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Abstract. Koenig, Külshammer and Ovsienko showed that Morita equivalence classes
of quasi-hereditary algebras are in one-to-one correspondence with equivalence classes
of the module categories over directed bocses. In this report, we give theorems which
extend their result to ∆-filtered algebras and ∆-filtered algebras.

1. Introduction

Quasi-hereditary algebras were introduced by Cline, Parshall, and, Scott to study the
highest weight categories in Lie theory [CPS]. So far, many results have been obtained
for quasi-hereditary algebras. As an important fact, quasi-hereditary algebras have finite
global dimensions. On the other hand, bocs theory was introduced in the context of
Drozd’s tame and wild dichotomy theorem and Crawley-Boevey applied it to analyze
the module categories over tame algebras. The module categories over bocses behave
differently from those over algebras. Koenig, Külshammer and Ovsienko connected these
theories by giving equivalences between the categories of modules over directed bocses
and those of ∆-filtered modules over quasi-hereditary algebras. Moreover, Brzeziński,
Koenig and Külshammer showed that exact Borel subalgebras of quasi-hereditary algebras
corresponding to directed bocses are homological [BKK].

In this report, we extend their results to ∆-filtered algebras and ∆-filtered algebras.
Now we recall the result of [KKO] (we call this KKO theory). Their main result is as
follows.

Theorem 1 ([KKO] Theorem 1.1, Corollary 1.3, [BKK] Theorem 3.13). We have a
bijection

{Morita equivalent classes of quasi-hereditary algebras}
l

{Equivalence classes of the module categories over directed bocses}.

Let a quasi-hereditary algebra A and a directed bocs B = (B,W ) correspond via the above
bijection. Then the right Burt-Butler algebra RB of B is Morita equivalent to A. Moreover,
RB has a homological exact Borel subalgebra B.

As natural generalizations of quasi-heredity algebras, we have two classes of algebras;
∆-filtered algebras (or standardly stratified algebras) and ∆-filtered algebras. We give
generalizations of KKO theory to these algebras.

The detailed version of this paper will be submitted for publication elsewhere.



Theorem 2 ([BPS]). We have a bijection

{Morita equivalence classes of ∆-filtered algebras}
l

{Equivalence classes of the module categories over weakly directed bocses}.

Let a ∆-filtered algebra A and a weakly directed bocs B = (B,W ) correspond via the
above bijection. Then the right Burt-Butler algebra RB of B is Morita equivalent to A.
Moreover, RB has a homological exact Borel subalgebra B.

Theorem 3 ([G]). We have a bijection

{Morita equivalence classes of ∆-filtered algebras}
l

{Equivalence classes of the module categories over one-cyclic directed bocses}.

Let a ∆-filtered algebra A and a one-cyclic directed bocs B = (B,W ) correspond via the
above bijection. Then the right Burt-Butler algebra RB of B is Morita equivalent to A.
Moreover, RB has a homological proper Borel subalgebra B.

Since ∆-filtered algebras were already studied by Bautista, Pérez, and, Salmerón in
[BPS], Theorem 3 above is our new result. When we generalize KKO theory, we face
some problems. We will discuss these in Section 3. The first problem concerns with
the dimension of the Ext-algebra of properly standard modules. In [KKO], the directed
bocs is constructed by using the Ext-algebra of standard modules over a quasi-hereditary
algebra. But in general, the Ext-algebra of properly standard modules over a ∆-filtered
algebra is not finite dimensional. To avoid infinite dimensional algebras, we will use a
finite dimensional subspace of the Ext-algebra. This method for construction of bocses
by using the subspaces is a generalization of the one used in [KKO]. The second problem
is on the dimension of B of the bocs B = (B,W ) induced from a ∆-filtered algebra. Since
the Gabriel quiver of B has loops but no cycles of length more than 1, it suffices to show
that each eiBei is finite dimensional, which is of course equivalent to the fact that B is
so.

2. Preliminaries

Throughout this report, let K be an algebraically closed field and A a finite dimen-
sional K-algebra with n simple modules (up to isomorphisms). The category of a finitely
generated left A-modules will be denoted by mod A and call its objects just A-modules.
And let K−(proj A) be the upper bounded homotopy category of the category of pro-
jective A-modules. We denote simple A-modules by SA(i), 1 ≤ i ≤ n and corresponding
projective indecomposable A-modules by PA(i), 1 ≤ i ≤ n. But when there is not much
danger of confusion, we also write S(i), P (i) for SA(i), PA(i), respectively. We write D
to mean the standard K-dual HomK(−, K). Let M be an A-module. For complexes X∗
and Y∗ of A-modules, write HomA(X∗, Y∗) as the set Πl∈ZHomA(Xl, Yl) of sequences of
A-homomorphisms (not necessary commuting to differentials of X∗ and Y∗).



2.1. Quasi hereditary, ∆-filtered, and ∆-filtered algebras. Now, we will recall the
definitions of some classes of algebras and important modules over them.

Definition 4. (1) For each i ∈ {1, . . . , n}, the A-modules ∆(i) and ∆(i), called the
standard module and the properly standard module, are defined by

∆(i) =
∑
j>i

φ∈HomA(P (i),P (j))

Im φ, ∆(i) =
∑
j≥i

φ∈radA(P (i),P (j))

Im φ,

respectively.
(2) We say that a module M has a ∆-filtration, or M is ∆-filtered, if there is a

submodule sequence 0 = Mm ⊂ · · · ⊂ M1 ⊂ M0 = M such that Mk−1/Mk
∼= ∆(j)

for some j ∈ {1, . . . , n}. Write F(∆) to mean the full subcategory of mod A whose
objects are modules with ∆-filtrations. Similarly we define ∆-filtered modules and
the category F(∆).

(3) A pair of an algebra and a total order (A,≤), or just A, is called a ∆-filtered alge-
bra (resp. a ∆-filtered algebra) provided that every P (i) has a {∆(i), . . . ,∆(n)}-
filtration (resp. a {∆(i), . . . ,∆(n)}-filtration).

(4) If (A,≤) is a ∆-filtered algebra and ∆ = ∆, then it is called a quasi-hereditary
algebra.

Definition 5. (1) An algebra B is directed (resp. one-cyclic directed) if
radB(PB(i), PB(j)) = 0 for i ≤ j (resp. for i < j).

(2) Let A be a ∆-filtered algebra. A subalgebra B of A is called an exact Borel
subalgebra if the following conditions hold.

• B is directed.
• A⊗B − : mod B → mod A is exact.
• ∆A(i) ∼= A⊗B SB(i).

(3) Let A be a ∆-filtered algebra. A subalgebra B of A is called a proper Borel
subalgebra if the following conditions hold.

• B is one-cyclic directed.
• A⊗B − : mod B → mod A is exact.
• ∆A(i) ∼= A⊗B SB(i).

(4) A subalgebra B of A is homological if for any B-modules M,N , natural maps

ExtkB(M,N) → ExtkA(A⊗B M,A⊗B N)

are epimorphisms for k ≥ 1 and isomorphisms for k ≥ 2.

2.2. Bocses. The bocs theory was introduced in Drozd’s tame-wild dichotomy theorem,
and Crawley-Boevey studied bocses in [C-B].

Definition 6. A bocs is B = (B,W, ε, µ), or just (B,W ), consisting of a finite dimensional
basic K-algebra B and a B-bimodule W which has a B-coalgebra structure, that is, there
exist a B-bilinear counit ε : W → B and a B-bilinear comultiplication µ : W 3 w 7→∑

w1 ⊗ w2 ∈ W ⊗B W (using sigma notation).

We will always assume that the counit ε of a bocs is surjective. Hereafter, let e1, . . . , en
be pairwise orthogonal basic primitive idempotents of an algebra B.



Definition 7. (1) A bocs B = (B,W ) is said to have a projective kernel if W = Ker ε
is a projective B-bimodule.

(2) A bocs B = (B,W ) with a projective kernel is called
• directed if B is directed and W ∼= ⊕i>j(Bei ⊗K ejB)dij ,
• weakly directed if B is directed and W ∼= ⊕i≥j(Bei ⊗K ejB)dij ,
• one-cyclic directed if B is one-cyclic directed andW ∼= ⊕i>j(Bei⊗KejB)dij ,

for some dij ≥ 0, respectively.

Definition 8. The category mod B of finite dimensional modules over a bocs B = (B,W )
is defined as follows:

objects: finite dimensional left B-modules
morphisms: for B-modules M and N , HomB(M,N) = HomB(W ⊗B M,N)

composition: for f ∈ HomB(M,N) and g ∈ HomB(N,L), the composition gf
of f and g is given by:

W ⊗M
µ⊗idM−−−−→ W ⊗W ⊗M

idW⊗f−−−−→ W ⊗N
g−−−→ L.

unites: the unite morphism idB
M ∈ EndB(M) is given by the composition of the

following maps:

W ⊗M
ε⊗idM−−−−→ B ⊗M

lM−−−→ M,

where lM is the canonical isomorphism defined by lM(b⊗ x) = bx.

Definition 9 ([BB]). Let B = (B,W ) be a bocs. The right Burt-Butler algebra R = RB
of the bocs B is defined by EndB(B)op and whose multiplication is the composition of
morphisms in mod B with 1R = idB

B.

2.3. A∞-algebras and their multiplications. In this subsection we introduce A∞-
algebras and multiplications of the algebras, refer to [Kel].

Definition 10. A Z-graded space A = ⊕k∈ZAk is called an A∞-algebra if there are
graded linear maps mk : A⊗k → A of degree 2− k satisfying the equalities∑

k=r+t+u
r,u≥0,t≥1

(−1)r+tumr+t+1(id
⊗r ⊗mt ⊗ id⊗u) = 0,

for any k ≥ 1.

We call these maps mk also multiplications of A.

Remark 11 ([LPWZ]). Let A = ⊕k∈ZAk be a differential graded algebra with differential
d of degree 1 and Z(A), B(A), and H(A) be cocycles, coboundaries, and cohomology of
A, respectively. Then we have a subspace L(A) of A such that

A = Z(A)⊕ L(A) = B(A)⊕H(A)⊕ L(A).

Consider the graded map G : A → A of degree −1 satisfying G|L(A)k⊕H(A)k = 0 and
G|B(A)k = (d|L(A)k−1

)−1. Define a sequence of linear maps λk of degree 2 − k as follows.



There is no map λ1 but we define the composition Gλ1 by −idA. The map λ2 is the same
as the multiplication of A. And for k ≥ 3, we inductively define λk by

λk =
k−1∑
l=1

λ2(Gλl(a
1, . . . , al), Gλk−l(a

l+1, . . . , ak))

for a1, . . . , ak ∈ A. Let p : A → H(A) and i : H(A) → A be the canonical projection and
injection, respectively. Then H(A) is an A∞-algebra with multiplications mk = pλki

⊗k :
H(A)⊗k → H(A).

3. Relationship between ∆-filtered algebras and one-cyclic directed
bocses

In this section, we will prove our main theorem which shows relationship between ∆-
filtered algebras and one-cyclic directed bocses, and the detailed proofs are given in [G].
To do this, we imitate the arguments in [KKO]. We prove our main theorem by three
steps. The first one is the construction of ∆-filtered algebras from one-cyclic directed
bocses.

Theorem 12. Let B = (B,W ) be a one-cyclic directed bocs. Then its right Burt-Butler
algebra R of B is a ∆-filtered algebra such that F(∆R) ' mod B and B is a homological
proper Borel subalgebra of R.

The second one is to consider the relationship between Morita equivalence classes of
∆-filtered algebras and equivalence classes of categories of modules with ∆-filtrations over
∆-filtered algebras.

Theorem 13 ([ADL] Theorem 2.3). Let A′ be a finite dimensional algebra. Then there
exists a ∆-filtered algebra A, unique up to Morita equivalence, such that the category
F(∆A′) and the category F(∆A) are equivalent. In particular, ∆-filtered algebras A and
A′ are Morita equivalent if and only if there exists an equivalence F : F(∆A) → F(∆A′).

The final one is the construction of one-cyclic directed bocses from ∆-filtered algebras.
Difficulties for generalizing KKO theory for ∆-filtered algebras lie in the fact that properly
standard modules may have self-extensions.

Remark 14. We recall the construction of bocses given in [KKO].

Step 1 Let A be a quasi-hereditary algebra, A = HomA(P,P[∗]) = ⊕l≥0HomA(P,P[l])
where P is a projective resolution of the direct sum of ∆(1), . . . ,∆(n), and s the
suspension defined by (sA)l = Al+1. Then H(A) = Ext∗A(∆,∆) and it is an
A∞-algebra. Let {mk}k≥1 be multiplications of H(A) as an A∞-algebra.

Step 2 Consider the dual maps dk : Q → Q⊗k of mks
⊗k, where Ql = D((sH(A))l).

Step 3 Let T [Q] be the tensor algebra of Q over ⊕n
i=1Kid∆i

. Then T [Q] is a differential
graded algebra with differential d.

Step 4 Put U = T [Q]/I, where the ideal I of T [Q] is generated by Q≤−1 and d(Q−1).
Then the factor U is also a differential graded algebra, and is freely generated over
B = T [Q0]/(T [Q0] ∩ I) by Q1.



Step 5 Put W = U1/d(B) and take the natural epimorphism π : U1 → W . Consider the
two homomorphisms µ : W → W ⊗ W and ε : W → B such that the following
diagrams commute, respectively,

U1
d−−−→ U1 ⊗ U1

π

y π⊗π

y
W

µ−−−→ W ⊗W,

U1

∼=−−−→ (
⊕

i BωiB)⊕ U

π

y ε̃

y
W

ε−−−→ B,

where ωi ∈ Q1(i, i) are elements corresponding to id∆(i), and ε̃ maps ωi to ei and

U to zero. Then BA = (B,W, µ, ε) is a directed bocs.

Let A be a ∆-filtered algebra. When we extend KKO theory to ∆-filtered algebra, we
must face two problems. The first problem occurs in Step 1. Notice that Ext∗A(∆,∆)
may be infinite dimensional although we need to take its dual in Section 2. The second
problem is in Step 5. We need to check that B is finite dimensional, because its Gabriel
quiver has loops.

Apply Remark 14 to A = HomA(P,P[∗]) where P is a projective resolution of the direct
sum of ∆(1), . . . ,∆(n). Then we have H(A) = Ext∗A(∆,∆) ∼= HomK−(proj A)(P,P[∗]). On
the first problem, in order to avoid infinite dimensional algebras, we deal with a subspace
H(A)≤2 of H(A).

Lemma 15. Let A = HomA(Pi,Pi[∗]). Then H(A) is an A∞-algebra with some graded
maps mk by Remark 14. Consider the graded linear maps b′k : sH(A)⊗k

≤1 → sH(A)≤1 of
degree −1 defined by

b′k(a
1, . . . , ak) =

{
bk(a

1, . . . , ak) for
∑k

i=1 |ak| ≤ 0,

0 for
∑k

i=1 |ak| ≥ 1,

where |ak| is the degree of ak and bk : sH(A)⊗k → sH(A) are the maps induced from
mk : H(A)⊗k → H(A) i.e. smk = bks

⊗k. Then for any k ≥ 1, we have∑
k=r+t+u
r,u≥0,t≥1

b′r+1+t(id
⊗r ⊗ b′t ⊗ id⊗u)ι⊗k = 0,

where ι : sH(A)≤0 → sH(A)≤1 is the canonical injection.

Proposition 16. Take the dual statement of the result in the last lemma. Then we get
the equality ∑

k=r+t+u
r,u≥0,t≥1

p⊗k(id⊗r ⊗ d′t ⊗ id⊗u)d′r+1+u = 0,

for each k ≥ 0, where d′t = D(b′t) and p : Q≥−1 → Q≥0 is the canonical surjection.
Consider the factor algebra T (Q≥0)/d

′(Q≥−1). Then it is a differential graded algebra
with differential d′ induced from the maps d′k.

The algebra T (Q≥0)/d
′(Q≥−1) given in above corresponds to the algebra U given in

Remark 14 Step 4. So we can construct bocses by a way similar to one in Steps 4, 5.



On the second problem, in order to guarantee that B is finite dimensional, we show
that eiBei and Ei = EndA(∆(i),∆(i)) are Morita equivalent for each 1 ≤ i ≤ n. Let A
be a ∆-filtered algebra and

Pi : · · ·
∂3−−−→ P2

∂2−−−→ P1
∂1−−−→ P0

be a projective resolution of ∆(i). Then Pl is a direct sum of copies of P (i), . . . , P (n)
for any l ≥ 0. And we will also write Pl = P (i)⊕cl ⊕ Pl where Pl dose not include P (i)
as direct summands. Let Ai = HomA(Pi,Pi[∗]). Then we identify ExtkA(∆(i),∆(i)) and
H(Ai) = HomK−(projA)(Pi,Pi[k]).

Lemma 17. Let A be a ∆-filtered algebra and Pi a projective resolution of ∆(i). Then
as a basis of H(Ai)k, we can choose chain maps f = (fl)l∈Z : Pi → Pi[k] with fk :
Pk = P (i)⊕ck ⊕ Pk → P (i) = P0 being of the form [πm, 0], where 1 ≤ m ≤ ck and
πm : P (i)⊕ck → P (i) is the canonical m-th projection.

Immediately, it turns out that some chain maps f : Pi → Pi[k] form a basis of B(Ai)k
if and only if maps fk : Pk → P0 do a basis of radA(Pk, P0). Moreover we can take a
basis of L(Ai)k−1 by choosing finitely many non-chain maps u : Pi → Pi[k − 1] such that
uk−1 : Pk−1 → P0 is the zero map. Here non-chain maps mean morphisms of complexes
which are not compatible with the differentials of those.

Lemma 18. For a1, . . . , ak ∈ H(Ai), we have λk(a
1, . . . , ak) ∈ Z(Ai).

Moreover, λk(a
1, . . . , ak) ∈ H(Ai) if and only if (a1 ◦λk−1(a

2, . . . , ak))2 is surjective. Fur-
ther, λk(a

1, . . . , ak) ∈ H(Ai) for some a1 ∈ H(Ai) if and only if for (λk−1(a
2, . . . , ak))2 =∑

f j ∈ HomA(P2, P (i))⊕c1 ⊕ HomA(P2, P1), there exists f j ∈ HomA(P2, P (i)) is surjec-
tive.

Now put A′ = A/eAe where e =
∑n

k=i+1 e
A
k and AeAk

∼= PA(k). Then A′ is also a ∆-

filtered algebra and ∆(i) is an A′-module. Let A′
i = HomA′(P′

i,P′
i) where P′

i is a projective
resolution of ∆ as an A′-module. Applying Lemma 17 to A′, we can conclude that H(Ai)
and H(A′

i) are isomorphic as algebras because dimH(Ai)k = ck = dimH(A′
i)k and their

multiplications are compositions of chain maps. Since we can similarly argue in all these
stories without using P (i+1), . . . , P (n), we conclude that the following proposition holds.

Proposition 19. H(Ai) and H(A′
i) are also isomorphic as A∞-algebras.

By the construction of B in Remark 14 Step 4 and Keller’s reconstruction theorem, we
get the following.

Theorem 20. eiBei and Ei are Morita equivalent.

To show our main theorem, we finally need the following.

Theorem 21. Let A be a ∆-filtered algebra. Then the bocs BA = (B,W ) constructed
above is one-cyclic directed and satisfies mod BA ' F(∆A).

Combine Theorems 12, 13, and 21, then we get Theorem 3.



References
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