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Abstract. In this note, we introduce the notion of localizations of extriangulated cat-
egories. These localizations cover the Serre quotient, the Verdier quotient and several
other localizations in the special cases and have the universality in some sense. This
note is based on [5], joint work with Hiroyuki Nakaoka (Nagoya University) and Yasuaki
Ogawa (Nara University of Education).
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1. Introduction

Abelian categories, exact categories and triangulated categories are the main categori-
cal frameworks used in homological algebra. Localizations of these categories frequently
appear in representation theory, for example, the Serre quotient of abelian categories [3]
and the Verdier quotient of triangulated categories [8]. In recent years, the notion of
extriangulated categories is introduced in [6] and unifies exact categories and triangu-
lated categories. So far we have not seen a uniform way to formulate localizations of
extriangulated categories in the literature.

In section 2, we introduce the notion of localizations of extriangulated categories. In
detail, we give a sufficient condition for a set of morphisms in an extriangulated category
which makes the localization of the category has a natural extriangulated structure. Note
that the localization in [5] is discussed in the case of weakly extriangulated categories,
which is a more general setting.

In section 3, we deal with localizations by thick subcategories. We divide these lo-
calizations into two parts by considering particular types of thick subcategories, namely
biresolving subcategories and percolating subcategories. These cover the localizations
arising from the following subcategories:

• biresolving subcategories in extriangulated categories fomalize:
– thick subcategories in triangulated categories, Verdier quotient [8]
– Hovey twin cotorsion pairs in extriangulated categories [6]
– biresolving subcategories in exact categories [7]

• percolating subcategories in extriangulated categories formalize:
– thick subcategories in triangulated categories, Verdier quotient [8]
– Serre subcategories in abelian categories, Serre quotient [3]
– two-sided admissibly percolating subcategories in exact categories [4]

The detailed version of this paper will be submitted for publication elsewhere.



We always assume that all subcategories are full, additive and closed under isomor-
phisms. Throughout this note, we denote by (C,E, s) an extriangulated category. See [6]
for the definition. To avoid any set-theoretic problem in considering its localizations, we
assume that C is small.

2. Localization

For a multiplicative system S in C, the localization of C by S is an additive category.
The aim of this section is giving a sufficient condition for S such that the localization
naturally becomes an extriangulated category. Localizations of abelian and triangulated
categories are characterized by the universality with respect to exact and triangle func-
tors, respectively. First we give the definition of exact functors between extriangulated
categories.

Definition 1. Let (C,E, s), (C ′,E′, s′) and (C ′′,E′′, s′′) be extriangulated categories.

(1) ([1, Definition 2.23]) An exact functor (F, φ) : (C,E, s)→ (C ′,E′, s′) is a pair of an
additive functor F : C → C ′ and a natural transformation φ : E ⇒ E′ ◦ (F op × F )
which satisfies

s′(φC,A(δ)) = [F (A)
F (x)−→ F (B)

F (y)−→ F (C)]

for any s-triangle A
x−→ B

y−→ C
δ
99K in C.

(2) If (F, φ) : (C,E, s) → (C ′,E′, s′) and (F ′, φ′) : (C ′,E′, s′) → (C ′′,E′′, s′′) are exact
functors, then their composition (F ′′, φ′′) = (F ′, φ′)◦(F, φ) is defined by F ′′ = F ′◦F
and φ′′ = (φ′ ◦ (F op × F )) · φ.

(3) Let (F, φ), (G,ψ) : (C,E, s)→ (C ′,E′, s′) be exact functors. A natural transforma-
tion η : (F, φ) ⇒ (G,ψ) of exact functors is a natural transformation η : F ⇒ G
of additive functors, which satisfies

(2.1) (ηA)∗φC,A(δ) = (ηC)∗ψC,A(δ)

for any δ ∈ E(C,A). Horizontal compositions and vertical compositions are defined
by those for natural transformations of additive functors.

A usual exact functor between exact categories coincides with the above one. Similarly,
a usual triangle functor between triangulated categories coincides with the above one.

In the rest of this sectoin, we denote by S a set of morphisms in C satisfying the
following condition:

(M0) S contains all isomorphisms in C, and is closed by compositions. Also, S is closed
by taking finite direct sums. Namely, if fi : Xi → Yi belongs to S for i = 1, 2, then
so does f1 ⊕ f2 : X1 ⊕X2 → Y1 ⊕ Y2.

First we associate a full subcategory NS ⊆ C in the following way.

Definition 2. Define NS ⊆ C to be the full subcategory consisting of objects N ∈ C such
that both N → 0 and 0→ N belong to S.

It is obvious that NS ⊆ C is an additive subcategory. In the rest, we will denote the
ideal quotient by p : C → C = C/[NS ], and f will denote a morphism in C represented
by f ∈ C(X, Y ). Also, let S be the closure of p(S) with respect to compositions with
isomorphisms in C.



Our construction of a localization of an extriangulated category factors through an ideal

quotient C. We denote by C̃ the localization of C by S and by Q : C → C̃ a localization

functor. Now we give the condition for S such that C̃ becomes an extriangulated category.

Theorem 3. Let (C,E, s) be an extriangulated category and S a set of morphisms in C sat-
isfying (M0). Suppose that S satisfies the following conditions (MR1),(MR2),(MR3),(MR4).

(MR1) S satisfies 2-out-of-3 with respect to compositions in C.
(MR2) S is a multiplicative system in C.

(MR3) Let A
x−→ B

y−→ C
δ
99K, A′

x′−→ B′
y′−→ C ′

δ′

99K be any pair of s-triangles, and
let a ∈ C(A,A′), c ∈ C(C,C ′) be any pair of morphisms satisfying a∗δ = c∗δ′. If a
and c belong to S, then there exists b ∈ S(B,B′) which satisfies b ◦x = x′ ◦ a and
c ◦ y = y′ ◦ b.

(MR4) Minf := {v◦x◦u | x is an s-inflation,u,v ∈ S} is closed by compositions. Dually,
Mdef := {v ◦ y ◦ u | y is an s-deflation,u,v ∈ S} is closed by compositions.

Then the following statements holds.

(1) We obtain an extriangulated category (C̃, Ẽ, s̃). See [5] for explicit constructions of

Ẽ and s̃.
(2) There is an exact functor (Q, µ) : (C,E, s)→ (C̃, Ẽ, s̃) satisfying the following uni-

versality:
(i) For any exact functor (F, φ) : (C,E, s)→ (D,F, t) such that F (s) is an isomor-

phism for any s ∈ S, there exists a unique exact functor (F̃ , φ̃) : (C̃, Ẽ, s̃) →
(D,F, t) with (F, φ) = (F̃ , φ̃) ◦ (Q, µ).

(ii) For any pair of exact functors (F, φ), (G,ψ) : (C,E, s)→ (D,F, t) which send

any s ∈ S to isomorphisms, let (F̃ , φ̃), (G̃, ψ̃) : (C̃, Ẽ, s̃)→ (D,F, t) be the ex-
act functors obtained in (i). Then for any natural transformation η : (F, φ)⇒
(G,ψ) of exact functors, there is a unique natural transformation η̃ : (F̃ , φ̃)⇒
(G̃, ψ̃) of exact functors satisfying η = η̃ ◦ (Q, µ).

From the above result, we obtain the next result which is stated in not the ideal quotient
C, but the given category C.

Corollary 4. Assume that S satisfies (M0) as before, and moreover p(S) = S. Suppose
that S satisfies the following conditions (M1),(M2),(M3),(M4).

(M1) S satisfies 2-out-of-3 with respect to compositions in C.
(M2) S is a multiplicative system in C.

(M3) Let A
x−→ B

y−→ C
δ
99K, A′

x′−→ B′
y′−→ C ′

δ′

99K be any pair of s-triangles, and
let a ∈ C(A,A′), c ∈ C(C,C ′) be any pair of morphisms satisfying a∗δ = c∗δ′. If
a, c ∈ S, then there exists b ∈ S which gives the following morphism of s-triangles.

A B C

A′ B′ C ′

x // y // δ //

a
��

b
��

c
��

x′
//

y′
//

δ′
//

� �



(M4) Minf := {t ◦ x ◦ s | x is an s-inflation, s, t ∈ S} is closed under compositions. Du-
ally, Mdef := {t ◦ y ◦ s | y is an s-deflation, s, t ∈ S} is closed under compositions.

Then the following holds.

(1) We obtain an extriangulated category (C̃, Ẽ, s̃).

(2) There exists an exact functor (Q, µ) : (C,E, s) → (C̃, Ẽ, s̃) which is characterized
by the same universality as stated in Theorem 3 (2).

3. Localizations by thick subcategories

In this section, we introduce the localization of extriangulated categories by thick sub-
categories. We start by giving the definitoin of thick subcategories of extriangulated
categories.

Definition 5. Let N be an additive subcategory of C. We call N a thick subcategory if it
is closed under taking direct summands and satisfies the 2-out-of-3 property with respect
to any s-triangle, that is, for any s-triangle A −→ B −→ C 99K, if two of A,B and C
belong to N , then so does the third.

A typical example of thick subcategories is the kernel of exact functors between extrian-
gulated categories. In triangulated categories, the above definition of thick subcategories
coincides with the usual one.

Definition 6. For a thick subcategory N ⊆ C, we associate the following classes of
morphisms.

L = {f ∈M | f is an s-inflation with Cone(f) ∈ N}.
R = {f ∈M | f is an s-deflation with CoCone(f) ∈ N}.

If (C,E, s) is triangulated, then we have L = R and the localization of C by L is just
the Verdier quotient by N .

Definition 7. Let N be a thick subcategory of C. We call N a biresolving subcategory if
it satisfies the following condition; for any X ∈ C, there are an s-inflation X → N1 and
an s-deflation N2 → X with N1, N2 ∈ N .

In triangulated categories, biresolving subcategories coincide with thick subcategories
because every morphism is both s-inflation and s-deflation in triangulated categories, see
[6]. The following theorem is the first main result in this section.

Theorem 8. Let (C,E, s) be an extriangulated category and N a biresolving subcategory
of C. Then

(1) S = R ◦ L = {f | f = r ◦ l, r ∈ R, l ∈ L} satisfies the assumption in Theorem 3,

hence C̃ becomes an extriangulated category.

(2) Moreover the localization C̃ is a triangulated category.

Next we deal with localizations by percolating subcategories.

Definition 9. Let (C,E, s) be an extriangulated category. A thick subcategory N of C
is a percolating subcategory if it satisfies the following condition and its dual: for any
morphism f : X → N with N ∈ N , there are an s-deflation g : X → N ′ and an s-inflation
h : N ′ → N such that f = h ◦ g with N ′ ∈ N .



In exact categories, percolating subcategories coincide with two-sided admissibly perco-
lating subcategories in [4]. In triangulated categories, percolating subcategories coincide
with thick subcategories because every morphism f is a composition of f and the identity
morphism.

We consider the follwing condition for N .

(P2) If f ∈ C(A,B) is a split monomorphism such that f is an isomorphism in C, then
there exist N ∈ N and j ∈ C(N,B) such that [f j] : A⊕N → B is an isomorphism
in C.

(P3) Ker
(
C(X,A)

l◦−−→ C(X,B)
)
⊆ [N ](X,A) holds for any X ∈ C and any l ∈ L(A,B).

Dually, Ker
(
C(C,X)

−◦r−→ C(B,X)
)
⊆ [N ](C,X) holds for any X ∈ C and any

r ∈ R(B,C).

If (C,E, s) is an exact category, then every percolating subcategory of C always satisfies
(P2) and (P3). The following theorem is the second main result in this section.

Theorem 10. Let (C,E, s) be an extriangulated category and N a percolating subcategory
of C. Assume that N satisfies (P2) and (P3). Then S = L◦R = {f | f = l ◦ r, r ∈ R, l ∈
L} satisfies the assumption of Corollary 4, hence C̃ becomes an extriangulated category.

This covers Theorem 8.1 in [4]. If (C,E, s) is abelian, then percolating subcategories
coincide with Serre subcategories, and S coincides with the set of all morphisms whose
kernels and cokernels belong to N . Hence the localization is just the Serre quotient.
If (C,E, s) is triangulated, then S = L holds, and the localization is just the Verdier
quotient.
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