Noncommutative conics in Calabi-Yau quantum projective planes I

Haigang Hu, Masaki Matsuno, Izuru Mori

Shizuoka University

September, 2022

The 54th Symposium on Ring Theory and Representation Theory @Saitama University

1/20

Motivations

- k: an algebraically closed field of characteristic 0.
- \mathbb{P}^{d-1} : the d-1 dimensional projective space over k.

Every quadric hypersurface in \mathbb{P}^{d-1} is isomorphic to

$$\operatorname{Proj} k[x_1, \dots, x_d]/(x_1^2 + \dots + x_j^2)$$

for some $j = 1, \ldots, d$.

When d = 3, there are exactly 3 isomorphism classes of conics.

Aim Define and classify noncommutative conics. Masaki Matsuno (Shizuoka University) Noncomm, conics in CY quantum P²'s 1 September, 2022 2/20

Quantum polynomial algebras

Definition ([Artin-Schelter, 1987])

A *d*-dimensional quantum polynomial algebra is a noetherian connected graded algebra S ($S = \bigoplus_{i \in \mathbb{N}} S_i, S_0 = k$) such that

- $I gldim S = d < \infty,$
- (Gorenstein condition) $\operatorname{Ext}_{S}^{i}(k,S) = \begin{cases} k & (i=d), \\ 0 & (i \neq d). \end{cases}$

3
$$H_S(t) := \sum_{i=0}^{\infty} (\dim_k S_i) t^i = 1/(1-t)^d.$$

Example

- If S is commutative, S: d-dimensional quantum polynomial algebra $\Leftrightarrow S \cong k[x_1, \dots, x_d].$
- $S:=k\langle x,y,z\rangle/(yz+zy,zx+xz,xy+yx)$ is a 3-dimensional quantum polynomial algebra.

Geometric algebras

- V: a finite dimensional vector space over k, $R \subset V \otimes V$.
- T(V): the tensor algebra of V.
- $\mathcal{V}(R) := \{(p,q) \in \mathbb{P}(V^*) \times \mathbb{P}(V^*) \mid f(p,q) = 0, \forall f \in R\}.$

Definition ([Mori, 2006])

Let S = T(V)/(R) be a quadratic algebra.

- A geometric pair (E, σ) consists of a projective scheme $E \subset \mathbb{P}(V^*)$ and an automorphism $\sigma \in \operatorname{Aut} E$.
- ② S satisfies (G1) $(\mathcal{P}(A) = (E, \sigma))$: ⇐⇒ $\exists (E, \sigma)$: a geometric pair such that $\mathcal{V}(R) = \{(p, \sigma(p)) \in \mathbb{P}(V^*) \times \mathbb{P}(V^*) \mid p \in E\}.$
- S satisfies (G2) $(A = \mathcal{A}(E, \sigma)) :\iff \exists (E, \sigma)$: a geometric pair such that $R = \{f \in V \otimes V \mid f(p, \sigma(p)) = 0, \forall p \in E\}.$
- S: geometric : \iff S satisfies (G1), (G2) and $S = \mathcal{A}(\mathcal{P}(S))$.

Geometric algebras

Example

- $S = k[x_1, \dots, x_d] = \mathcal{A}(\mathbb{P}^{d-1}, \mathrm{id})$ is a geometric algebra.
- $S = k\langle x, y, z \rangle / (yz + zy, zx + xz, xy + yx) = \mathcal{A}(E, \sigma)$ is a geometric algebra where $E = \mathcal{V}(x) \cup \mathcal{V}(y) \cup \mathcal{V}(z) \subset \mathbb{P}^2$ and

$$\begin{cases} \sigma(0, b, c) = (0, b, -c) \\ \sigma(a, 0, c) = (-a, 0, c) \\ \sigma(a, b, 0) = (a, -b, 0). \end{cases}$$

• 3-dimensional Sklyanin algebra

$$S = k\langle x, y, z \rangle / (\alpha yz + \beta zy + \gamma x^2, \alpha zx + \beta xz + \gamma y^2, \alpha xy + \beta yx + \gamma z^2)$$

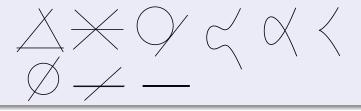
is a geometric algebra with $\mathcal{P}(S)=(E,\sigma)$ where

 $\begin{array}{l} \succ \ E = \mathcal{V}(x^3 + y^3 + z^3 - \lambda xyz) \subset \mathbb{P}^2, \lambda = \frac{\alpha^3 + \beta^3 + \gamma^3}{\alpha\beta\gamma} \mbox{ (elliptic curve),} \\ \vdash \ \sigma(q) := p + q, p = (\alpha, \beta, \gamma) \mbox{ (translation).} \end{array}$

Geometric algebras

Theorem ([Artin-Tate-Van den Bergh, 1990])

Every 3-dimensional quantum polynomial algebra $S = \mathcal{A}(E, \sigma)$ is geometric where either $E = \mathbb{P}^2$ or $E \subset \mathbb{P}^2$ is a cubic curve.



Definition

Let $m \in \mathbb{N}^+$. Define a linear map $\phi : V^{\otimes m} \to V^{\otimes m}$ by $\phi(v_1 \otimes v_2 \otimes \cdots \otimes v_{m-1} \otimes v_m) = v_m \otimes v_1 \otimes \cdots \otimes v_{m-2} \otimes v_{m-1}.$ $w \in V^{\otimes m}$ is called superpotential if

$$\phi(w) = w.$$

 $\ensuremath{ @ } w \in V^{\otimes m} \ensuremath{ \ \ } \text{ is called twisted superpotential if }$

$$(\tau \otimes \mathrm{id}^{\otimes m-1})\phi(w) = w$$

for some $\tau \in \operatorname{GL}(V)$.

③ The *i*-th derivation quotient algebra of $w \in V^{\otimes m}$ is defined by

$$D(w,i) := T(V)/(\partial^i w)$$

where $\partial^i w$ is the "*i*-th left partial derivatives" of w.

We fix a basis $\{x, y, z\}$ for V.

Example

- w = xyz + yzx + zxy (xzy + yxz + zyx) is a superpotential, $D(w, 1) = k\langle x, y, z \rangle/(yz - zy, zx - xz, xy - yx) = k[x, y, z].$ • w = xyz + yzx + zxy + (xzy + yxz + zyx) is a superpotential, $D(w, 1) = k\langle x, y, z \rangle/(yz + zy, zx + xz, xy + yx).$
- $w = \alpha(xyz + yzx + zxy) + \beta(xzy + yxz + zyx) + \gamma(x^3 + y^3 + z^3)$ is a superpotential, $D(w, 1) = k\langle x, y, z \rangle / (\alpha yz + \beta zy + \gamma x^2, \alpha zx + \beta xz + \gamma y^2, \alpha xy + \beta yx + \gamma z^2).$

Theorem ([Dubois-Violette,2007])

For every d-dimensional quantum polynomial algebra S, there exists a unique twisted superpotential w such that S = D(w, d - 2).

Theorem ([Mori-Smith,2016])

Let w be a twisted superpotential such that S = D(w, d-2) is a d-dimensional quantum polynomial algebra. Then S is "Calabi-Yau" if and only if w is $(-\mathrm{id})^{d+1}$ twisted superpotential.

S: 3-dimensional quantum polynomial algebra

S is "Calabi-Yau" $\iff w$: superpotential

Theorem ([Mori-Smith,2017])

Superpotentials w such that D(w,1) are 3-dimensional quantum polynomial algebras are classified.

(Classification of 3-dimensional Calabi-Yau quantum polynomial algebras)

Theorem ([Itaba-M,2022])

Twisted superpotentials w such that D(w,1) are 3-dimensional quantum polynomial algebras are classified.

(Classification of 3-dimensional quantum polynomial algebras)

Quantum projective spaces

Definition ([Artin-Zhang,1994])

A noncommutative schem is a pair $X = (\mod X, \mathcal{O}_X)$ consisting of a k-linear abelian category $\mod X$ and an object $\mathcal{O}_X \in \mod X$. Two noncommutative schemes X and Y are isomorphic, denoted by $X \cong Y$, if there exists an equivalence functor $F : \mod X \to \mod Y$ such that $F(\mathcal{O}_X) \cong \mathcal{O}_Y$.

Example

If X is a commutative noetherian scheme, then we view X as a noncommutative scheme by $X = (\operatorname{coh} X, \mathcal{O}_X)$.

Quantum projective spaces

Definition

Let A be a right noetherian connected graded algebra. The noncommutative projective scheme associated to A is a noncommutative scheme defined by $\operatorname{Proj}_{\operatorname{nc}} A := (\operatorname{tails} A, \pi A)$ where

- grmod A: the category of finitely generated graded right A-module,
- tors A: the full subcategory of grmod A consisting of finite dimensional modules over k,
- tails $A := \operatorname{grmod} A/\operatorname{tors} A$: the quotient category,
- $\pi : \operatorname{grmod} A \to \operatorname{tails} A$: the quotient functor.

Example

If \boldsymbol{A} is commutative and generated in degree 1 over $\boldsymbol{k},$ then

 $\operatorname{Proj}_{\operatorname{nc}} A \cong \operatorname{Proj} A.$

Quantum projective spaces

Definition

A quantum \mathbb{P}^{d-1} is a noncommutative projective scheme $\operatorname{Proj}_{\operatorname{nc}} S$ for some *d*-dimensional quantum polynomial algebra *S*.

Theorem ([Itaba-M,2022])

For every 3-dimensional quantum polynomial algebra S, there exists a 3-dimensional Calabi-Yau quantum polynomial algebra \tilde{S} such that $\operatorname{Proj}_{\operatorname{nc}} S \cong \operatorname{Proj}_{\operatorname{nc}} \tilde{S}$.

$$\{ extsf{quantum } \mathbb{P}^2 extsf{'s}\} = \{ extsf{``Calabi-Yau"} extsf{quantum } \mathbb{P}^2 extsf{'s}\}$$

Definition

A noncommutative quadric hypersurface in a (Calabi-Yau) quantum \mathbb{P}^{d-1} is the noncommutative projective scheme $\operatorname{Proj}_{\operatorname{nc}} S/(f)$ for some d-dimensional (Calabi-Yau) quantum polynomial algebra S and for some regular central element $f \in S_2$. When d = 3, we say that $\operatorname{Proj}_{\operatorname{nc}} S/(f)$ is a noncommutative conic.

Aim

We study and classify homogeneous coordinate algebras S/(f).

Theorem ([Hu,Hu-M-Mori])

Let $S = \mathcal{A}(E, \sigma)$ be a 3-dimensional Calabi-Yau quantum polynomial algebra. Then $Z(S)_2 \neq 0$ if and only if S is isomorphic to one of the algebras in Table 1.

Table 1

defining relations	$Z(S)_2$	
yz - zy, zx - xz, xy - yx	S_2	
$yz - zy + x^2, zx - xz, xy - yx$	kx^2	
yz + zy, zx + xz, xy + yx	$kx^2 + ky^2 + kz^2$	
$yz + zy + x^2, zx + xz, xy + yx$	$kx^2 + ky^2 + kz^2$	
$yz + zy + x^2, zx + xz + y^2, xy + yx$	$kx^2 + ky^2 + kz^2$	
$yz + zy + \lambda x^2, zx + xz + \lambda y^2, xy + yx + \lambda z^2$	$kx^2 + ky^2 + kz^2$	

where $\lambda \in k$ such that $\lambda^3 \neq 0, 1, -8$.

Table 2

defining relations	$ \sigma $	Туре
yz - zy, zx - xz, xy - yx	1	P
$yz - zy + x^2, zx - xz, xy - yx$	1	TL
yz + zy, zx + xz, xy + yx	2	S
$yz + zy + x^2, zx + xz, xy + yx$	2	S'
$yz + zy + x^2, zx + xz + y^2, xy + yx$	2	NC
$yz + zy + \lambda x^2, zx + xz + \lambda y^2, xy + yx + \lambda z^2$	2	EC

where $\lambda \in k$ such that $\lambda^3 \neq 0, 1, -8.$ In this case, $E = \mathbb{P}^2$ or

 $\searrow \Delta \oslash$ \leq

Theorem ([Hu-M-Mori])

Let $S = \mathcal{A}(E, \sigma)$ be a 3-dimensional Calabi-Yau quantum polynomial algebra, $0 \neq f \in Z(S)_2$, and A = S/(f). If A is commutative, then

- ()either $E = \mathbb{P}^2$ or $E \subset \mathbb{P}^2$ is a triple line, and
- **2** A is isomorphic to one of the following algebras:

$$k[x,y,z]/(x^2), \ \ k[x,y,z]/(x^2+y^2), \ \ k[x,y,z]/(x^2+y^2+z^2).$$

17 / 20

$$w^{(a,b,c)} := xyz + yzx + zxy + (xzy + yxz + zyx) + (ax^3 + by^3 + cz^3)$$

$$S^{(a,b,c)} := k\langle x, y, z \rangle / (yz + zy + ax^2, zx + xz + by^2, xy + yx + cz^2)$$

$$= D(w^{(a,b,c)}, 1)$$

where $(a, b, c) = (0, 0, 0), (1, 0, 0), (1, 1, 0), (\lambda, \lambda, \lambda), \lambda^3 \neq 0, 1, -8.$

Let Sym(3) be the symmetric group of degree 3 and

$$\operatorname{Sym}^{3}(V) := \{ w \in V^{\otimes 3} \mid \theta \cdot w = w \text{ for all } \theta \in \operatorname{Sym}(3) \}.$$

 \implies Every $w^{(a,b,c)}$ belongs to $\operatorname{Sym}^3(V)$.

Theorem ([Hu-M-Mori])

Let $S = \mathcal{A}(E, \sigma)$ be a 3-dimensional Calabi-Yau quantum polynomial algebra, $0 \neq f \in Z(S)_2$, and A = S/(f). If A is not commutative, then (a) $|\sigma| = 2$, and (b) S = D(w, 1) for some $w \in \text{Sym}^3(V)$, and A is isomorphic to

$$S^{(a,b,c)}/(\alpha x^2 + \beta y^2 + \gamma z^2)$$

where $(\alpha, \beta, \gamma) \in \mathbb{P}^2$.

Remark

There are infinitely many isomorphism classes of $S^{(a,b,c)}$. (How many isomorphism classes of A ?)

Example

Let

$$\begin{split} S^{(0,0,0)} &= k \langle x, y, z \rangle / (yz + zy, zx + xz, xy + yx), \\ S^{(1,0,0)} &= k \langle x, y, z \rangle / (yz + zy + x^2, zx + xz, xy + yx), \\ S^{(1,1,0)} &= k \langle x, y, z \rangle / (yz + zy + x^2, zx + xz + y^2, xy + yx). \end{split}$$

Then

$$\begin{array}{l} \bullet S^{(0,0,0)}/(x^2) \cong S^{(1,0,0)}/(x^2). \\ \bullet S^{(1,0,0)}/(y^2) \cong S^{(1,1,0)}/(x^2). \\ \bullet S^{(0,0,0)}/(x^2+y^2) \cong S^{(1,0,0)}/(x^2+y^2) \cong S^{(1,1,0)}/(x^2+y^2). \\ \bullet S^{(0,0,0)}/(x^2+y^2+z^2) \cong S^{(1,0,0)}/(y^2+z^2). \end{array}$$