Localization of triangulated categories with respect to extension-closed subcategories

Yasuaki Ogawa

Nara University of Education

September 9, 2022

Background

Notation and Conventions

Notation

- a category = an additive category.
- a subcategory = a full and additive subcategory.
- a functor = an additive functor.
- \bullet C : triangulated category.

• \mathcal{N} : a full subcategory which is closed under $\begin{cases} \text{direct summands} \\ \text{isomorphisms} \\ \text{extensions} \end{cases}$

Verdier quotient

Definition

A subcategory $\mathcal{N}\subseteq \mathcal{C}$ is thick if it satisfies the 2-out-of-3 for triangles, namely, for any triangle

$$A \to B \to C \to A[1]$$

if two of $\{A, B, C\}$ belong to \mathcal{N} , then so does the third.

Remark

Note that the above definition is same as the usual one. In particular, a thick subcategory \mathcal{N} is triangulated.

Verdier quotient

Definition

A subcategory $\mathcal{N}\subseteq \mathcal{C}$ is thick if it satisfies the 2-out-of-3 for triangles, namely, for any triangle

$$A \to B \to C \to A[1]$$

if two of $\{A, B, C\}$ belong to \mathcal{N} , then so does the third.

Remark

Note that the above definition is same as the usual one. In particular, a thick subcategory \mathcal{N} is triangulated.

Verdier quotient

Theorem (Verdier)

For a thick subcategory \mathcal{N} , we have a *triangle* functor

$Q:\mathcal{C}\to\mathcal{C}/\mathcal{N}$

with the universality: For any triangle functor $F : \mathcal{C} \to \mathcal{D}$ such that $\mathcal{N} \subseteq \operatorname{Ker} F$, there uniquely exists a triangle functor $F' : \mathcal{C}/\mathcal{N} \to \mathcal{D}$ which makes the following diagram commutative.

Verdier quotient

Theorem (Verdier)

For a thick subcategory \mathcal{N} , we have a *triangle* functor

$$Q:\mathcal{C}\to \mathcal{C}/\mathcal{N}$$

with the universality: For any triangle functor $F : \mathcal{C} \to \mathcal{D}$ such that $\mathcal{N} \subseteq \operatorname{Ker} F$, there uniquely exists a triangle functor $F' : \mathcal{C}/\mathcal{N} \to \mathcal{D}$ which makes the following diagram commutative.

Heart of *t*-structure

Definition

 $(\mathcal{C}^{\leq 0},\mathcal{C}^{\geq 1})$: a pair of subcategories of $\mathcal{C}.$ The pair is called a t-structure if it satisfies:

- I Hom_{\mathcal{C}}(U, V) = 0 for any $U \in \mathcal{C}^{\leq 0}$ and $V \in \mathcal{C}^{\geq 1}$;
- $\mathbf{2} \ \mathcal{C}^{\leq 0}[1] \subseteq \mathcal{C}^{\leq 0};$
- $\label{eq:constraint} \begin{array}{ll} \mathbf{\mathcal{C}} = \mathcal{C}^{\leq 0} \ast \mathcal{C}^{\geq 1}, \\ \text{i.e., for any } X, \text{ there is a triangle } U \longrightarrow X \longrightarrow V \longrightarrow U[1] \text{ with } U \in \mathcal{C}^{\leq 0} \text{ and } \\ V \in \mathcal{C}^{\geq 1}. \end{array}$

Heart of *t*-structure

Theorem (Beilinson-Bernstein-Deligne)

 $(\mathcal{C}^{\leq 0}, \mathcal{C}^{\geq 1})$: a *t*-structure

- **I** We have an abelian category $\mathcal{H} := \mathcal{C}^{\leq 0} \cap \mathcal{C}^{\geq 0}$ called the *heart*.
- There exists a cohomological functor $H : \mathcal{C} \to \mathcal{H}$ with the universality: For any cohomological functor $F : \mathcal{C} \to \mathcal{A}$ such that $\mathcal{N} \subseteq \text{Ker } F$, there uniquely exists an exact functor $F' : \mathcal{H} \to \mathcal{A}$ which makes the following diagram commutative.

Here we set $\mathcal{N} := \operatorname{Ker} H$.

Heart of *t*-structure

Theorem (Beilinson-Bernstein-Deligne)

 $(\mathcal{C}^{\leq 0}, \mathcal{C}^{\geq 1})$: a *t*-structure

- **I** We have an abelian category $\mathcal{H} := \mathcal{C}^{\leq 0} \cap \mathcal{C}^{\geq 0}$ called the *heart*.
- **2** There exists a cohomological functor $H : \mathcal{C} \to \mathcal{H}$ with the universality: For any cohomological functor $F : \mathcal{C} \to \mathcal{A}$ such that $\mathcal{N} \subseteq \text{Ker } F$, there uniquely exists an exact functor $F' : \mathcal{H} \to \mathcal{A}$ which makes the following diagram commutative.

Here we set $\mathcal{N} := \operatorname{Ker} H$.

Heart of *t*-structure

Theorem (Beilinson-Bernstein-Deligne)

 $(\mathcal{C}^{\leq 0}, \mathcal{C}^{\geq 1})$: a *t*-structure

- **I** We have an abelian category $\mathcal{H} := \mathcal{C}^{\leq 0} \cap \mathcal{C}^{\geq 0}$ called the *heart*.
- **2** There exists a cohomological functor $H : \mathcal{C} \to \mathcal{H}$ with the universality: For any cohomological functor $F : \mathcal{C} \to \mathcal{A}$ such that $\mathcal{N} \subseteq \text{Ker } F$, there uniquely exists an exact functor $F' : \mathcal{H} \to \mathcal{A}$ which makes the following diagram commutative.

Here we set $\mathcal{N} := \operatorname{Ker} H$.

Aim

Notation

- $\blacksquare \ \mathcal{C}$: a triangulated category.
- \blacksquare $\mathcal N$: an extension-closed subcategory.

Aim

To construct an "exact" functor

$$Q:\mathcal{C}\to \mathcal{C}/\mathcal{N}$$

with a suitable universality which contains $\begin{cases} Verdier quotient \\ heart of t-structure \end{cases}$.

Verdier quotient vs Heart construction

- (1) Verdier quotient $\mathcal{N} \to \mathcal{C} \xrightarrow{Q} \mathcal{C}/\mathcal{N}$
 - $\blacksquare \ \mathscr{S}_{\mathcal{N}} := \{f \mid Q(f) : \text{iso}\} \text{ is a multiplicative system (compatible with triangulation)}.$
 - **2** $\mathcal{N} = \operatorname{Ker} Q$ is a thick subcategory.
 - **3** All appearing categories are triangulated.
 - All appearing functors are exact.

- $\blacksquare \mathscr{S}_{\mathcal{N}} := \{f \mid H(f) : iso\} \text{ is NOT a multiplicative system.}$
- **2** $\mathcal{N} = \operatorname{Ker} H$ is an extension-closed subcategory.
- **B** \mathcal{C} is triangulated. \mathcal{H} is abelian. What is \mathcal{N} ?
- I The cohomological functor H is NOT "exact".

Verdier quotient vs Heart construction

- (1) Verdier quotient $\mathcal{N} \to \mathcal{C} \xrightarrow{Q} \mathcal{C}/\mathcal{N}$
 - $\blacksquare \ \mathscr{S}_{\mathcal{N}} := \{f \mid Q(f) : \text{iso}\} \text{ is a multiplicative system (compatible with triangulation)}.$
 - **2** $\mathcal{N} = \operatorname{Ker} Q$ is a thick subcategory.
 - **3** All appearing categories are triangulated.
 - All appearing functors are exact.

- $\blacksquare \mathscr{S}_{\mathcal{N}} := \{f \mid H(f) : \text{ iso} \} \text{ is NOT a multiplicative system}.$
- **2** $\mathcal{N} = \operatorname{Ker} H$ is an extension-closed subcategory.
- **B** \mathcal{C} is triangulated. \mathcal{H} is abelian. What is \mathcal{N} ?
- I The cohomological functor H is NOT "exact".

Verdier quotient vs Heart construction

- (1) Verdier quotient $\mathcal{N} \to \mathcal{C} \xrightarrow{Q} \mathcal{C}/\mathcal{N}$
 - $\blacksquare \ \mathscr{S}_{\mathcal{N}} := \{f \mid Q(f) : \text{iso}\} \text{ is a multiplicative system (compatible with triangulation)}.$
 - **2** $\mathcal{N} = \operatorname{Ker} Q$ is a thick subcategory.
 - **3** All appearing categories are triangulated.
 - All appearing functors are exact.

- $\blacksquare \mathscr{S}_{\mathcal{N}} := \{f \mid H(f) : iso\} \text{ is NOT a multiplicative system.}$
- **2** $\mathcal{N} = \operatorname{Ker} H$ is an extension-closed subcategory.
- **B** \mathcal{C} is triangulated. \mathcal{H} is abelian. What is \mathcal{N} ?
- **4** The cohomological functor H is NOT "exact".

Verdier quotient vs Heart construction

- (1) Verdier quotient $\mathcal{N} \to \mathcal{C} \xrightarrow{Q} \mathcal{C}/\mathcal{N}$
 - $\blacksquare \ \mathscr{S}_{\mathcal{N}} := \{f \mid Q(f) : \text{iso}\} \text{ is a multiplicative system (compatible with triangulation)}.$
 - **2** $\mathcal{N} = \operatorname{Ker} Q$ is a thick subcategory.
 - **3** All appearing categories are triangulated.
 - All appearing functors are exact.

- $\blacksquare \mathscr{S}_{\mathcal{N}} := \{f \mid H(f) : \text{ iso}\} \text{ is NOT a multiplicative system.}$
- **2** $\mathcal{N} = \operatorname{Ker} H$ is an extension-closed subcategory.
- **B** \mathcal{C} is triangulated. \mathcal{H} is abelian. What is \mathcal{N} ?
- If The cohomological functor H is NOT "exact".

Verdier quotient vs Heart construction

- (1) Verdier quotient $\mathcal{N} \to \mathcal{C} \xrightarrow{Q} \mathcal{C}/\mathcal{N}$
 - $\blacksquare \ \mathscr{S}_{\mathcal{N}} := \{f \mid Q(f) : \text{iso}\} \text{ is a multiplicative system (compatible with triangulation)}.$
 - **2** $\mathcal{N} = \operatorname{Ker} Q$ is a thick subcategory.
 - **3** All appearing categories are triangulated.
 - All appearing functors are exact.

- $\blacksquare \mathscr{S}_{\mathcal{N}} := \{f \mid H(f) : \text{ iso}\} \text{ is NOT a multiplicative system.}$
- **2** $\mathcal{N} = \operatorname{Ker} H$ is an extension-closed subcategory.
- **3** C is triangulated. H is abelian. What is \mathcal{N} ?
- **4** The cohomological functor H is **NOT** "exact".

The first problem

 $\blacksquare \ \mathscr{S}_{\mathcal{N}} := \{f \mid Q(f) : \text{ iso} \} \text{ is NOT a multiplicative system}.$

Lemma

• For the case of the Verdier quotient, the following equalities hold.

$$\begin{aligned} \mathscr{P}_{\mathcal{N}} &:= \{f \mid Q(f) : \text{iso}\} \\ &= \{f \mid \mathsf{Cone}(f) \in \mathcal{N}\} \\ &= \left\{f \mid A \xrightarrow{x} B \xrightarrow{f} C \xrightarrow{y} A[1] \\ x, y \text{ factor through } \mathcal{N} \right\} \end{aligned}$$

For the case of the heart construction, the following equalities hold.

$$\begin{aligned} \mathscr{S}_{\mathcal{N}} &:= & \{f \mid H(f) : \text{ iso}\} \\ &= & \left\{ f \mid A \xrightarrow{x} B \xrightarrow{f} C \xrightarrow{y} A[1] \\ x, y \text{ factor through } \mathcal{N} \right\} \end{aligned}$$

The first problem

 $\blacksquare \ \mathscr{S}_{\mathcal{N}} := \{f \mid Q(f) : \text{ iso} \} \text{ is NOT a multiplicative system}.$

Lemma

• For the case of the Verdier quotient, the following equalities hold.

$$\begin{aligned} \mathscr{P}_{\mathcal{N}} &:= \{f \mid Q(f) : \text{iso}\} \\ &= \{f \mid \mathsf{Cone}(f) \in \mathcal{N}\} \\ &= \left\{f \mid A \xrightarrow{x} B \xrightarrow{f} C \xrightarrow{y} A[1] \\ x, y \text{ factor through } \mathcal{N} \right\} \end{aligned}$$

• For the case of the heart construction, the following equalities hold.

$$\mathcal{S}_{\mathcal{N}} := \{f \mid H(f) : \text{iso}\} \\ = \left\{ f \mid A \xrightarrow{x} B \xrightarrow{f} C \xrightarrow{y} A[1] \right\} \\ x, y \text{ factor through } \mathcal{N}$$

The first problem

$\blacksquare \ \mathscr{S}_{\mathcal{N}} := \{f \mid Q(f) : \text{ iso} \} \text{ is NOT a multiplicative system}.$

Proposition (O)

For an extension-closed subcategory $\mathcal{N} \subseteq \mathcal{C}$,

$$\mathscr{S}_{\mathcal{N}} := \left\{ f \mid A \xrightarrow{x} B \xrightarrow{f} C \xrightarrow{y} A[1] \\ x, y \text{ factor through } \mathcal{N} \right\}$$

forms a multiplicative system $\overline{\mathscr{S}_{\mathcal{N}}}$ in $\overline{\mathcal{C}} := \mathcal{C}/[\mathcal{N}]$. Thus, we have the Gabriel-Zisman localization

which is additive.

The first problem

 $\blacksquare \ \mathscr{S}_{\mathcal{N}} := \{f \mid Q(f) : \text{ iso} \} \text{ is NOT a multiplicative system}.$

Proposition (O)

For an extension-closed subcategory $\mathcal{N} \subseteq \mathcal{C}$,

$$\mathscr{S}_{\mathcal{N}} := \left\{ f \left| \begin{array}{c} A \xrightarrow{x} B \xrightarrow{f} C \xrightarrow{y} A[1] \\ x, y \text{ factor through } \mathcal{N} \end{array} \right\} \right\}$$

forms a multiplicative system $\overline{\mathscr{P}}_{\mathcal{N}}$ in $\overline{\mathcal{C}} := \mathcal{C}/[\mathcal{N}]$.

 $\begin{array}{c} \mathcal{C} & \xrightarrow{Q} & \mathcal{C}[\mathscr{S}_{\mathcal{N}}^{-1} \\ & & & \\ \end{array}$ ideal quot. $\overline{\mathcal{C}} & & \\ & & & \\ \hline \end{array} \quad GZ \text{ loc.} \end{array}$

which is additive.

The first problem

 $\blacksquare \ \mathscr{S}_{\mathcal{N}} := \{f \mid Q(f) : \text{ iso} \} \text{ is NOT a multiplicative system}.$

Proposition (O)

For an extension-closed subcategory $\mathcal{N} \subseteq \mathcal{C}$,

$$\mathscr{S}_{\mathcal{N}} := \left\{ f \left| \begin{array}{c} A \xrightarrow{x} B \xrightarrow{f} C \xrightarrow{y} A[1] \\ x, y \text{ factor through } \mathcal{N} \end{array} \right\} \right\}$$

forms a multiplicative system $\overline{\mathscr{P}}_{\mathcal{N}}$ in $\overline{\mathcal{C}} := \mathcal{C}/[\mathcal{N}]$. Thus, we have the Gabriel-Zisman localization

which is additive.

The third problem

3 C is triangulated. \mathcal{H} is abelian. What is \mathcal{N} ?

 \rightsquigarrow All appearing categories are extriangulated.

Definition (Nakaoka-Palu)

An extriangulated category is defined to be a triple $(\mathcal{C},\mathbb{E},\mathfrak{s})$ of

- an additive category C;
- an additive bifunctor $\mathbb{E}:\mathcal{C}^{op}\times\mathcal{C}\to\mathsf{Ab},$ where Ab is the category of abelian groups;
- a correspondence $\mathfrak s$ which associates each equivalence class of a sequence
 - $A \xrightarrow{x} B \xrightarrow{y} C$ in \mathcal{C} to an element in $\mathbb{E}(C, A)$ for any $C, A \in \mathcal{C}$,

which satisfies some 'additivity' and 'compatibility'.

We call the sequence, the morphisms x and y an \mathfrak{s} -conflation, \mathfrak{s} -inflation and \mathfrak{s} -deflation.

The forth problem

4 The cohomological functor H is **NOT** "exact".

Theorem (Sakai)

For any cohomological functor $H : \mathcal{C} \to \mathcal{A}$, there exists a relative extriangulated structure $(\mathcal{C}, \mathbb{E}_H, \mathfrak{s}_H)$ on \mathcal{C} such that

$$H: (\mathcal{C}, \mathbb{E}_H, \mathfrak{s}_H) \to \mathcal{A}$$

can give rise to an exact functor.

The forth problem

4 The cohomological functor H is **NOT** "exact".

Theorem (Sakai)

For any cohomological functor $H : \mathcal{C} \to \mathcal{A}$, there exists a relative extriangulated structure $(\mathcal{C}, \mathbb{E}_H, \mathfrak{s}_H)$ on \mathcal{C} such that

$$H: (\mathcal{C}, \mathbb{E}_H, \mathfrak{s}_H) \to \mathcal{A}$$

can give rise to an exact functor.

The second problem

2 $\mathcal{N} = \operatorname{Ker} H$ is an extension-closed subcategory.

Theorem (O)

 $\mathcal{N} = \operatorname{Ker} H$ is a thick subcategory in $(\mathcal{C}, \mathbb{E}_H, \mathfrak{s}_H)$.

Our localization

To formulate our localization

C: a triangulated category \mathcal{N} : an extension-closed subcategory of \mathcal{C}

 $\blacksquare \mathscr{S}_{\mathcal{N}} := \left\{ f \middle| \begin{array}{c} A \xrightarrow{x} B \xrightarrow{f} C \xrightarrow{y} A[1] \\ x, y \text{ factor through } \mathcal{N} \end{array} \right\} \text{ forms a multiplicative system in } \overline{\mathcal{C}}.$

To formulate our localization

 \mathcal{C} : a triangulated category \mathcal{N} : an extension-closed subcategory of \mathcal{C}

- **2** A relative structure $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$ on \mathcal{C} naturally determined by \mathcal{N} .
- **B** The localization of the extriangulated category $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$ by the thick subcategory \mathcal{N} .

To formulate our localization

 $\begin{array}{l} \mathcal{C}: \text{ a triangulated category} \\ \mathcal{N}: \text{ an extension-closed subcategory of } \mathcal{C} \end{array} \\ \end{array}$

- **2** A relative structure $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$ on \mathcal{C} naturally determined by \mathcal{N} .
- **B** The localization of the extriangulated category $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$ by the thick subcategory \mathcal{N} .

To formulate our localization

 \mathcal{C} : a triangulated category

 $\mathcal N$: an extension-closed subcategory of $\mathcal C$

$$\blacksquare \ \mathscr{S}_{\mathcal{N}} := \left\{ f \left| \begin{array}{c} A \xrightarrow{x} B \xrightarrow{f} C \xrightarrow{y} A[1] \\ x, y \text{ factor through } \mathcal{N} \end{array} \right\} \text{ forms a multiplicative system in } \overline{\mathcal{C}}. \right.$$

- **2** A relative structure $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$ on \mathcal{C} naturally determined by \mathcal{N} .
- **B** The localization of the extriangulated category $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$ by the thick subcategory \mathcal{N} .

Relative structure determined by \mathcal{N}

Proposition (O)

Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be a triangulated category and $\mathcal{N} \subseteq \mathcal{C}$ an extension-closed subcategory. For any objects $A, C \in \mathcal{C}$, we define a subset of $\mathbb{E}(C, A)$ as follows.

- A subset $\mathbb{E}_{\mathcal{N}}(C,A)$ is defined as the set of morphisms $h:C\to A[1]$ satisfying the condition:
- (Lex) For any morphism $N \xrightarrow{x} C$ with $N \in \mathcal{N}$, $h \circ x$ factors through an object in $\mathcal{N}[1]$.
- (Rex) For any morphism $A \xrightarrow{y} N$ with $N \in \mathcal{N}, \ y \circ h[-1]$ factors through an object in $\mathcal{N}[-1]$.

We have an extriangulated structure $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$ which are relative to $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$. Furthermore, \mathcal{N} is thick in $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$.

Localization of extriangulated categories

Theorem (Nakaoka-O-Sakai)

Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category and $\mathcal{N} \subseteq \mathcal{C}$ a thick subcategory. Define the classes of morphisms:

- $\mathcal{L} := \{ f \mid \mathsf{Cone}(f) \in \mathcal{N} \};$
- $\mathcal{R} := \{ f \mid \mathsf{CoCone}(f) \in \mathcal{N} \};$
- $\mathscr{S}_{\mathcal{N}}$:= finite composition of morphisms belonging to $\mathcal{L} \cup \mathcal{R}$.

If the class $\mathscr{S}_{\mathcal{N}}$ satisfies some conditions (*), we have an exact functor

$$(Q,\mu): (\mathcal{C},\mathbb{E},\mathfrak{s}) \to (\mathcal{C}/\mathcal{N},\widetilde{\mathbb{E}},\widetilde{\mathfrak{s}})$$

with the universality: For any exact functor $(F, \phi) : (\mathcal{C}, \mathbb{E}, \mathfrak{s}) \to (\mathcal{D}, \mathbb{F}, \mathfrak{t})$ such that $\mathcal{N} \subseteq \text{Ker } F$, there uniquely exists an exact functor $(F', \phi') : (\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}, \widetilde{\mathfrak{s}}) \to (\mathcal{D}, \mathbb{F}, \mathfrak{t})$ which makes the following diagram commutative.

Localization of extriangulated categories

Theorem (Nakaoka-O-Sakai)

Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be an extriangulated category and $\mathcal{N} \subseteq \mathcal{C}$ a thick subcategory. Define the classes of morphisms:

- $\mathcal{L} := \{ f \mid \mathsf{Cone}(f) \in \mathcal{N} \};$
- $\mathcal{R} := \{ f \mid \mathsf{CoCone}(f) \in \mathcal{N} \};$
- $\mathscr{S}_{\mathcal{N}}$:= finite composition of morphisms belonging to $\mathcal{L} \cup \mathcal{R}$.

If the class $\mathscr{S}_{\mathcal{N}}$ satisfies some conditions (*), we have an exact functor

$$(Q,\mu): (\mathcal{C},\mathbb{E},\mathfrak{s}) \to (\mathcal{C}/\mathcal{N},\widetilde{\mathbb{E}},\widetilde{\mathfrak{s}})$$

with the universality: For any exact functor $(F, \phi) : (\mathcal{C}, \mathbb{E}, \mathfrak{s}) \to (\mathcal{D}, \mathbb{F}, \mathfrak{t})$ such that $\mathcal{N} \subseteq \text{Ker } F$, there uniquely exists an exact functor $(F', \phi') : (\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}, \widetilde{\mathfrak{s}}) \to (\mathcal{D}, \mathbb{F}, \mathfrak{t})$ which makes the following diagram commutative.

Our localization

Theorem (O)

Let $(\mathcal{C},\mathbb{E},\mathfrak{s})$ be a triangulated category and $\mathcal{N}\subseteq\mathcal{C}$ an extension-closed subcategory.

- (0) \mathcal{N} is a thick subcategory in $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$.
- (1) We have an extriangulated localization $(Q, \mu) : (\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}}) \to (\mathcal{C}/\mathcal{N}, \mathbb{E}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}}).$
- (2) \mathcal{N} is thick in the triangulated category $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ if and only if $(\mathcal{C}/\mathcal{N}, \mathbb{E}_{\mathcal{N}}, \tilde{\mathfrak{s}}_{\mathcal{N}})$ is a triangulated category.

(3) Suppose that N is functorially finite. Then, N satisfies N * N[1] = C in the triangulated category (C, E, \$\$) if and only if (C, E_N, \$_N) is an abelian category. Furthermore, the functor Q : (C, E, \$\$) → C_N from the original triangulated category is cohomological.

\mathcal{N}	extension-closed	thick	$\mathcal{N} * \mathcal{N}[1] = \mathcal{C}$
\mathcal{C}/\mathcal{N}	extraingulated	triangulated	abelian

Our localization

Theorem (O)

Let $(\mathcal{C},\mathbb{E},\mathfrak{s})$ be a triangulated category and $\mathcal{N}\subseteq\mathcal{C}$ an extension-closed subcategory.

- (0) \mathcal{N} is a thick subcategory in $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$.
- (1) We have an extriangulated localization $(Q, \mu) : (\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}}) \to (\mathcal{C}/\mathcal{N}, \mathbb{E}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}}).$
- (2) \mathcal{N} is thick in the triangulated category $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ if and only if $(\mathcal{C}/\mathcal{N}, \mathbb{E}_{\mathcal{N}}, \tilde{\mathfrak{s}}_{\mathcal{N}})$ is a triangulated category.

(3) Suppose that N is functorially finite. Then, N satisfies N * N[1] = C in the triangulated category (C, E, \$\$) if and only if (C, E_N, \$_N) is an abelian category. Furthermore, the functor Q : (C, E, \$\$) → C_N from the original triangulated category is cohomological.

\mathcal{N}	extension-closed	thick	$\mathcal{N} * \mathcal{N}[1] = \mathcal{C}$
\mathcal{C}/\mathcal{N}	extraingulated	triangulated	abelian

Our localization

Theorem (O)

Let $(\mathcal{C},\mathbb{E},\mathfrak{s})$ be a triangulated category and $\mathcal{N}\subseteq\mathcal{C}$ an extension-closed subcategory.

- (0) \mathcal{N} is a thick subcategory in $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$.
- (1) We have an extriangulated localization $(Q, \mu) : (\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}}) \to (\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}}).$
- (2) \mathcal{N} is thick in the triangulated category $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ if and only if $(\mathcal{C}/\mathcal{N}, \mathbb{E}_{\mathcal{N}}, \tilde{\mathfrak{s}}_{\mathcal{N}})$ is a triangulated category.

(3) Suppose that N is functorially finite. Then, N satisfies N * N[1] = C in the triangulated category (C, E, s) if and only if (C, E_N, s_N) is an abelian category. Furthermore, the functor Q : (C, E, s) → C_N from the original triangulated category is cohomological.

\mathcal{N}	extension-closed	thick	$\mathcal{N} * \mathcal{N}[1] = \mathcal{C}$
\mathcal{C}/\mathcal{N}	extraingulated	triangulated	abelian

Our localization

Theorem (O)

Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be a triangulated category and $\mathcal{N} \subseteq \mathcal{C}$ an extension-closed subcategory.

- (0) \mathcal{N} is a thick subcategory in $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$.
- (1) We have an extriangulated localization $(Q, \mu) : (\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}}) \to (\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}}).$
- (2) \mathcal{N} is thick in the triangulated category $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ if and only if $(\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}})$ is a triangulated category.
- (3) Suppose that N is functorially finite. Then, N satisfies N * N[1] = C in the triangulated category (C, E, s) if and only if (C, E_N, s_N) is an abelian category. Furthermore, the functor Q : (C, E, s) → C_N from the original triangulated category is cohomological.

\mathcal{N}	extension-closed	thick	$\mathcal{N} * \mathcal{N}[1] = \mathcal{C}$
\mathcal{C}/\mathcal{N}	extraingulated	triangulated	abelian

Our localization

Theorem (O)

Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be a triangulated category and $\mathcal{N} \subseteq \mathcal{C}$ an extension-closed subcategory.

- (0) \mathcal{N} is a thick subcategory in $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$.
- (1) We have an extriangulated localization $(Q, \mu) : (\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}}) \to (\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}}).$
- (2) \mathcal{N} is thick in the triangulated category $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ if and only if $(\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}})$ is a triangulated category.
- (3) Suppose that N is functorially finite. Then, N satisfies N * N[1] = C in the triangulated category (C, E, s) if and only if (C, E_N, s_N) is an abelian category. Furthermore, the functor Q : (C, E, s) → C_N from the original triangulated category is cohomological.

\mathcal{N}	extension-closed	thick	$\mathcal{N} * \mathcal{N}[1] = \mathcal{C}$
\mathcal{C}/\mathcal{N}	extraingulated	triangulated	abelian

Cohomological functor

Assume $\mathcal{N} * \mathcal{N}[\mathbf{1}] = \mathcal{C}$. $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}^{R}, \mathfrak{s}_{\mathcal{N}}^{R}) \xrightarrow{\text{right exact}} (\mathcal{C}, \mathbb{E}, \mathfrak{s}) \xrightarrow{\text{half exact}} (\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}})$ $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}^{L}, \mathfrak{s}_{\mathcal{N}}^{L}) \xrightarrow{\text{left exact}} (\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}})$

Cohomological functor

Assume $\mathcal{N} * \mathcal{N}[1] = \mathcal{C}$. $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}^{R}, \mathfrak{s}_{\mathcal{N}}^{R}) \xrightarrow{\text{right exact}} (\mathcal{C}, \mathbb{N}, \tilde{\mathfrak{s}}_{\mathcal{N}}, \tilde{\mathfrak{s}}_{\mathcal{N}}) \xrightarrow{\text{half exact}} (\mathcal{C}/\mathcal{N}, \tilde{\mathbb{E}}_{\mathcal{N}}, \tilde{\mathfrak{s}}_{\mathcal{N}})$ $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}^{L}, \mathfrak{s}_{\mathcal{N}}^{L}) \xrightarrow{\text{left exact}} (\mathcal{C}/\mathcal{N}, \mathbb{E}_{\mathcal{N}}, \tilde{\mathfrak{s}}_{\mathcal{N}})$

References

Examples

- Verdier quotient.
- **2** The heart of a t-structure.
- **B** (Koenig-Zhu) The abelian quotient by a (2-)cluster tilting subcategory \mathcal{N} .
- **2** (Beligiannis, Buan-Marsh) Let \mathcal{U} be a rigid contravariantly finite subcategory of \mathcal{C} and consider the functor $(\mathcal{U}, -) : \mathcal{C} \to \mathsf{mod}\mathcal{U}$. Put $\mathcal{N} := \mathrm{Ker}(\mathcal{U}, -)$.

i (Abe-Nakaoka) Let $(\mathcal{U}, \mathcal{V})$ be a cotorsion pair of \mathcal{C} . Then, we have an abelian heart $\underline{\mathcal{H}}$ and a cohomological functor $H : \mathcal{C} \to \underline{\mathcal{H}}$. Put $\mathcal{N} := \operatorname{Ker} H$.

6 (Tattar) Let $(\mathcal{C}^{\leq 0}, \mathcal{C}^{\geq 1})$ be a *t*-structure. Put $\mathcal{N} := \mathcal{C}^{\leq 0}$.

- R. Bennett-Tennenhaus, A. Shah, Transport of structure in higher homological algebra. J. Algebra 574 (2021), 514–549.
- H. Nakaoka, Y. Ogawa, A. Sakai, Localization of extriangulated categories, J. Algebra 611 (2022), 341–398.
 - Y. Ogawa, Localization of triangulated categories with respect to extension-closed subcategories, arXiv:2205.12116
- A. Sakai, Relative extriangulated categories arising from half exact functors, arXiv:2111.14419