Connectedness of quasi-hereditary structures

Yuichiro GOTO

2022/09/06

1 Background

2 Twistability

3 Connectedness

Setting

- K : an algebraically closed field
- A : a finite dimensional $K\text{-}{\sf algebra}$ with n simple modules, up to isomorphism $\mod A$: the category of finitely generated right $A\text{-}{\sf modules}$
- $S(1),\ldots,S(n)$: a complete set of pairwise non-isomorphic simple A-modules
- $P(1),\ldots,P(n)$: projective covers of simple A-modules
- $\Lambda = \{1, \dots, n\}$: the set of labels of simple A-modules
- \mathfrak{S}_n : the symmetric group on n letters
- e : the unit of \mathfrak{S}_n
- σ_i : the adjacent transposition (i,i+1) for $1\leq i\leq n-1$
- $\operatorname{tr}_i^{\sigma}: \text{ the endofunctor of } \operatorname{mod} A \text{ with } \operatorname{tr}_i^{\sigma}(M) = \sum \{\operatorname{Im} \phi \mid \phi: P(j) \to M, \sigma(j) \geq \sigma(i)\}$

Contents

1 Background

2 Twistability

3 Connectedness

A quasi-hereditary algebra is defined by a pair of an algebra and a total order on the set Λ . On orders for a quasi-hereditary algebra, Dlab and Ringel showed the following.

Theorem [Dlab-Ringel '89]

Let A be a finite dimensional algebra. Then A is hereditary if and only if it is quasi-hereditary for all total orders.

A quasi-hereditary algebra is defined by a pair of an algebra and a total order on the set Λ . On orders for a quasi-hereditary algebra, Dlab and Ringel showed the following.

Theorem [Dlab-Ringel '89]

Let A be a finite dimensional algebra. Then A is hereditary if and only if it is quasi-hereditary for all total orders.

For an algebra, we call an order inducing a quasi-hereditary algebra a **quasi-hereditary structure**. In this talk, we prove the connectedness of any two permutations giving quasi-hereditary structures.

Main theorem (Theorem 2) [Goto]

Any two permutations giving quasi-hereditary structures are connected.

Definitions

1 Let $\sigma \in \mathfrak{S}_n$. For $i \in \Lambda$, the A-module $\Delta^{\sigma}(i)$, called the **standard module**, is defined by the maximal factor module of P(i) having only composition factors S(j) with $\sigma(j) \leq \sigma(i)$. Moreover we will write the set $\{\Delta^{\sigma}(1), \ldots, \Delta^{\sigma}(n)\}$ by Δ^{σ} .

Background

Definitions

- **1** Let $\sigma \in \mathfrak{S}_n$. For $i \in \Lambda$, the A-module $\Delta^{\sigma}(i)$, called the **standard module**, is defined by the maximal factor module of P(i) having only composition factors S(j) with $\sigma(j) \leq \sigma(i)$. Moreover we will write the set $\{\Delta^{\sigma}(1), \ldots, \Delta^{\sigma}(n)\}$ by Δ^{σ} .
- 2 Dually, we define the costandard module ∇^σ(i) and denote the set {∇^σ(1),..., ∇^σ(n)} by ∇^σ.

Background

Definitions

- **1** Let $\sigma \in \mathfrak{S}_n$. For $i \in \Lambda$, the A-module $\Delta^{\sigma}(i)$, called the **standard module**, is defined by the maximal factor module of P(i) having only composition factors S(j) with $\sigma(j) \leq \sigma(i)$. Moreover we will write the set $\{\Delta^{\sigma}(1), \ldots, \Delta^{\sigma}(n)\}$ by Δ^{σ} .
- Dually, we define the costandard module ∇^σ(i) and denote the set {∇^σ(1),..., ∇^σ(n)} by ∇^σ.
- Solution We say that an A-module M has a Δ^σ-filtration (resp. a ∇^σ-filtration) if there is a sequence of submodules 0 = M_{m+1} ⊂ ··· ⊂ M₂ ⊂ M₁ = M such that for each 1 ≤ k ≤ m, M_k/M_{k+1} ≅ Δ^σ(j) (resp. M_k/M_{k+1} ≅ ∇^σ(j)) for some j ∈ Λ.

Definitions

- **1** Let $\sigma \in \mathfrak{S}_n$. For $i \in \Lambda$, the A-module $\Delta^{\sigma}(i)$, called the **standard module**, is defined by the maximal factor module of P(i) having only composition factors S(j) with $\sigma(j) \leq \sigma(i)$. Moreover we will write the set $\{\Delta^{\sigma}(1), \ldots, \Delta^{\sigma}(n)\}$ by Δ^{σ} .
- 2 Dually, we define the costandard module $\nabla^{\sigma}(i)$ and denote the set $\{\nabla^{\sigma}(1), \ldots, \nabla^{\sigma}(n)\}$ by ∇^{σ} .
- Solution We say that an A-module M has a Δ^σ-filtration (resp. a ∇^σ-filtration) if there is a sequence of submodules 0 = M_{m+1} ⊂ ··· ⊂ M₂ ⊂ M₁ = M such that for each 1 ≤ k ≤ m, M_k/M_{k+1} ≅ Δ^σ(j) (resp. M_k/M_{k+1} ≅ ∇^σ(j)) for some j ∈ Λ.
- A pair (A, σ) is said to be a quasi-hereditary algebra provided that the following conditions are satisfied:
 - $[\Delta^{\sigma}(i):S(i)]=1$ for all $i \in \Lambda$.
 - A_A has a Δ^{σ} -filtration.

In this case, we say that the permutation σ gives a **quasi-hereditary structure** of A.

We will abbreviate Δ^e and ∇^e as Δ and $\nabla,$ respectively.

Y. GOTO

Example

$$A = K(1 \xrightarrow{\alpha} 2 \xrightarrow{\gamma} 3 \xrightarrow{\delta} 4) / \langle \alpha \gamma \delta - \beta \delta \rangle.$$

All indecomposable projective modules are of the form

$$P(1) = \frac{2}{3} \frac{1}{4}^{3}, P(2) = \frac{2}{3}, P(3) = \frac{3}{4}, P(4) = 4.$$

Then standard modules with respect to e are simple modules and (A, e) is a quasi-hereditary algebra. On the other hand, the standard modules Δ^{σ_3} are as follows.

$$\Delta^{\sigma_3}(1) = 1, \ \Delta^{\sigma_3}(2) = 2, \ \Delta^{\sigma_3}(4) = 4, \ \Delta^{\sigma_3}(3) = \frac{3}{4}.$$

Then P(1) does not have Δ^{σ_3} -filtrations, hence (A, σ_3) is "not" quasi-hereditary.

Contents

1 Background

2 Twistability

3 Connectedness

Definition

We say that a quasi-hereditary algebra (A, σ) is *i*th-twistable if $(A, \sigma_i \sigma)$ is quasi-hereditary.

Definition

We say that a quasi-hereditary algebra (A, σ) is *i*th-twistable if $(A, \sigma_i \sigma)$ is quasi-hereditary.

Then we can characterize the twistability by some conditions on standard or costandard modules.

Put
$$H_i = \dim \operatorname{Hom}(\Delta(i), \Delta(i+1)), E_i = \dim \operatorname{Ext}^1(\Delta(i), \Delta(i+1)),$$

 $\overline{H_i} = \dim \operatorname{Hom}(\nabla(i+1), \nabla(i)), \overline{E_i} = \dim \operatorname{Ext}^1(\nabla(i+1), \nabla(i)).$

Definition

We say that a quasi-hereditary algebra (A, σ) is *i*th-twistable if $(A, \sigma_i \sigma)$ is quasi-hereditary.

Then we can characterize the twistability by some conditions on standard or costandard modules.

Put
$$H_i = \dim \operatorname{Hom}(\Delta(i), \Delta(i+1)), E_i = \dim \operatorname{Ext}^1(\Delta(i), \Delta(i+1)),$$

 $\overline{H_i} = \dim \operatorname{Hom}(\nabla(i+1), \nabla(i)), \overline{E_i} = \dim \operatorname{Ext}^1(\nabla(i+1), \nabla(i)).$

Theorem 1 [G]

A quasi-hereditary algebra (A, e) is ith-twistable if and only if one of the following conditions holds:

$$(\mathcal{E}_i)~~E_i=0$$
 and $\Delta(i+1)$ has a submodule isomorphic to $\Delta(i)^{H_i}.$

 $(\overline{\mathcal{E}_i})$ $\overline{E_i} = 0$ and $\nabla(i+1)$ has a factor module isomorphic to $\nabla(i)^{\overline{H_i}}$.

Moreover, if a quasi-hereditary algebra (A, e) satisfies $E_i = \overline{E_i} = 0$, then (A, σ_i) is also quasi-hereditary with $\Delta^{\sigma_i} = \Delta$ and $\nabla^{\sigma_i} = \nabla$.

Lemma 1.1

Let (A, e) be a quasi-hereditary algebra. Then the followings are equivalent. 1 $[\Delta^{\sigma_i}(j) : S(j)] = 1$ for all $j \in \Lambda$. 2 $E_i H_i = 0$.

Lemma 1.1

Let (A, e) be a quasi-hereditary algebra. Then the followings are equivalent. 1 $[\Delta^{\sigma_i}(j) : S(j)] = 1$ for all $j \in \Lambda$. 2 $E_i H_i = 0$.

Lemma 1.2 [Mazorchuk–Ovsienko '05]

Let (A, e) be a quasi-hereditary algebra. Then the followings hold.

- Hom_A($\Delta(i), \Delta(i+1)$) \cong Ext¹_A($\nabla(i+1), \nabla(i)$)*.
- $\operatorname{Ext}_{A}^{1}(\Delta(i), \Delta(i+1)) \cong \operatorname{Hom}_{A}(\nabla(i+1), \nabla(i))^{*}.$

Here, $-^*$ is the standard K-dual. In particular, we have $H_i = \overline{E_i}$ and $E_i = \overline{H_i}$.

Lemma 1.1

Let (A, e) be a quasi-hereditary algebra. Then the followings are equivalent. 1 $[\Delta^{\sigma_i}(j) : S(j)] = 1$ for all $j \in \Lambda$. 2 $E_i H_i = 0$.

Lemma 1.2 [Mazorchuk–Ovsienko '05]

Let (A, e) be a quasi-hereditary algebra. Then the followings hold.

• Hom_A($\Delta(i), \Delta(i+1)$) \cong Ext¹_A($\nabla(i+1), \nabla(i)$)*.

•
$$\operatorname{Ext}_{A}^{1}(\Delta(i), \Delta(i+1)) \cong \operatorname{Hom}_{A}(\nabla(i+1), \nabla(i))^{*}.$$

Here, $-^*$ is the standard K-dual. In particular, we have $H_i = \overline{E_i}$ and $E_i = \overline{H_i}$.

Lemma 1.3 [Ágoston-Happel-Lukács-Unger '00]

Assume that we have $[\Delta(j):S(j)]=1$ for all $j\in\Lambda$.

Then A_A has a Δ -filtration iff $({}_AA)^*$ has a ∇ -filtration.

Y. GOTO

Proof of Theorem 1

Assume that (A, e) is *i*th-twistable. Moreover we first assume $E_i = 0$. Then $\Delta^{\sigma_i}(j) = \Delta(j)$ for $j \neq i + 1$. Since P(i + 1) has a Δ^{σ_i} -filtration, so does $\Delta(i + 1)$. Hence we have the exact sequence

$$0 \to \Delta^{\sigma_i}(i)^{H_i} \to \Delta(i+1) \to \Delta^{\sigma_i}(i+1) \to 0,$$

that is, the condition (\mathcal{E}_i) holds. On the other hand, assume $H_i = 0$ by Lemma 1.1. Then $\overline{E_i} = 0$ by Lemma 1.2, and hence we can dually show that $(\overline{\mathcal{E}_i})$ holds.

Proof of Theorem 1

Assume that (A, e) is *i*th-twistable. Moreover we first assume $E_i = 0$. Then $\Delta^{\sigma_i}(j) = \Delta(j)$ for $j \neq i + 1$. Since P(i + 1) has a Δ^{σ_i} -filtration, so does $\Delta(i + 1)$. Hence we have the exact sequence

$$0 \to \Delta^{\sigma_i}(i)^{H_i} \to \Delta(i+1) \to \Delta^{\sigma_i}(i+1) \to 0,$$

that is, the condition (\mathcal{E}_i) holds. On the other hand, assume $H_i = 0$ by Lemma 1.1. Then $\overline{E_i} = 0$ by Lemma 1.2, and hence we can dually show that $(\overline{\mathcal{E}_i})$ holds.

Conversely, if (\mathcal{E}_i) holds, then $\Delta^{\sigma_i}(j) = \Delta(j)$ for $j \neq i+1$ and there is an exact sequence

$$0 \to \Delta(i)^{H_i} \to \Delta(i+1) \to \Delta^{\sigma_i}(i+1) \to 0.$$

Thus $\Delta(i+1)$, and hence A_A , has a Δ^{σ_i} -filtration. Similarly $(\overline{\mathcal{E}_i})$ implies $_AA^*$ has a ∇^{σ_i} -filtration, and hence A_A has a Δ^{σ_i} -filtration by Lemma 1.3.

Example

$$A = K(1 \xrightarrow{\alpha} 2 \xrightarrow{\gamma} 3 \xrightarrow{\delta} 4) / \langle \alpha \gamma \delta - \beta \delta \rangle.$$

All permutations giving quasi-hereditary structures of A are as follows. Write $\sigma_{(123121)} = \sigma_1 \sigma_2 \sigma_3 \sigma_1 \sigma_2 \sigma_1$, for instance.

Contents

1 Background

2 Twistability

3 Connectedness

In general, can we get all permutations giving quasi-hereditary structures from one, by checking repeatedly whether each quasi-hereditary algebra is *i*th-twistable?

In general, can we get all permutations giving quasi-hereditary structures from one, by checking repeatedly whether each quasi-hereditary algebra is *i*th-twistable?

Definition

Let $\sigma, \tau \in \mathfrak{S}_n$ give quasi-hereditary structures. Then σ and τ are said to be **connected** if there is a decomposition

$$\sigma \sigma^{-1} = \sigma_{i_l} \cdots \sigma_{i_1}$$

into the products of adjacent transpositions such that all $\sigma_{i_k} \cdots \sigma_{i_1} \sigma$ also give quasi-hereditary structures for $1 \le k \le l$.

In general, can we get all permutations giving quasi-hereditary structures from one, by checking repeatedly whether each quasi-hereditary algebra is *i*th-twistable?

Definition

Let $\sigma, \tau \in \mathfrak{S}_n$ give quasi-hereditary structures. Then σ and τ are said to be **connected** if there is a decomposition

$$\sigma \sigma^{-1} = \sigma_{i_l} \cdots \sigma_{i_1}$$

into the products of adjacent transpositions such that all $\sigma_{i_k} \cdots \sigma_{i_1} \sigma$ also give quasi-hereditary structures for $1 \le k \le l$.

Theorem 2 [G]

Any two permutations giving quasi-hereditary structures are connected.

Lemma 2.1

Let e, σ give quasi-hereditary structures with $e \neq \sigma$. Then for the minimum element $i \in \Lambda$ satisfying $\sigma(i+1) < \sigma(i)$, it holds that $E_i H_i = 0$.

Lemma 2.1

Let e, σ give quasi-hereditary structures with $e \neq \sigma$. Then for the minimum element $i \in \Lambda$ satisfying $\sigma(i+1) < \sigma(i)$, it holds that $E_i H_i = 0$.

For such $i = i_1$, we claim the following.

Proposition 2.2

Let e, σ give quasi-hereditary structures. Then there is a minimal decomposition $\sigma = \sigma_{i_l} \cdots \sigma_{i_1}$ into adjacent transpositions such that σ_{i_1} gives a quasi-hereditary structure.

Lemma 2.1

Let e, σ give quasi-hereditary structures with $e \neq \sigma$. Then for the minimum element $i \in \Lambda$ satisfying $\sigma(i+1) < \sigma(i)$, it holds that $E_iH_i = 0$.

For such $i = i_1$, we claim the following.

Proposition 2.2

Let e, σ give quasi-hereditary structures. Then there is a minimal decomposition $\sigma = \sigma_{i_l} \cdots \sigma_{i_1}$ into adjacent transpositions such that σ_{i_1} gives a quasi-hereditary structure.

Inductively applying Proposition 2.2 on the length of a minimal decomposition of σ into adjacent transpositions, then we get the following.

Lemma 2.3

Let e, σ give quasi-hereditary structures. Then they are connected.

Take *i* the minimum element satisfying $\sigma(i+1) < \sigma(i)$. First, we assume that $E_i = 0$. If $E_i \neq 0$, then $H_i = 0$ by Lemma 2.1, and we can show this statement dually. Put $i_{\sigma+} = \sigma^{-1}(\sigma(i) + 1)$.

1 There are two canonical epimorphisms p and q.

2

3

4

$$P(i+1)/\operatorname{tr}_{i_{\sigma+}}^{\sigma}(P(i+1)) \xrightarrow{p} \Delta(i+1) \longrightarrow 0$$

Take *i* the minimum element satisfying $\sigma(i+1) < \sigma(i)$. First, we assume that $E_i = 0$. If $E_i \neq 0$, then $H_i = 0$ by Lemma 2.1, and we can show this statement dually. Put $i_{\sigma+} = \sigma^{-1}(\sigma(i) + 1)$.

1 There are two canonical epimorphisms p and q.

2 Consider two exact sequences.

Take *i* the minimum element satisfying $\sigma(i+1) < \sigma(i)$. First, we assume that $E_i = 0$. If $E_i \neq 0$, then $H_i = 0$ by Lemma 2.1, and we can show this statement dually. Put $i_{\sigma+} = \sigma^{-1}(\sigma(i) + 1)$.

1 There are two canonical epimorphisms p and q.

- 2 Consider two exact sequences.
- **3** There is a monomorphism f.

4

Take *i* the minimum element satisfying $\sigma(i+1) < \sigma(i)$. First, we assume that $E_i = 0$. If $E_i \neq 0$, then $H_i = 0$ by Lemma 2.1, and we can show this statement dually. Put $i_{\sigma+} = \sigma^{-1}(\sigma(i) + 1)$.

1 There are two canonical epimorphisms p and q.

- 2 Consider two exact sequences.
- **3** There is a monomorphism f.
- **4** We get a map g commuting the diagram.

Then $\operatorname{Coker}(\operatorname{tr}_{i+2}^e(f)) \to \operatorname{Coker}(f)$ is injective. Applying the snake lemma to this diagram, we get $\operatorname{Ker} g = 0$. Hence $g : \Delta(i)^{H_i} \to \Delta(i+1)$ is an injection i.e. (\mathcal{E}_i) holds.

Proof of Theorem 2

Theorem 2 [G]

Any two permutations giving quasi-hereditary structures are connected.

Assume that for an algebra A, two permutations σ and τ give quasi-hereditary structures of A. Now we consider the algebra A' = A with new labeled simple modules $S'(1), \ldots, S'(n)$ such that $S'(i) = S(\sigma^{-1}(i))$ for all $i \in \Lambda$. Then e and $\tau \sigma^{-1}$ give quasi-hereditary structures of A'. By Lemma 2.3, we have a decomposition

$$\tau \sigma^{-1} = \sigma_{i_l} \cdots \sigma_{i_1}$$

such that all $\sigma_{i_k} \cdots \sigma_{i_1}$ for $1 \le k \le l$ give quasi-hereditary structures of A'. This implies that $\sigma_{i_k} \cdots \sigma_{i_1} \sigma$ for $1 \le k \le l$ give quasi-hereditary structures of A, that is, σ and τ are connected with respect to giving quasi-hereditary structures of A.

Example

$$A = K(1 \xrightarrow{\alpha} 2 \xrightarrow{\gamma} 3 \xrightarrow{\delta} 4) / \langle \alpha \gamma \delta - \beta \delta \rangle.$$

If we know that e and $\sigma_{(123121)}$ give quasi-hereditary structures, then by Lemma 2.1, immediately we obtain other permutations giving quasi-hereditary structures below.

Thank you for your attention.