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Abstract. For a module-finite algebra over a commutative noetherian ring, we give a
complete description of flat cotorsion modules in terms of prime ideals of the algebra,
as a generalization of Enochs’ result for a commutative noetherian ring. As a conse-
quence, we show that pointwise Matlis duality gives a bijective correspondence between
the isoclasses of indecomposable flat cotorsion right modules and the isoclasses of in-
decomposable injective left modules. This correspondence is an explicit realization of
Herzog’s homeomorphism between Ziegler spectra, which was given in terms of elemen-
tary duality.
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1. Introduction

A right module M over a ring A is called cotorsion if Ext1A(F,M) = 0 for all flat
right A-modules F . A flat cotorsion module is a module that is flat and cotorsion. The
flat cover conjecture, which was affirmatively solved by Bican, El Bashir, and Enochs
[BEBE01], implies that the class of flat modules and the class of cotorsion modules form
a complete cotorsion pair. Flat cotorsion modules are those modules that belong to the
core of this cotorsion pair.

Enochs [Eno84] gave a structure theorem for flat cotorsion modules over a commutative
noetherian ring R: An R-module M is flat cotorsion if and only if M is isomorphic to∏

p∈SpecR

HomR(ER(R/p), ER(R/p)(Bp))

for some family of sets {Bp}p∈SpecR, where ER(R/p) is the injective envelope of R/p and
ER(R/p)(Bp) is the direct sum of its Bp-indexed copies. The cardinality of each Bp is
uniquely determined by the isomorphism class of M .

In this paper, we state our result that generalizes Enochs’ structure theorem to Noether
R-algebras. Details of our result can be found in [KN21].

This is a summary of [KN21]. The detailed version of this paper will be submitted for publication
elsewhere.
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2. Structure theorem

For a commutative noetherian ring R, a Noether R-algebra is a ring A together with a
ring homomorphism φ : R → A such that the image of φ is contained in the center of A
and A is finitely generated as an R-module. SpecA denotes the set of prime (two-sided)
ideals of A.

For each P ∈ SpecA, denote by IA(P ) the corresponding indecomposable injective
right A-module, whose only associated prime is P . Note that P ∩R := φ−1(P ) is a prime
ideal of R.

The following is our main result:

Theorem 1. Let A be a Noether R-algebra. A right A-module M is flat cotorsion if and
only if M is isomorphic to∏

P∈SpecA

HomR(IAop(P ), ER(R/(P ∩R))(BP ))

for some family of sets {BP}P∈SpecA. The cardinality of each BP is uniquely determined
by the isomorphism class of M .

Corollary 2. Let A be a Noether R-algebra. There is a bijection

SpecA ∼−→ {isoclasses of indecomposable flat cotorsion right A-modules}
given by P 7→ TA(P ) := HomR(IAop(P ), ER(R/P ∩R)).

The following result is useful to classify flat cotorsion modules over concrete algebras:

Proposition 3. For every p ∈ SpecR, there is an isomorphism

Âp
∼=

⊕
P∈SpecA
P∩R=p

TA(P )nP

of right A-modules, where each nP is a (finite) positive number.

Example 4. Let R be a commutative noetherian ring and let

A :=

(
R 0
R R

)
.

Then A is a Noether R-algebra. For each p ∈ SpecR, we have an indecomposable decom-
position

Âp =

(
R̂p 0

R̂p R̂p

)
∼=
(
R̂p 0

)
⊕
(
R̂p R̂p

)
as a right A-module. Therefore(

R̂p 0
)
,
(
R̂p R̂p

)
(p ∈ SpecR)

are all the indecomposable flat cotorsion right A-modules up to isomorphism.

The correspondence TA(P ) ↔ IAop(P ) gives an explicit realization of Herzog’s homeo-
morphism between Ziegler spectra, which was given in terms of elementary duality. For
more details, see [KN21, section 8].
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