Connectedness of quasi-hereditary structures

Yuichiro GOTO

2022/09/06

Contents

2 Twistability

³ Connectedness

Setting

K : an algebraically closed field

A : a finite dimensional *K*-algebra with *n* simple modules, up to isomorphism mod *A* : the category of finitely generated right *A*-modules *S*(1)*, . . . , S*(*n*) : a complete set of pairwise non-isomorphic simple *A*-modules $P(1), \ldots, P(n)$: projective covers of simple *A*-modules $\Lambda = \{1, \ldots, n\}$: the set of labels of simple A -modules \mathfrak{S}_n : the symmetric group on n letters e : the unit of \mathfrak{S}_n σ_i : the adjacent transposition $(i,i+1)$ for $1\leq i\leq n-1$ tr^{σ}_i : the endofunctor of $\text{mod } A$ with $\text{tr}^{\sigma}_i(M) = \sum \{\text{Im } \phi \mid \phi : P(j) \to M, \sigma(j) \geq \sigma(i)\}$

Contents

¹ Background

2 Twistability

³ Connectedness

Background

y. GOTO Connectedness of q.h.str. 2022/09/06 4/22

A quasi-hereditary algebra is defined by a pair of an algebra and a total order on the set Λ . On orders for a quasi-hereditary algebra, Dlab and Ringel showed the following.

Theorem [Dlab-Ringel '89]

Let *A* be a finite dimensional algebra. Then *A* is hereditary if and only if it is quasi-hereditary for all total orders.

A quasi-hereditary algebra is defined by a pair of an algebra and a total order on the set Λ . On orders for a quasi-hereditary algebra, Dlab and Ringel showed the following.

Theorem [Dlab-Ringel '89]

Let *A* be a finite dimensional algebra. Then *A* is hereditary if and only if it is quasi-hereditary for all total orders.

For an algebra, we call an order inducing a quasi-hereditary algebra a **quasi-hereditary structure**. In this talk, we prove the connectedness of any two permutations giving quasi-hereditary structures.

Main theorem (Theorem 2) [Goto]

Any two permutations giving quasi-hereditary structures are connected.

Definitions

1 Let $\sigma \in \mathfrak{S}_n$. For $i \in \Lambda$, the A -module $\Delta^{\sigma}(i)$, called the standard module, is defined by the maximal factor module of $P(i)$ having only composition factors $S(j)$ with $\sigma(j) \leq \sigma(i)$. Moreover we will write the set $\{\Delta^{\sigma}(1), \ldots, \Delta^{\sigma}(n)\}$ by Δ^{σ} .

Definitions

1 Let $\sigma \in \mathfrak{S}_n$. For $i \in \Lambda$, the A -module $\Delta^{\sigma}(i)$, called the standard module, is defined by the maximal factor module of $P(i)$ having only composition factors $S(j)$ with $\sigma(j) \leq \sigma(i)$. Moreover we will write the set $\{\Delta^{\sigma}(1), \ldots, \Delta^{\sigma}(n)\}$ by Δ^{σ} .

Background

 2 Dually, we define the \textbf{cost} and $\textbf{module} \ \nabla^{\sigma}(i)$ and denote the set $\{\nabla^{\sigma}(1), \ldots, \nabla^{\sigma}(n)\}$ by ∇^{σ} .

Definitions

1 Let $\sigma \in \mathfrak{S}_n$. For $i \in \Lambda$, the A -module $\Delta^{\sigma}(i)$, called the standard module, is defined by the maximal factor module of $P(i)$ having only composition factors $S(j)$ with $\sigma(j) \leq \sigma(i)$. Moreover we will write the set $\{\Delta^{\sigma}(1), \ldots, \Delta^{\sigma}(n)\}$ by Δ^{σ} .

Background

 2 Dually, we define the \textbf{cost} and $\textbf{module} \ \nabla^{\sigma}(i)$ and denote the set $\{\nabla^{\sigma}(1), \ldots, \nabla^{\sigma}(n)\}$ by ∇^{σ} .

Y. GOTO Connectedness of q.h.str. 2022/09/06 6 / 22

³ We say that an *A*-module *M* has a ∆*^σ* **-filtration** (resp. a *∇^σ* **-filtration**) if there is a sequence of submodules $0 = M_{m+1} \subset \cdots \subset M_2 \subset M_1 = M$ such that for each $1 \leq k \leq m$, $M_k/M_{k+1} \cong \Delta^{\sigma}(j)$ (resp. $M_k/M_{k+1} \cong \nabla^{\sigma}(j)$) for some $j \in \Lambda$.

Definitions

1 Let $\sigma \in \mathfrak{S}_n$. For $i \in \Lambda$, the A -module $\Delta^{\sigma}(i)$, called the standard module, is defined by the maximal factor module of $P(i)$ having only composition factors $S(j)$ with $\sigma(j) \leq \sigma(i)$. Moreover we will write the set $\{\Delta^{\sigma}(1), \ldots, \Delta^{\sigma}(n)\}$ by Δ^{σ} .

Background

- 2 Dually, we define the \textbf{cost} and $\textbf{module} \ \nabla^{\sigma}(i)$ and denote the set $\{\nabla^{\sigma}(1), \ldots, \nabla^{\sigma}(n)\}$ by ∇^{σ} .
- ³ We say that an *A*-module *M* has a ∆*^σ* **-filtration** (resp. a *∇^σ* **-filtration**) if there is a sequence of submodules $0 = M_{m+1} \subset \cdots \subset M_2 \subset M_1 = M$ such that for each $1 \leq k \leq m$, $M_k/M_{k+1} \cong \Delta^{\sigma}(j)$ (resp. $M_k/M_{k+1} \cong \nabla^{\sigma}(j)$) for some $j \in \Lambda$.
- \bullet A pair (A, σ) is said to be a **quasi-hereditary algebra** provided that the following conditions are satisfied:

 \blacktriangleright $[\Delta^{\sigma}(i) : S(i)] = 1$ for all *i* ∈ Λ.

▶ *A^A* has a ∆*^σ* -filtration.

In this case, we say that the permutation σ gives a **quasi-hereditary structure** of A.

We will abbreviate ∆*^e* and *∇^e* as ∆ and *∇*, respectively.

Example

$$
A = K \left(1 \frac{\alpha}{\sqrt{2}} \frac{1}{\beta} \frac{\gamma}{\beta} + \frac{\delta}{\sqrt{2}} \frac{\delta}{\sqrt{2}} \right) / \langle \alpha \gamma \delta - \beta \delta \rangle.
$$

All indecomposable projective modules are of the form

$$
P(1) = \frac{2}{3} \frac{1}{4}^3
$$
, $P(2) = \frac{2}{3}$, $P(3) = \frac{3}{4}$, $P(4) = 4$.

Then standard modules with respect to *e* are simple modules and (*A, e*) is a quasi-hereditary algebra. On the other hand, the standard modules ∆*σ*³ are as follows.

$$
\Delta^{\sigma_3}(1) = 1, \ \Delta^{\sigma_3}(2) = 2, \ \Delta^{\sigma_3}(4) = 4, \ \Delta^{\sigma_3}(3) = \frac{3}{4}.
$$

Then $P(1)$ does not have Δ^{σ_3} -filtrations, hence (A,σ_3) is "not" quasi-hereditary.

Contents

³ Connectedness

Twistability

y. GOTO Connectedness of q.h.str. 2022/09/06 8/22

Definition

We say that a quasi-hereditary algebra (A, σ) is *i*th-twistable if $(A, \sigma_i \sigma)$ is quasi-hereditary.

Definition

We say that a quasi-hereditary algebra (A, σ) is *i*th-twistable if $(A, \sigma_i \sigma)$ is quasi-hereditary.

Then we can characterize the twistability by some conditions on standard or costandard modules.

Put
$$
H_i = \dim \text{Hom}(\Delta(i), \Delta(i+1)), E_i = \dim \text{Ext}^1(\Delta(i), \Delta(i+1)),
$$

\n $\overline{H_i} = \dim \text{Hom}(\nabla(i+1), \nabla(i)), \overline{E_i} = \dim \text{Ext}^1(\nabla(i+1), \nabla(i)).$

Definition

We say that a quasi-hereditary algebra (A, σ) is *i*th-twistable if $(A, \sigma_i \sigma)$ is quasi-hereditary.

Then we can characterize the twistability by some conditions on standard or costandard modules.

Put
$$
H_i = \dim \text{Hom}(\Delta(i), \Delta(i+1)), E_i = \dim \text{Ext}^1(\Delta(i), \Delta(i+1)),
$$

\n $\overline{H_i} = \dim \text{Hom}(\nabla(i+1), \nabla(i)), \overline{E_i} = \dim \text{Ext}^1(\nabla(i+1), \nabla(i)).$

Theorem 1 [G]

A quasi-hereditary algebra (*A, e*) is *i*th-twistable if and only if one of the following conditions holds:

 (\mathcal{E}_i) $E_i = 0$ and $\Delta(i + 1)$ has a submodule isomorphic to $\Delta(i)^{H_i}$.

 $(\overline{\mathcal{E}_i})$ $\overline{E_i} = 0$ and $\nabla(i+1)$ has a factor module isomorphic to $\nabla(i)^{H_i}.$

Moreover, if a quasi-hereditary algebra (A, e) satisfies $E_i = \overline{E_i} = 0$, then (A, σ_i) is also quasi-hereditary with $\Delta^{\sigma_i} = \Delta$ and $\nabla^{\sigma_i} = \nabla$.

Lemma 1.1

Let (A, e) be a quasi-hereditary algebra. Then the followings are equivalent.

 \bigcirc $[\Delta^{\sigma_i}(j) : S(j)] = 1$ for all $j \in \Lambda$.

2 $E_i H_i = 0$.

Lemma 1.1

Let (*A, e*) be a quasi-hereditary algebra. Then the followings are equivalent.

$$
\mathbf{O}[\Delta^{\sigma_i}(j) : S(j)] = 1 \text{ for all } j \in \Lambda.
$$

2 $E_i H_i = 0$.

Lemma 1.2 [Mazorchuk–Ovsienko '05]

Let (*A, e*) be a quasi-hereditary algebra. Then the followings hold.

- *•* Hom_{*A*}($\Delta(i)$, $\Delta(i+1)$) ≅ Ext_{*A*}($\nabla(i+1)$, $\nabla(i)$)^{*}.
- Ext_A($\Delta(i)$, $\Delta(i+1)$) \cong Hom_A($\nabla(i+1)$, $\nabla(i)$)^{*}.

Here, $-$ * is the standard K -dual. In particular, we have $H_i = E_i$ and $E_i = H_i.$

Lemma 1.1

Let (*A, e*) be a quasi-hereditary algebra. Then the followings are equivalent.

$$
\mathbf{O}[\Delta^{\sigma_i}(j) : S(j)] = 1 \text{ for all } j \in \Lambda.
$$

2 $E_i H_i = 0$.

Lemma 1.2 [Mazorchuk–Ovsienko '05]

Let (*A, e*) be a quasi-hereditary algebra. Then the followings hold.

- *•* Hom_{*A*}($\Delta(i)$, $\Delta(i+1)$) ≅ Ext_{*A*}($\nabla(i+1)$, $\nabla(i)$)^{*}.
- Ext_A($\Delta(i)$, $\Delta(i+1)$) \cong Hom_A($\nabla(i+1)$, $\nabla(i)$)^{*}.

Here, $-$ * is the standard K -dual. In particular, we have $H_i = E_i$ and $E_i = H_i.$

Y. GOTO Connectedness of q.h.str. 2022/09/06 10/22

Lemma 1.3 [Ágoston–Happel–Lukács–Unger '00]

Assume that we have $[\Delta(j) : S(j)] = 1$ for all $j \in \Lambda$. Then *A^A* has a ∆-filtration iff (*AA*) *∗* has a *∇*-filtration.

Proof of Theorem 1

Assume that (A, e) is *i*th-twistable. Moreover we first assume $E_i = 0$. Then $\Delta^{\sigma_i}(j) = \Delta(j)$ for $j \neq i + 1$. Since $P(i + 1)$ has a Δ^{σ_i} -filtration, so does $\Delta(i + 1)$. Hence we have the exact sequence

$$
0 \to \Delta^{\sigma_i}(i)^{H_i} \to \Delta(i+1) \to \Delta^{\sigma_i}(i+1) \to 0,
$$

that is, the condition (\mathcal{E}_i) holds. On the other hand, assume $H_i = 0$ by Lemma 1.1. Then $\overline{E_i} = 0$ by Lemma 1.2, and hence we can dually show that $(\overline{\mathcal{E}_i})$ holds.

Proof of Theorem 1

Assume that (A, e) is *i*th-twistable. Moreover we first assume $E_i = 0$. Then $\Delta^{\sigma_i}(j) = \Delta(j)$ for $j \neq i + 1$. Since $P(i + 1)$ has a Δ^{σ_i} -filtration, so does $\Delta(i + 1)$. Hence we have the exact sequence

$$
0 \to \Delta^{\sigma_i}(i)^{H_i} \to \Delta(i+1) \to \Delta^{\sigma_i}(i+1) \to 0,
$$

that is, the condition (\mathcal{E}_i) holds. On the other hand, assume $H_i = 0$ by Lemma 1.1. Then $\overline{E_i} = 0$ by Lemma 1.2, and hence we can dually show that $(\overline{\mathcal{E}_i})$ holds.

Conversely, if (\mathcal{E}_i) holds, then $\Delta^{\sigma_i}(j) = \Delta(j)$ for $j \neq i + 1$ and there is an exact sequence

$$
0 \to \Delta(i)^{H_i} \to \Delta(i+1) \to \Delta^{\sigma_i}(i+1) \to 0.
$$

Thus $\Delta(i+1)$, and hence A_A , has a Δ^{σ_i} -filtration. Similarly $(\overline{\mathcal{E}_i})$ implies $_A A^*$ has a *∇σⁱ* -filtration, and hence *A^A* has a ∆*σⁱ* -filtration by Lemma 1.3.

Example

$$
A = K \left(1 \underbrace{\stackrel{\alpha}{\longrightarrow} 2 \stackrel{\gamma}{\longrightarrow}}_{\beta} 3 \stackrel{\delta}{\longrightarrow} 4 \right) / \langle \alpha \gamma \delta - \beta \delta \rangle.
$$

All permutations giving quasi-hereditary structures of *A* are as follows. Write $\sigma_{(123121)} = \sigma_1 \sigma_2 \sigma_3 \sigma_1 \sigma_2 \sigma_1$, for instance.

Contents

¹ Background **2** Twistability

³ Connectedness

Connectedness

In general, can we get all permutations giving quasi-hereditary structures from one, by checking repeatedly whether each quasi-hereditary algebra is *i*th-twistable?

In general, can we get all permutations giving quasi-hereditary structures from one, by checking repeatedly whether each quasi-hereditary algebra is *i*th-twistable?

Definition

Let $\sigma, \tau \in \mathfrak{S}_n$ give quasi-hereditary structures. Then σ and τ are said to be **connected** if there is a decomposition

$$
\tau\sigma^{-1}=\sigma_{i_l}\cdots\sigma_{i_1}
$$

into the products of adjacent transpositions such that all $\sigma_{i_k}\cdots\sigma_{i_1}\sigma$ also give quasi-hereditary structures for $1 \leq k \leq l$.

In general, can we get all permutations giving quasi-hereditary structures from one, by checking repeatedly whether each quasi-hereditary algebra is *i*th-twistable?

Definition

Let $\sigma, \tau \in \mathfrak{S}_n$ give quasi-hereditary structures. Then σ and τ are said to be **connected** if there is a decomposition

$$
\tau\sigma^{-1}=\sigma_{i_l}\cdots\sigma_{i_1}
$$

into the products of adjacent transpositions such that all $\sigma_{i_k}\cdots\sigma_{i_1}\sigma$ also give quasi-hereditary structures for $1 \leq k \leq l$.

Theorem 2 [G]

Any two permutations giving quasi-hereditary structures are connected.

Lemma 2.1

Let e, σ give quasi-hereditary structures with $e \neq \sigma$. Then for the minimum element $i \in \Lambda$ satisfying $\sigma(i + 1) < \sigma(i)$, it holds that $E_i H_i = 0$.

Lemma 2.1

Let e, σ give quasi-hereditary structures with $e \neq \sigma$. Then for the minimum element $i \in \Lambda$ satisfying $\sigma(i + 1) < \sigma(i)$, it holds that $E_i H_i = 0$.

For such $i = i_1$, we claim the following.

Proposition 2.2

Let e,σ give quasi-hereditary structures. Then there is a minimal decomposition $\sigma=\sigma_{i_l}\cdots\sigma_{i_1}$ into adjacent transpositions such that σ_{i_1} gives a quasi-hereditary structure.

Lemma 2.1

Let e, σ give quasi-hereditary structures with $e \neq \sigma$. Then for the minimum element $i \in \Lambda$ satisfying $\sigma(i+1) < \sigma(i)$, it holds that $E_i H_i = 0$.

For such $i = i_1$, we claim the following.

Proposition 2.2

Let e,σ give quasi-hereditary structures. Then there is a minimal decomposition $\sigma=\sigma_{i_l}\cdots\sigma_{i_1}$ into adjacent transpositions such that σ_{i_1} gives a quasi-hereditary structure.

Inductively applying Proposition 2.2 on the length of a minimal decomposition of *σ* into adjacent transpositions, then we get the following.

Lemma 2.3

Let e, σ give quasi-hereditary structures. Then they are connected.

Take *i* the minimum element satisfying $\sigma(i+1) < \sigma(i)$. First, we assume that $E_i = 0$. If $E_i \neq 0$, then $H_i = 0$ by Lemma 2.1, and we can show this statement dually. Put $i_{\sigma+} = \sigma^{-1}(\sigma(i) + 1).$

Connectedness

1 There are two canonical epimorphisms p and q .

 2

3 There is a monomorphism *f*.

4 We get uniquely the map *g* commutes the diagram.

$$
\Delta^{\sigma}(i)^{H_i} \xrightarrow{q} \Delta(i)^{H_i} \longrightarrow 0
$$

$$
P(i+1)/\operatorname{tr}_{i_{\sigma+}}^{\sigma}(P(i+1)) \xrightarrow{p} \Delta(i+1) \longrightarrow 0
$$

Take *i* the minimum element satisfying $\sigma(i+1) < \sigma(i)$. First, we assume that $E_i = 0$. If $E_i \neq 0$, then $H_i = 0$ by Lemma 2.1, and we can show this statement dually. Put $i_{\sigma+} = \sigma^{-1}(\sigma(i) + 1).$

Connectedness

1 There are two canonical epimorphisms p and q .

Take *i* the minimum element satisfying $\sigma(i+1) < \sigma(i)$. First, we assume that $E_i = 0$. If $E_i \neq 0$, then $H_i = 0$ by Lemma 2.1, and we can show this statement dually. Put $i_{\sigma+} = \sigma^{-1}(\sigma(i) + 1).$

Connectedness

1 There are two canonical epimorphisms p and q .

4 We get uniquely the map *g* commutes the diagram.

- **2** Consider two exact sequences.
- **3** There is a monomorphism f.

 $0 \longrightarrow \text{tr}_{i+2}^e(\Delta^{\sigma}(i)^{H_i}) \longrightarrow$ $\operatorname{tr}_{i+2}^e(f)$ ľ $\Delta^{\sigma}(i)^{H_i} \xrightarrow{q}$ *f* ľ $\Delta(i)^{H_i} \longrightarrow 0$ $0 \longrightarrow \operatorname{tr}_{i+2}^e \left(P(i+1)/\operatorname{tr}_{i_{\sigma+1}}^{\sigma}(P(i+1)) \right) \longrightarrow P(i+1)/\operatorname{tr}_{i_{\sigma+1}}^{\sigma}(P(i+1)) \xrightarrow{p} \Delta(i+1) \longrightarrow 0$

Take *i* the minimum element satisfying $\sigma(i+1) < \sigma(i)$. First, we assume that $E_i = 0$. If $E_i \neq 0$, then $H_i = 0$ by Lemma 2.1, and we can show this statement dually. Put $i_{\sigma+} = \sigma^{-1}(\sigma(i) + 1).$

Connectedness

- **1** There are two canonical epimorphisms p and q .
- **2** Consider two exact sequences.
- **3** There is a monomorphism f .
- 4 We get a map *g* commuting the diagram.

$$
0 \longrightarrow tr_{i+2}^{e}(\Delta^{\sigma}(i)^{H_{i}}) \longrightarrow \Delta^{\sigma}(i)^{H_{i}} \longrightarrow \Delta(i)^{H_{i}} \longrightarrow 0
$$
\n
$$
\downarrow tr_{i+2}^{e}(f)
$$
\n
$$
0 \longrightarrow tr_{i+2}^{e}\left(P(i+1)/tr_{i_{\sigma+}}^{q}(P(i+1))\right) \longrightarrow P(i+1)/tr_{i_{\sigma+}}^{q}(P(i+1)) \longrightarrow \Delta(i+1) \longrightarrow 0
$$

Then $\mathrm{Coker}(\mathrm{tr}^e_{i+2}(f))\to \mathrm{Coker}(f)$ is injective. Applying the snake lemma to this diagram, we get $\mathrm{Ker}\, g=0.$ Hence $g: \Delta(i)^{H_i} \rightarrow \Delta(i+1)$ is an injection i.e. (\mathcal{E}_i) holds.

y. GOTO Connectedness of q.h.str. 2002/09/06 19/22

Proof of Theorem 2

Theorem 2 [G]

Any two permutations giving quasi-hereditary structures are connected.

Assume that for an algebra *A*, two permutations *σ* and *τ* give quasi-hereditary structures of *A*. Now we consider the algebra $A' = A$ with new labeled simple modules $S'(1), \ldots, S'(n)$ such that $S'(i) = S(\sigma^{-1}(i))$ for all $i \in \Lambda$. Then e and $\tau \sigma^{-1}$ give quasi-hereditary structures of A' . By Lemma 2.3, we have a decomposition

$$
\tau\sigma^{-1}=\sigma_{i_l}\cdots\sigma_{i_1}
$$

such that all $\sigma_{i_k}\cdots\sigma_{i_1}$ for $1\leq k\leq l$ give quasi-hereditary structures of A' . This implies that $\sigma_{i_k}\cdots\sigma_{i_1}\sigma$ for $1\leq k\leq l$ give quasi-hereditary structures of A , that is, σ and τ are connected with respect to giving quasi-hereditary structures of *A*.

Example

$$
A = K \left(1 \underbrace{\stackrel{\alpha}{\longrightarrow} 2 \stackrel{\gamma}{\longrightarrow}}_{\beta} 3 \stackrel{\delta}{\longrightarrow} 4\right) / \langle \alpha \gamma \delta - \beta \delta \rangle.
$$

If we know that e and $\sigma_{(123121)}$ give quasi-hereditary structures, then by Lemma 2.1, immediately we obtain other permutations giving quasi-hereditary structures below.

Connectedness

Thank you for your attention.

Connectedness