LOCALIZATION OF EXTRIANGULATED CATEGORIES

joint work with Hiroyuki Nakaoka, Yasuaki Ogawa

Arashi Sakai

Nagoya univ.

September 8, 2021

Table of contents

1 Introduction

2 Extriangulated category

3 Localization
 Biresolving subcategory
 Percolating subcategory

Table of contents

1 Introduction

2 Extriangulated category

Localization
 Biresolving subcategory
 Percolating subcategory

Introduction

In representation theory, there are several localizations:

Example

- Serre quotient (abelian category)
- Verdier quotient (triangulated category) etc.

In this talk, we introduce localization of extriangulated category, which covers the above examples.

Convention

We assume the following:

- All subcategories are full and closed under isomorphisms.
- All additive subcategories are closed under taking direct summands.

Table of contents

1 Introduction

2 Extriangulated category

Localization
 Biresolving subcategory
 Percolating subcategory

Extriangulated category

In this section, we introduce extriangulated categories which unifies exact categories and triangulated categories.

Exact category

Definition

An exact category consists of

- C : an additive category
- \mathcal{E} : conflations, a class of kernel-cokernel pairs

- extension-closed subcategories of abelian categories
- the category C(A) of complexes of an abelian category A with the class of termwise split exact sequences

Triangulated category

Definition

A triangulated category consists of

- C : an additive category
- Σ : an autoequivalence functor on ${\cal C}$
- \mathcal{E} : a class of distinguished triangles $X \to Y \to Z \to \Sigma X$

- the stable category of a Frobenius exact category
- the derived category $D(\mathcal{A})$ of an abelian category \mathcal{A}

Exact categories and triangulated categories are equipped with a biadditive functor and a class of sequences of morphisms.

- In exact categories, a class of conflations defines a biadditive functror $\operatorname{Ext}^{1}_{\mathcal{C}}(-,-)$, the Yoneda extension group.
- In triangulated categories, any distinguished triangle is obtained from an element of a biadditive functor $\mathcal{C}(-, \Sigma -)$, that is, for any morphism $f \in \mathcal{C}(Z, \Sigma X)$, there is a distinguished triangle

$$X \to Y \to Z \xrightarrow{f} \Sigma X$$

by the axiom of triangulated categories.

Extriangulated category

Definition (Nakaoka-Palu '19)

An extriangulated category consists of

- C : an additive category
- $\mathbb{E} : \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to Ab$: a biadditive functor
- \mathfrak{s} assigns an equivalence class $\mathfrak{s}(\delta) = [X \to Y \to Z]$ to any $\delta \in \mathbb{E}(Z, X)$.

We call $\mathfrak{s}(\delta) = [X \xrightarrow{f} Y \xrightarrow{g} Z]$ an \mathfrak{s} -conflation and f, g an \mathfrak{s} -inflation, an \mathfrak{s} -deflation, respectively.

Extriangulated category

- exact categories = extriangulated categories in which any *s*-inflation is mono and any *s*-deflation is epi
- triangulated categories = extriangulated categories in which any morphism is both an s-inflation and an s-deflation
- extension-closed subcategories of (ex)triangulated categories

Extriangulated(exact) functor

Definition (Bennett-Tennenhaus-Shah '21)

Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ and $(\mathcal{D}, \mathbb{F}, \mathfrak{t})$ be extriangulated categories. An additive functor $F: \mathcal{C} \to \mathcal{D}$ (with a natural transformation $\eta: \mathbb{E}(-, -) \to \mathbb{F}(F-, F-)$) is an extriangulated functor if it sends \mathfrak{s} -conflations to \mathfrak{t} -conflations.

- exact functors = extriangulated functors between exact categories
- triangle functors = extriangulated functors between triangulated categories

Extriangulated(exact) functor

- Let \mathcal{T} be a triangulated category and \mathcal{H} a heart of a *t*-structure. The inclusion functor $\mathcal{H} \to \mathcal{T}$ is an extriangulated functor.
- Let \mathcal{E} be a Frobenius exact category and $\underline{\mathcal{E}}$ the stabe category of \mathcal{E} . The quotient functor $\mathcal{E} \to \underline{\mathcal{E}}$ is an extriangulated functor.

Table of contents

Introduction

2 Extriangulated category

3 Localization

Biresolving subcategory Percolating subcategory

Localization

Definition

Let \mathcal{C} be a category and \mathcal{S} a class of morphisms in \mathcal{C} . The category $\mathcal{C}_{\mathcal{S}}$ and the functor $Q: \mathcal{C} \to \mathcal{C}_{\mathcal{S}}$ is a localization of \mathcal{C} by \mathcal{S} if it satisfies the following properties.

- For any $s \in \mathcal{S}$, Q(s) is an isomorphism.
- For any category D and any functor F: C → D which sends all morphisms in S to isomorphisms, there exists a unique functor *F*: C_S → D such that F = *F* ∘ Q.

Localization of extriangulated category

Theorem (Nakaoka-Ogawa-S arXiv '21)

Let $(C, \mathbb{E}, \mathfrak{s})$ be an extriangulated category and S a class of morphisms in C. Suppose that S satisfies

- S is a multiplicative system in C.
- the two out of three property with respect to compositions.
- some compatibility conditions with repect to the extriangulated structure.

Then there exists a localization $Q: C \to C_S$, and C_S has the extriangulated structure such that Q is an extriangulated functor.

In the rest, we introduce localization of extriangulated categories by biresolving subcategories and percolating subcategories.

Biresolving subcategory	Percolating subcatgory
 biresolving subcategories in exact categories [Rump] Hovey twin cotorsion pairs [Nakaoka-Palu] Verdier quotient [Verdier] 	 two-sided admissibly percolating subcategories in exact categories [Henrard-Roosmalen] Serre quotient [Gabriel] Verdier quotient [Verdier]

Table of contents

- Introduction
- 2 Extriangulated category
- 3 Localization
 Biresolving subcategory
 Percolating subcategory

Verdier quotient

Theorem (Verdier '67)

Let \mathcal{T} be a triangulated category and \mathcal{N} a thick subcategory of \mathcal{T} . Then

- $S_{\mathcal{N}} := \{s \mid \operatorname{Cone}(s) \in \mathcal{N}\}\$ is a multiplicative system in \mathcal{T} , hence the localization $\mathcal{T}_{S_{\mathcal{N}}}$ is an additive category and the localization functor $Q \colon \mathcal{T} \to \mathcal{T}_{S_{\mathcal{N}}}$ is an additive functor.
- **2** $\mathcal{T}_{\mathcal{S}_{\mathcal{N}}}$ becomes a triangulated category.
- **3** $Q: \mathcal{T} \to \mathcal{T}_{\mathcal{S}_{\mathcal{N}}}$ is a triangulated functor.

Let \mathcal{E} be an exact category.

Definition (Rump '21)

A subcategory \mathcal{A} of \mathcal{E} is a biresolving subcategory if it satisfies

- the two out of three property with respect to any conflation in \mathcal{E} .
- For any $X \in \mathcal{E}$, there are an inflation $X \to A_1$ and an deflation $A_2 \to X$ with $A_1, A_2 \in \mathcal{A}$.

Example

Let \mathcal{E} be a Frobenius exact category and \mathcal{A} a subcategory consisting of projective and injective objects. Then \mathcal{A} is a biresolving subcategory.

Theorem (Rump '21)

Let E be an exact category and A a biresolving subcategory of E. Then
\$\mathcal{S}_A := {s | \$\overline{s}\$ is monic and epic in the ideal quotient \$\mathcal{E}/A\$} is a multiplicative system.

2
$$\mathcal{E}_{\mathcal{S}_{\mathcal{A}}}$$
 is a triangulated category.

This generalize a construction of triangulated structures on stable categories of Frobenius exact categories.

Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category.

Definition

Let \mathcal{N} be an additive subcategory of \mathcal{C} .

- \mathcal{N} is a thick subcategory if it satisfies the two out of three property with respect to any \mathfrak{s} -conflation.
- Moreover N is called a biresolving subcategory if it satisfies the following condition.
 For any X ∈ C, there are an s-inflation X → N₁ and an s-deflation N₂ → X with N₁, N₂ ∈ N.

- The previous definition of biresolving subcategories is the same as in exact categories.
- In triangulated categories, the previous definition of thick subcategories coincides with usual one, and all thick subcategories are biresolving.

Main result

Theorem (Nakaoka-Ogawa-S arXiv '21)

Let $(C, \mathbb{E}, \mathfrak{s})$ be an extriangulated category and \mathcal{N} a biresolving subcategory of C. Then

- $S_{\mathcal{N}} := \{ \xrightarrow{f \ g} | \operatorname{Cone} f, \operatorname{CoCone} g \in \mathcal{N} \}$ gives a multiplicative system in the ideal quotient \mathcal{C}/\mathcal{N} .
- **2** the localization C_{S_N} is a triangulated category.
- **3** the localization functor $Q: \mathcal{C} \to \mathcal{C}_{\mathcal{S}_{\mathcal{N}}}$ is an extriangulated functor.

This result recovers the Verdier quotient and the Rump's result.

Table of contents

- Introduction
- 2 Extriangulated category
- 3 Localization
 Biresolving subcategory
 Percolating subcategory

Serre quotient

Theorem (Gabriel '62)

- Let \mathcal{A} be an abelian category and \mathcal{B} a Serre subcategory of \mathcal{A} . Then
 - $\mathcal{S}_{\mathcal{B}} := \{s \mid \operatorname{Ker}(s), \operatorname{Coker}(s) \in \mathcal{B}\}\$ is a multiplicative system in \mathcal{A} .
 - **2** the localization $\mathcal{A}_{\mathcal{S}_{\mathcal{B}}}$ becomes an abelian category.
 - **3** the localization functor $Q \colon \mathcal{A} \to \mathcal{A}_{\mathcal{S}_{\mathcal{B}}}$ is an exact functor.

Two-sided admissibly percolating subcategory

Definition (Henrard-Roosmalen arXiv '19)

Let \mathcal{E} be an exact category. An additive subcategory \mathcal{N} of \mathcal{E} is a two-sided admissibly percolating subcategory if it satisfies

- $X, Z \in \mathcal{N}$ if and only if $Y \in \mathcal{N}$ for any conflation $X \rightarrow Y \twoheadrightarrow Z$.
- For any morphism $f: X \to N$ with $N \in \mathcal{N}$, there is a commutative diagram $X \xrightarrow{f} N$

with $N' \in \mathcal{N}$, and dual of this condition.

Two-sided admissibly percolating subcategory

Theorem (Henrard-Roosmalen arXiv '19)

Let \mathcal{E} be an exact category and \mathcal{N} a two-sided admissibly percolating subcategory of \mathcal{E} . Then

- $\mathcal{S}_{\mathcal{N}} := \{ \xrightarrow{f \ g} | \operatorname{Ker} f, \operatorname{Coker} g \in \mathcal{N} \}$ is a multiplicative system in \mathcal{E} .
- **2** the localization $\mathcal{E}_{\mathcal{S}_{\mathcal{N}}}$ becomes an exact category.
- **3** the localization functor $Q: \mathcal{E} \to \mathcal{E}_{\mathcal{S}_{\mathcal{N}}}$ is an exact functor.

This covers Serre quotient in the special case.

Percolating subcategory

Definition

Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category. An additive subcategory \mathcal{N} of \mathcal{C} is a percolating subcategory if it satisfies

- the two out of three property with respect to any $\mathfrak{s}\text{-conflation}$ in $\mathcal{C}.$
- For any morphism $f: X \to N$ with $N \in \mathcal{N}$, there is a commutative diagram $X \xrightarrow{f} N$

with $N' \in \mathcal{N}$, and dual of this condition.

Percolating subcategory

- The previous definition of percolating subcategories is the same as in exact categories.
- In triangulated categories, percolating subcategories coincide with thick subcategories.

Main result

Theorem (Nakaoka-Ogawa-S arXiv '21)

Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category and \mathcal{N} a percolating subcategory of \mathcal{C} with some technical assumptions. Then

1
$$S_{\mathcal{N}} := \{ \xrightarrow{f \ g} | \operatorname{CoCone} f, \operatorname{Cone} g \in \mathcal{N} \}$$
 is a multiplicative system in \mathcal{C} .

- **2** the localization C_{S_N} becomes an extriangulated category.
- **3** the localization functor $Q: \mathcal{C} \to \mathcal{C}_{\mathcal{S}_{\mathcal{N}}}$ is an extriangulated functor.
- If $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ is exact (abelian), then so is $\mathcal{C}_{\mathcal{S}_{\mathcal{N}}}$.

Summary

- The class of extriangulated categories includes exact categories, triangulated categories and their extension-closed subcategories.
- a thick subcategory \mathcal{N} with some conditions \Rightarrow the localization $\mathcal{C}_{\mathcal{S}_{\mathcal{N}}}$ is extriangulated
- The foundation of an extriangulated category has been completed.

Thank you for listening.

References I

- Bennett-Tennenhaus, R.; Shah, A.; Transport of structure in higher homological algebra. J. Algebra 574 (2021), 514–549.
- Cárdenas-Escudero, M.E.: Localization for exact categories. Thesis (Ph.D.)–State University of New York at Binghamton. 1998.
- Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France 90 (1962), 323–448.
- Henrard, R.; van Roosmalen, A-C.: Localizations of (one-sided) exact categories. arXiv:1903.10861.

References II

- Nakaoka, H.; Ogawa, Y.; Sakai, A.: Localization of extriangulated categories. arXiv:2103.16907.
- Nakaoka, H.; Palu, Y.: Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég. 60 (2019), no. 2, 117–193.
- Rump, W.: The acyclic closure of an exact category and its triangulation. J. Algebra 565 (2021), 402–440.
- Verdier, J.-L.: Des catégories dérivées des catégories abéliennes, Astérisque, 239, Société Mathématique de France, (1996) [1967].