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Background
Our localization

Examples

Notation and Conventions

Notation

a category = an additive category.

a subcategory = a full and additive subcategory.

a functor = an additive functor.

C : triangulated category.

N : a full subcategory which is closed under


direct summands
isomorphisms
extensions

.
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Verdier quotient

Definition
A subcategory N ⊆ C is thick if it satisfies the 2-out-of-3 for triangles, namely, for
any triangle

A → B → C → A[1]

if two of {A,B,C} belong to N , then so does the third.

Remark
Note that the above definition is same as the usual one. In particular, a thick
subcategory N is triangulated.
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Verdier quotient

Theorem (Verdier)

For a thick subcategory N , we have a triangle functor

Q : C → C/N

with the universality: For any triangle functor F : C → D such that N ⊆ KerF ,
there uniquely exists a triangle functor F ′ : C/N → D which makes the following
diagram commutative.

N //

0 ��

C
Q //

F

��

C/N

F ′
}}

D
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Heart of t-structure

Definition
(C≤0, C≥1) : a pair of subcategories of C. The pair is called a t-structure if it
satisfies:

1 HomC(U, V ) = 0 for any U ∈ C≤0 and V ∈ C≥1;

2 C≤0[1] ⊆ C≤0;

3 C = C≤0 ∗ C≥1,
i.e., for any X, there is a triangle U −→ X −→ V −→ U [1] with U ∈ C≤0 and
V ∈ C≥1.
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Heart of t-structure

Theorem (Beilinson-Bernstein-Deligne)

(C≤0, C≥1) : a t-structure
1 We have an abelian category H := C≤0 ∩ C≥0 called the heart.
2 There exists a cohomological functor H : C → H with the universality: For

any cohomological functor F : C → A such that N ⊆ KerF , there uniquely
exists an exact functor F ′ : H → A which makes the following diagram
commutative.

N //

0   

C H //

F

��

H

F ′
~~

A

Here we set N := KerH.
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Aim

Notation

C : a triangulated category.
N : an extension-closed subcategory.

Aim
To construct an “exact” functor

Q : C → C/N

with a suitable universality which contains

{
Verdier quotient
heart of t-structure

.
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Verdier quotient vs Heart construction

(1) Verdier quotient N → C Q−→ C/N

1 SN := {f | Q(f) : iso} is a multiplicative system (compatible with
triangulation).

2 N = KerQ is a thick subcategory.
3 All appearing categories are triangulated.
4 All appearing functors are exact.

(2) Heart construction N → C H−→ H

1 SN := {f | H(f) : iso} is NOT a multiplicative system.
2 N = KerH is an extension-closed subcategory.
3 C is triangulated. H is abelian. What is N?
4 The cohomological functor H is NOT “exact”.
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The first problem

1 SN := {f | Q(f) : iso} is NOT a multiplicative system.

Lemma

For the case of the Verdier quotient, the following equalities hold.

SN := {f | Q(f) : iso}
= {f | Cone(f) ∈ N}

=

{
f

∣∣∣∣∣A x−→ B
f−→ C

y−→ A[1]

x, y factor through N

}

For the case of the heart construction, the following equalities hold.

SN := {f | H(f) : iso}

=

{
f

∣∣∣∣∣A x−→ B
f−→ C

y−→ A[1]

x, y factor through N

}
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The first problem

1 SN := {f | Q(f) : iso} is NOT a multiplicative system.

Proposition (O)

For an extension-closed subcategory N ⊆ C,

SN :=

{
f

∣∣∣∣∣A x−→ B
f−→ C

y−→ A[1]

x, y factor through N

}

forms a multiplicative system SN in C := C/[N ].
Thus, we have the Gabriel-Zisman localization

C
Q //

ideal quot.
��

C[S −1
N ]

C

GZ loc.

<<

which is additive.
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The third problem

3 C is triangulated. H is abelian. What is N?

⇝ All appearing categories are extriangulated.

Definition (Nakaoka-Palu)

An extriangulated category is defined to be a triple (C,E, s) of
- an additive category C;
- an additive bifunctor E : Cop × C → Ab, where Ab is the category of abelian

groups;
- a correspondence s which associates each equivalence class of a sequence
A

x−→ B
y−→ C in C to an element in E(C,A) for any C,A ∈ C,

which satisfies some ‘additivity’ and ‘compatibility’.
We call the sequence, the morphisms x and y an s-conflation, s-inflation and
s-deflation.
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The forth problem

4 The cohomological functor H is NOT “exact”.

Theorem (Sakai)

For any cohomological functor H : C → A, there exists a relative extriangulated
structure (C,EH , sH) on C such that

H : (C,EH , sH) → A

can give rise to an exact functor.
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The second problem

2 N = KerH is an extension-closed subcategory.

Theorem (O)

N = KerH is a thick subcategory in (C,EH , sH).
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To formulate our localization

C : a triangulated category
N : an extension-closed subcategory of C

1 SN :=

{
f

∣∣∣∣∣A x−→ B
f−→ C

y−→ A[1]

x, y factor through N

}
forms a multiplicative system in C.

2 A relative structure (C,EN , sN ) on C naturally determined by N .
3 The localization of the extriangulated category (C,EN , sN ) by the thick

subcategory N .
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Relative structure determined by N

Proposition (O)

Let (C,E, s) be a triangulated category and N ⊆ C an extension-closed
subcategory. For any objects A,C ∈ C, we define a subset of E(C,A) as follows.

- A subset EN (C,A) is defined as the set of morphisms h : C → A[1] satisfying
the condition:

(Lex) For any morphism N
x−→ C with N ∈ N , h ◦ x factors through an object in

N [1].
(Rex) For any morphism A

y−→ N with N ∈ N , y ◦ h[−1] factors through an object
in N [−1].

We have an extriangulated structure (C,EN , sN ) which are relative to (C,E, s).
Furthermore, N is thick in (C,EN , sN ).

N

x

��

[N [1]]

!!
C[−1]

h[−1] //

[N [−1]] ""

A //

y

��

B // C h // A[1]

N
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Localization of extriangulated categories

Theorem (Nakaoka-O-Sakai)

Let (C,E, s) be an extriangulated category and N ⊆ C a thick subcategory. Define
the classes of morphisms:

- L := {f | Cone(f) ∈ N};
- R := {f | CoCone(f) ∈ N};
- SN := finite composition of morphisms belonging to L ∪R.

If the class SN satisfies some conditions (∗), we have an exact functor

(Q,µ) : (C,E, s) → (C/N , Ẽ, s̃)

with the universality: For any exact functor (F, ϕ) : (C,E, s) → (D,F, t) such that
N ⊆ KerF , there uniquely exists an exact functor (F ′, ϕ′) : (C/N , Ẽ, s̃) → (D,F, t)
which makes the following diagram commutative.

N //

0 ��

C
Q //

F

��

C/N

F ′
}}

D
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Our localization

Theorem (O)

Let (C,E, s) be a triangulated category and N ⊆ C an extension-closed
subcategory.
(0) N is a thick subcategory in (C,EN , sN ).

(1) We have an extriangulated localization (Q,µ) : (C,EN , sN ) → (C/N , ẼN , s̃N ).

(2) N is thick in the triangulated category (C,E, s) if and only if (C/N , ẼN , s̃N )
is a triangulated category.

(3) Suppose that N is functorially finite. Then, N satisfies N ∗ N [1] = C in the
triangulated category (C,E, s) if and only if (C,EN , sN ) is an abelian
category. Furthermore, the functor Q : (C,E, s) → C̃N from the original
triangulated category is cohomological.

N extension-closed thick N ∗ N [1] = C
C/N extraingulated triangulated abelian
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(2) N is thick in the triangulated category (C,E, s) if and only if (C/N , ẼN , s̃N )
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Cohomological functor

Assume N ∗ N [1] = C.

(C,ER
N , sRN ) right exact

%%''
(C,EN , sN )

66

((

(C,E, s) half exact // (C/N , ẼN , s̃N )

(C,EL
N , sLN )

77

left exact

99
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Examples

1 Verdier quotient.
2 The heart of a t-structure.
3 (Koenig-Zhu) The abelian quotient by a (2-)cluster tilting subcategory N .
4 (Beligiannis, Buan-Marsh) Let U be a rigid contravariantly finite subcategory

of C and consider the functor (U ,−) : C → modU . Put N := Ker(U ,−).

N //

0 ""

C
Q //

(U,−)

��

C/N

≃
{{

modU
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5 (Abe-Nakaoka) Let (U ,V) be a cotorsion pair of C. Then, we have an abelian
heart H and a cohomological functor H : C → H. Put N := KerH.

N //

0
��

C
Q //

H

��

C/N

≃
}}

H

6 (Tattar) Let (C≤0, C≥1) be a t-structure. Put N := C≤0.

N //

0 !!

C
Q //

��

C/N

≃||
C≥1
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