. of grmodA consisting of fin. dim.

modules over k.

Definition 2.1 (Artin-Zhang, 1994)

(1) The noncommutative projective scheme associated to A is
defined by ProjncA= (tailsA, πA) where

▶ tailsA := grmodA/torsA is the quot. cat.,
▶ π : grmodA → tailsA is the quot. func., A ∈ grmodA is

regular.

(2) A: d-dim qpa =⇒ProjncA is called a quantum Pd−1.
▶ d = 3 =⇒ ProjncA is called a quantum projective plane.

Remark 2.2

▶ A: commutative =⇒ Projnc A
∼= ProjA.

▶ A: 2-dim qpa=⇒ Projnc A
∼= P1.



Relationship between 3-dim qpa A and ProjncA

Theorem 2.3 (Abdelgadir-Okawa-Ueda, 2014)

Let A and A′ be 3-dim qpa.

grmodA ∼= grmodA′ ⇐⇒ ProjncA
∼= ProjncA

′.

Lemma 2.4 (I.-Matsuno, 2021)

∀ 3-dim qpa A, ∃ a 3-dim Calabi-Yau qpa A′ such that
GrModA ∼= GrModA′ so that Projnc A

∼= Projnc A
′.

▶ A qpa A′ is called Calabi-Yau if the Nakayama automorphism
of A′ is the identity.

Remark 2.5

Lemma 2.4 claims that every quantum projective plane has a
3-dim Calabi-Yau qpa as a homogeneous coordinate ring.



Characterization when 3-dim qpa is finite over its center

Theorem 2.6 (ATV, 1991)

A = A(E , σ): 3-dim qpa.

|σ| < ∞ ⇐⇒ A is finite over its center.

▶ To prove Theorem 2.6, fat points of a quantum projective
plane Projnc A plays an essential role.

▶ By [Artin, 1992], if A is finite over its center and E ̸= P2, then
Projnc A has a fat point, however, the converse is not true.

Definition 2.7

Let A be a graded algebra.
(1) A point of ProjncA is an isom. class of a simple obj. of the

form πM ∈ tailsA where M ∈ grmodA such that
lim
i→∞

dimk Mi < ∞.

(2) A point πM is called fat if lim
i→∞

dimk Mi > 1 (in this case, M

is called a fat point module over A).



Norm ∥σ∥
To check the existence of a fat point, the following was introduced.

Definition 2.8 (Mori, 2015)

For a geometric pair (E , σ) where E ⊂ Pn−1 and σ ∈ AutkE ,

Autk(Pn−1,E ) := {ϕ|E ∈ AutkE | ϕ ∈ AutkPn−1},

and ∥σ∥ := inf{i ∈ N+ | σi ∈ Autk(Pn−1,E )}, which is called the
norm of σ.

For a geometric pair (E , σ), clearly ∥σ∥ ≤ |σ|.

Lemma 2.9 ((Mori, 2015), (Artin, 1992))

Let A = A(E , σ) be a 3-dim qpa.

(1) ∥σ∥ = 1 ⇐⇒ E = P2.

(2) 1 < ∥σ∥ < ∞ ⇐⇒ ProjncA has a fat point.



“ProjncA is finite over its center”/Aim

Definition 2.10 ((Mori, 2015), (I.-Mori))

Let A be a d-dim qpa. We say that ProjncA is finite over its center
if ∃ d-dim qpa A′ finite over its center such that

GrModA ∼= GrModA′ (ProjncA
∼= ProjncA

′).

Theorem 2.11 (Mori, 2015)

A = A(E , σ): a 3-dim qpa where E is a triangle in P2, σ ∈ AutkE.

∥σ∥ < ∞ ⇐⇒ ProjncA is finite over its center.

Aim

The aim of this research is to extend Theorem 2.11 to all types.



Main results

Theorem 1 (I.-Mori): Calabi-Yau case

If A = A(E , σ) is a 3-dim Calabi-Yau qpa, then ||σ|| = |σ3|, so
TFAE.
(1) |σ| < ∞.
(2) ||σ|| < ∞.
(3) A is finite over its center.
(4) ProjncA is finite over its center.



Main results

Definition 3.1 (Mori-Ueyama, 2013)

For a d-dim geometric qpa A = A(E , σ) with the Nakayama auto.
ν ∈ AutA, a new graded algebra A := A(E , ν∗σd) satisfying (G2).

Lemma 3.2 (Mori-Ueyama, 2013)

A, A′: geometric qpa.

grmodA ∼= grmodA′ ⇐⇒ A ∼= A′.

Main Theorem (I.-Mori): general case

If A = A(E , σ) is a 3-dim qpa with the Nakayama auto.
ν ∈ AutA, then ||σ|| = |ν∗σ3|, so TFAE.

(1) |ν∗σ3| < ∞.

(2) ||σ|| < ∞.

(3) ProjncA is finite over its center.



Corollary

By Main Theorem and Lemma 2.9, we have the following result.

Corollary 1 (I.-Mori)

Let A = A(E , σ) be a 3-dim qpa such that E ̸= P2, and ν ∈ AutA
the Nakayama auto. of A. Then TFAE.

(1) |ν∗σ3| < ∞.

(2) ∥σ∥ < ∞.

(3) ProjncA is finite over its center.

(4) ProjncA has a fat piont.



Example

Example

A = A(E , σ) = k⟨x , y , z⟩/(yz − αzy , zx − βxz , xy − γyx), 0 ̸=
α, β, γ ∈ k , : 3-dim qpa, where E = V(x) ∪ V(y) ∪ V(z) ⊂ P2,

σ(0, b, c) = (0, b, αc),
σ(a, 0, c) = (βa, 0, c),
σ(a, b, 0) = (a, γb, 0),

ν∗ =

γ/β 0 0
0 α/γ 0
0 0 β/α

,
ν∗σ3(0, b, c) = (0, b, αβγc),
ν∗σ3(a, 0, c) = (αβγa, 0, c),
ν∗σ3(a, b, 0) = (a, αβγb, 0).

(1) |σ| = lcm(|α|, |β|, |γ|) < ∞ ⇐⇒A is finite over its center.

(2) ∥σ∥ = |ν∗σ3| = |αβγ| < ∞ ⇐⇒ ProjncA is finite over its
center ⇐⇒ ProjncA has a fat piont.



Beilinson algebras of d-dim qpa

Definition 3.3 (Minamoto-Mori, 2011)

For a d-dim qpa A, the Beilinson algebra of A is defined by

∇A :=


A0 A1 · · · Ad−1

0 A0 · · · Ad−2
...

. . .
...

...
0 0 · · · A0

 .

▶ The Beilinson algebra is a typical example of
(d − 1)-representation infinite algebra in the sense of
[Herschend-Iyama-Oppermann, 2014] ([Minamoto-Mori,
2011]).

▶ To investigate representation theory of such an algebra, it is
important to classify simple (d − 1)-regular modules.



Applications

We finally apply our results to representation theory of finite
dimensional algebras.

Corollary 2 (I.-Mori)

Let A = A(E , σ) be a 3-dim qpa with the Nakayama auto.
ν ∈ AutA. Then TFAE.

(1) |ν∗σ3| = 1 or ∞.

(2) ProjncA has no fat point.

(3) The isomorphism classes of simple 2-regular modules over ∇A
are parameterized by the set of closed points of E ⊂ P2.



Thank you for your attention !

If you have an interest in our talk, please see arXiv:2010.13093.



Proof of Theorem 1

▶ By calculation, ||σ|| = |σ3| holds for each type. So, (1) ⇔ (2).

▶ By Theorem 2.6, (1) ⇔ (3). By definition, (3) ⇒ (4).

▶ (4) ⇒ (2): If ProjncA is finite over its center, then there exists
a 3-dim qpa A′ = A(E ′, σ′) which is finite over its center such
that ProjncA

∼= ProjncA
′ by Definition 2.10, so ∥σ∥=∥σ′∥ ≤

|σ′|<∞ by [Mori, 2015] and Theorem 2.6.



Proof of Main Theorem

▶ By Lemma 2.4, ∀ 3-dim qpa A = A(E , σ), ∃ a 3-dim
Calabi-Yau qpa A′ = A(E ′, σ′) s. t. GrModA ∼= GrModA′.

▶ Since the Nakayama auto. of A′ is the identity,
A(E , ν∗σ3) = A ∼= A′ = A(E ′, σ′3) by Lemma 3.2, so, by
[Mori, 2015] and Theorem 1,

||σ||=||σ′||=|σ′3| = |ν∗σ3|.

ProjncA is fin. over its center
[Mori, 2015]⇐⇒ ProjncA

′ is fin. over its center

Thm 1⇐⇒ ||σ′|| < ∞.

Therefore, we have the equivalences (1) ⇔ (2) ⇔ (3).
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