Partial Monoids	Partial Rings	

A new framework of partially additive algebraic geometry

Shingo Okuyama

National Institute of Technology, Kagawa College

2022.9.7

Shingo Okuyama

	Partial Monoids	Partial Rings		
000000000 0	00000	0000000	0000000	0000000

Outline

1 Introduction

- 2 Partial Monoids
- 3 Partial Rings
- 4 Partial Schemes

Shingo Okuyama

Introduction	Partial Monoids	Partial Rings	
000000000			

Introduction

$\mathbb Z$	$\mathbb{F}_q[X]$	(holomorphic functions on $\mathbb C$)
Q	$\mathbb{F}_q(X)$	(meromorphic functions on \mathbb{C})
?	curves over \mathbb{F}_q	curves over $\mathbb{C}(Riemann \ Surface)$
a prime $p \in \operatorname{Spec}(\mathbb{Z})$	$x \in \mathbb{F}_q$	$P \in \mathbb{C}$
$f(p) = [f \mod p] \in \mathbb{Z}/(p)$	$f(x) \in \mathbb{F}_q$	$f(P) \in \mathbb{C}$

(c.f. https://ncatlab.org/nlab/show/function+field+analogy)

Is there a field k such that \mathbb{Z} is a ring of regular functions of a curve over k?

Introduction	Partial Monoids	Partial Rings		
00000000	000000	000000	0000000	0000000

Partially additive ring A: a ring in which restricted pairs of elements are summable

- \rightarrow ideals, prime ideals, localization
- \rightarrow the Zariski topology on the set *X* of prime ideals of *A*, the sheaf of partial rings \mathcal{O}_X on *X*,
- \rightarrow "affine partial scheme" Spec $A = (X, \mathcal{O}_X)$
- \rightarrow "partial scheme"

Introduction	Partial Monoids	Partial Rings	
00000000			

 $\rightarrow\,$ We construct

• The projective space $\mathbb{P}^n(A)$ as a partial scheme

• The general linear group $\mathbb{GL}_n(A)$ as a partial group partial scheme

Shingo Okuyama

Field of characteristic one

- (1951) Steinberg : An analogy between the characters of \mathfrak{S}_n and those of $\operatorname{GL}_n(\mathbb{F}_q)$.
- (1957) J.Tits : Les groupes de Chevalley sur le "corps de caractéristique 1".
 For any Chevalley group G, G(F₁) should be the Weyl group W(G).
- (1992) Smirnov : An application of hypothetical 𝔽₁-geometry to ABC-conjecture.
- (1995) Manin : based on the "beautiful recent idea of Deninger-Kurokawa", he studies absolute motives, zeta functions over F₁, and its application to Riemann conjecture.
- (2003) Kurokawa-Ochiai-Wakayama : "Absolute Derivations."

■ 黒川信重:「絶対数学」

Shingo Okuyama

roduction	Partial Monoids	Partial Rings	Partial Schemes	\mathbb{GL}_n 0000000
■ (1999) FinSet	Soulé, (2010) Conne)+(an algebra A_X/\mathbb{C}	e-Consani : a variety	v over \mathbb{F}_1 is (a functor I \mathbb{F}_2)+(nat. trans. X -	$\operatorname{Ring} \rightarrow$

- $\operatorname{Hom}(A_X, \otimes_{\mathbb{Z}} \mathbb{C})) + \cdots$ such that \cdots
- (1994) Kato, (2005) Deitmar : \mathbb{F}_1 -schemes are defined as usual, but use commutative monoids instead of commutative rings.
- \blacksquare (2007) Durov : he uses a category of self-functors on Set (an algebraic monads) as the substitute for commutative rings
- (2007) Haran : using a category with some conditions (a generalization of the category of modules over a ring R), defines the set of prime ideals and Zariski topology on it.

Introduction	Partial Monoids	Partial Rings	
000000000			

(2009) Borger : λ -structure on a scheme over \mathbb{Z} is a descent data $\mathbb{Z} \to \mathbb{F}_1$,

- (2009) Toën-Vaquie : for any symmetric monoidal category (C, ⊗, 1), put Aff_C = CMon(C^{op}) and Grothendieck topology on it, results in F₁-schemes when the category is (Set₀, ×, *)
- (2012) Lorscheid : "Blueprints", (2013) Deitmar : "Sesquiads" : A blueprint is an equivalence relation on the semiring-semigroup N[A], where A is a commutative monoid. Then a scheme is defined analogously to the classical case.

Introduction	Partial Monoids	Partial Rings	Partial Schemes	\mathbb{GL}_n 0000000
$\mathbb{F}_1 = \left\{ 0, 1 \right\},$		$\begin{array}{c ccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 \\ \end{array} & \begin{array}{c ccc} \times & 0 \\ \hline 0 & 0 \\ 1 & 0 \\ \end{array}$	$\frac{1}{0}$	

For them (who think of commutative monoids as "rings"),

 $(An "\mathbb{F}_1$ -module") = (based set)

(A homomorphism between \mathbb{F}_1 -modules) = (a base preserving map)

$$\mathbb{F}_1^n = \{ 0, e_1, \dots, e_n \} =: n_+ \text{ (a based set)}$$

$$\operatorname{End}(\mathbb{F}_1^n) = \{ \text{ map between based sets } n_+ \to n_+ \}$$

$$\operatorname{GL}_n(\mathbb{F}_1) = \operatorname{Aut}(\mathbb{F}_1^n) = \{ \text{ bijection between based sets } n_+ \to n_+ \} \cong \mathfrak{S}_n = W(\operatorname{GL}_n)$$

Shingo Okuyama

Introduction	Partial Monoids	Partial Rings		
0000000000	000000	000000	0000000	0000000

On the same footing,

$$#\mathbb{P}^{n}(\mathbb{F}_{q}) = 1 + q + \dots + q^{n} \longrightarrow n + 1 \ (q \to 1)$$

and
$$#\mathbb{P}^{n}(\mathbb{F}_{1}) = n + 1$$

by counting the number of lines through origin in $\mathbb{F}_1^{n+1} = (n+1)_+$.

We give another explanation for these phenomena, which might be (hopefully) more reasonable.

Shingo Okuyama

Introduction ooooooooooo	Partial Monoids	Partial Rings	

module	\otimes	unit object	ring	geometry
$\mathcal{A}b$	\otimes	Z	commutative ring / $CRing$	Varieties and Schemes — Grothendieck et. al.
$\mathcal{S}et$	×	$* = \{ 1 \}$	commutative monoid / $\mathcal{C\!M}\mathit{on}$	\mathbb{F}_1 -Schemes — Deitmar (2005)
$\mathcal{P}\mathcal{M}on$	\otimes	\mathbb{F}_1^+	"partial ring" / $\mathcal{PR}ing$	"partial scheme"

Shingo Okuyama

Partial Monoids ●00000	Partial Rings ooooooo	

Partial Monoids

A partial monoid is

 $(A,0){:}\ {\rm a}\ {\rm based}\ {\rm set}\ ,\qquad A_2{:}\ {\rm a}\ {\rm subset}\ {\rm of}\ A\times A\qquad {\rm and}\qquad {\rm a}\ {\rm map}\ +{:}\ A_2\to A$ which enjoys the following properties

1 (Unit) $A \times \{0\} \cup \{0\} \times A \subseteq A_2$ and a + 0 = a = 0 + a,

2 (Commutative) $(a_1, a_2) \in A_2 \iff (a_2, a_1) \in A_2$ and $a_1 + a_2 = a_2 + a_1$,

3 (Associative)

$$(a_1, a_2) \in A_2, (a_1 + a_2, a_3) \in A_2 \iff (a_2, a_3) \in A_2, (a_1, a_2 + a_3) \in A_2$$

and $(a_1 + a_2) + a_3 = a_1 + (a_2 + a_3)$.

If 3 is not required, A is called a **partial magma**.

Shingo Okuyama

	Partial Monoids ○●○○○○	Partial Rings		
A map $f:$	$4 \rightarrow B$ between partia	al monoids (magmas) is a homomorphism	if

- 1 f(0) = 0,
- **2** $(a_1, a_2) \in A_2 \implies (f(a_1), f(a_2)) \in B_2$ and
- **3** $f(a_1 + a_2) = f(a_1) + f(a_2), \ \forall (a_1, a_2) \in A_2$

Let $\mathcal{P\!M}\mathit{on}~(\mathcal{P\!M}\mathit{ag})$ denote the category of partial monoids (magmas)

We have canonical fully faithful embeddings of categories

Shingo Okuyama

Examples (Partial Monoids)

- **1** Every based set (A, 0) is a partial monoid with $A_2 = A \times \{0\} \cup \{0\} \times A$.
- 2 Every commutative monoid (A, 0) is a partial monoid with $A_2 = A \times A$. (So is an abelian group.)
- 3 Every partial monoid of order 2 is isomorphic to one of the following:

$$\mathbb{F}_{1}^{+} = \frac{+ \mid 0 \mid 1}{0 \mid 0 \mid 1}, \quad \mathbb{F}_{2}^{+} = \frac{+ \mid 0 \mid 1}{0 \mid 0 \mid 1}, \quad \mathbb{B}^{+} = \frac{+ \mid 0 \mid 1}{0 \mid 0 \mid 1}, \quad \mathbb{B}^{+} = \frac{+ \mid 0 \mid 1}{1 \mid 1 \mid 1}$$

(We have inclusions $\mathbb{F}_1^+ \hookrightarrow \mathbb{F}_2^+$ and $\mathbb{F}_1^+ \hookrightarrow \mathbb{B}^+$.)

Shingo Okuyama

4 For any abelian monoid M and any subset $A \subseteq M$ which contains 0, A is given a partial magma structure by putting

 $A_2 = \{ (a_1, a_2) \mid a_1 + a_2 \in A \}.$

In general, A is not associative.

ex. $A = \{0, 1, 2, 3, 6\} \subseteq \mathbb{N}$. Its "associative closure" is $A_a = \{0, 1, 2, 3, 4, 5, 6\}$ since

$$(1+2) + 3 = 1 + (2+3)$$

= 2 + (1 + 3)

implies that $2 + 3 \in A_a$ and $1 + 3 \in A_a$.

Shingo Okuyama

Facts about $\mathcal{PM}on$ ($\mathcal{PM}ag$)

- A homomorphism in *PMon* (*PMag*) is monic if and only if it is an injective map (monic in *Set*).
- There exist homomorphisms in *PMon* (*PMag*) that are monic and epic but not surjective.So *PMon* (*PMag*) is not a balanced category. ex. Two inclusions in

$$\mathbb{F}_1^+ \longrightarrow \mathbb{N}^+ \longrightarrow \mathbb{Z}^+$$

are both monic and epic.

- **\square** $\mathcal{PM}on$ ($\mathcal{PM}ag$) has all small limits and colimits.
- $\blacksquare \mathcal{PM}ag \text{ is a regular category, but } \mathcal{PM}on \text{ is not.}$

Shingo Okuyama

Partial Rings

A **partial ring** is a partial monoid equipped with a bilinear, commutative, associative product with identity.

A weak partial ring is defined similarly, but starting with a partial magma.

Shingo Okuyama

Examples (Partial Rings)

- A commutative monoid with absorbing element 0 is a partial ring.
- 2 A commutative semiring is a partial ring. (So is a commutative ring.)
- **3** A partial ring of order 2 is one of $\mathbb{F}_1, \mathbb{F}_2$ and \mathbb{B} .

$$\mathbb{F}_{1}^{+} = \underbrace{\begin{array}{c|c} + & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 \\ \end{array}}_{,} \mathbb{F}_{2}^{+} = \underbrace{\begin{array}{c|c} + & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}}_{,} \mathbb{B}^{+} = \underbrace{\begin{array}{c|c} + & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}}_{,} \mathbb{F}_{1}^{\bullet}, \mathbb{F}_{2}^{\bullet}, \mathbb{B}^{\bullet} = \underbrace{\begin{array}{c|c} \times & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}}_{,} \mathbb{B}^{+} = \underbrace{\begin{array}{c|c} + & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ \end{array}}_{,} \mathbb{F}_{1}^{\bullet}, \mathbb{F}_{2}^{\bullet}, \mathbb{B}^{\bullet} = \underbrace{\begin{array}{c|c} \times & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}}_{,} \mathbb{F}_{1}^{\bullet}, \mathbb{F}_{2}^{\bullet}, \mathbb{B}^{\bullet} = \underbrace{\begin{array}{c|c} \times & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}}_{,} \mathbb{F}_{1}^{\bullet}, \mathbb{F}_{2}^{\bullet}, \mathbb{B}^{\bullet} = \underbrace{\begin{array}{c|c} \times & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ \mathbb{F}_{1}^{\bullet}, \mathbb{F}_{2}^{\bullet}, \mathbb{$$

4 According to an inaccurate investigation, there are 17 non-isomorphic partial rings of order 3. Among them, only one is a ring, five are semirings which are not rings, and the remaining 11 are partial rings that are not semirings.

Partial Monoids	Partial Rings	

- **5** The interval [-1, 1] is a weak partial subring of \mathbb{R} .
- **6** The interval [0, 1] is a partial subring of \mathbb{R} .
- 7 The unit disk $D = \{ z \mid |z| \le 1 \}$ is a weak partial subring of \mathbb{C} . (The inclusion $D \hookrightarrow \mathbb{C}$ is the canonical morphism of the associative closure.)
- 8 Partial rings sitting between $\langle x_1, \ldots, x_n \rangle$ and $\mathbb{N}[x_1, \ldots, x_n]$ are quite useful, where $\langle x_1, \ldots, x_n \rangle$ is the commutative monoid generated by indeterminates x_1, \ldots, x_n with an absorbing element 0 adjoined, and $\mathbb{N}[x_1, \ldots, x_n]$ denotes the polynomial semiring of n indeterminates.

For example if $Z = \mathbb{F}_1 \langle x, y | x + y \rangle$ denotes the smallest partial subring of $\mathbb{N}[x, y]$ which contains $\langle x, y \rangle$ and in which x + y exists, then there is a bijection

 $\operatorname{Hom}_{\mathcal{PR}ing}(Z,A) \cong A_2$

for any partial ring A.

Shingo Okuyama

A-modules

Let *A* be a partial ring. An *A*-module is a partial monoid *M* which admits a bilinear, associative and unital action of *A* on it. More precisely, a partial monoid *M* is an *A*-module if $a \cdot m \in M$ is determined for each $a \in A$ and $m \in M$, and

1 If
$$a \in A$$
 then $a \cdot 0 = 0$.

2 If
$$a \in A$$
 and $(m_1, m_2) \in M_2$, then $(a \cdot m_1, a \cdot m_2) \in M_2$
and $a \cdot (m_1 + m_2) = a \cdot m_1 + a \cdot m_2$.

3 If
$$m \in M$$
 then $0 \cdot m = 0$.

4 If
$$(a_1, a_2) \in A$$
 and $m \in M$, then $(a_1 \cdot m, a_2 \cdot m) \in M_2$
and $(a_1 + a_2) \cdot m = a_1 \cdot m + a_2 \cdot m$.

5 If
$$a, b \in A$$
 and $m \in M$, then $(ab) \cdot m = a \cdot (b \cdot m)$.

6 If
$$m \in M$$
 then $1 \cdot m = m$.

Shingo Okuyama

Examples (*A*-modules)

Direct product

$$A^{n} = \{ (a_{1}, \dots, a_{n}) \mid a_{i} \in A, \forall i \},\$$
$$(A^{n})_{2} = \{ (a_{1}, \dots, a_{n}; b_{1}, \dots, b_{n}) \in (A^{n})^{2} \mid (a_{i}, b_{i}) \in A_{2}, \forall i \}.$$

2 Summable *n*-tuples

$$A_n = \{ (a_1, \dots, a_n) \in A^n \mid a_1 + \dots + a_n \text{ is defined in } A \},$$

 $(A_n)_2 = A_{2n}.$

This is a nice approximation to the dual of A^n .

Shingo Okuyama

Partial Monoids	Partial Rings ooooo●o	

Localization

Let A be a partial ring and S be a multiplicative subset. Let M be an $A\operatorname{-module}.$ We put

$$S^{-1}M = \left\{ \left. \frac{m}{s} \mid m \in M, s \in S \right. \right\}$$
$$(S^{-1}M)_2 = \left\{ \left. \left(\frac{m}{s}, \frac{n}{t} \right) \in S^{-1}M^2 \right| \exists u \in S \text{ s.t. } (utm, usn) \in M_2 \right\}.$$

Then $S^{-1}M$ has the universality as usual.

Shingo Okuyama

Partial Schemes

An *A*-submodule of a partial ring *A* is called an **ideal.** An ideal $P \subseteq A$ is called a **prime ideal** if $A \setminus P$ is multiplicatively closed. Let $X = X_A$ denotes the set of prime ideals of *A*. We endow *X* a topology generated by

 $D(f) = \{ P \in X \mid f \notin P \}, f \in A.$

For each open set $U \subseteq X$, we put $\mathcal{O}'(U) = S_U^{-1}A$ where $S_U = \{ s \in A \mid s \notin P, \forall P \in U \}$. Then \mathcal{O}'_X is a presheaf over the space X. Its sheafification is denoted by \mathcal{O}_X . Now the partial-ringed space (X, \mathcal{O}_X) is called an **affine partial scheme** and denoted by Spec A. Finally, a **partial scheme** is a locally partial-ringed space that is locally isomorphic to an affine partial scheme.

Shingo Okuyama

Partial Monoids	Partial Rings	Partial Schemes	
		0000000	

1 X_A is quasi-compact for any partial ring A.

- 2 For any $f \in A$, there is a natural homomorphism $\mathcal{O}_X(D(f)) \to S_f^{-1}A$, which is injective.
- 3 There is a bijection

 $\operatorname{Hom}_{\operatorname{\mathcal{P}arSch}}(\operatorname{Spec} A, \operatorname{Spec} B) \cong \operatorname{Hom}_{\operatorname{\mathcal{P}Ring}}(B, \Gamma(\mathcal{O}_{X_A}(\operatorname{Spec} A))).$

4 If *F* is a "partial field", then $\Gamma(\mathcal{O}_{X_F}(\operatorname{Spec} F))$ is naturally isomorphic to *F*, so that Hom $_{\mathcal{P}arSch}(\operatorname{Spec} F, \operatorname{Spec} B) \cong \operatorname{Hom}_{\mathcal{P}Bing}(B, F).$

Shingo Okuyama

	Partial Monoids	Partial Rings	Partial Schemes	
\mathbb{P}^n				

Let *B* be a partial subring of $\mathbb{N}[y_0, \ldots, y_n]$ that contains $\langle y_0, \ldots, y_n \rangle$;

$$\langle y_0,\ldots,y_n\rangle\subseteq B\subseteq\mathbb{N}[y_0,\ldots,y_n].$$

We give a grading to B so that $\deg y_i = 1$. We put $B^{(i)} = S_i^{-1}B$, where $S_i = \{ y_i^r \mid r \in \mathbb{N} \}$ and let $A^{(i)}$ denote the 0-th part of $B^{(i)}$. If $T_j = \{ (y_j/y_i)^r \mid r \in \mathbb{N} \}$ denotes the multiplicative subset of $A^{(i)}$, we have $T_i^{-1}A^{(j)} = T_j^{-1}A^{(i)} =: A^{(i,j)}$. Now put $X_i = \operatorname{Spec} A^{(i)}$ and glue them together on open partial subschemes $\operatorname{Spec}(T_i^{-1}A^{(i)}) \subseteq X_i$. The resulting partial scheme is denoted by \mathbb{P}^n_B .

Remark. The above construction is a direct translation of the corresponding part of Mumford's Red Book.

Shingo Okuyama

	Partial Monoids	Partial Rings	Partial Schemes	
000000000	000000	000000	0000000	0000000

Now let $B = \mathbb{F}_1(y_0, \dots, y_n \mid y_0 + \dots + y_n)$. (This means that we are using A_{n+1} as the "ambient space".) Then

$$A^{(i)} = \{ ext{ subsum of } (y_0/y_i + \dots + 1 + \dots + y_n/y_i)^r \mid r \in \mathbb{N} \ \}$$

and

$$A^{(i,j)}=\{ \ (ext{subsum of} \ (y_0/y_i+\dots+1+\dots+y_n/y_i)^r) imes (y_i/y_j)^s \ | \ r,s\in \mathbb{N} \ \}$$
 .

If F is a partial field, then there is a one-to-one correspondence

 $\left\{\begin{array}{c}F\text{-valued points}\\\operatorname{Spec} F \to X_i\end{array}\right\} \longleftrightarrow \left\{\begin{array}{c}\text{partial ring homomorphisms}\\A^{(i)} \to F\end{array}\right\}$

We put
$$A^{(i)}(F) = \operatorname{Hom}_{\mathcal{PR}ing}(A^{(i)}, F).$$

Shingo Okuyama

Partial Monoids	Partial Rings 0000000	Partial Schemes 0000●000	

Then we have

$$\left. \begin{array}{c} F\text{-valued points} \\ \operatorname{Spec} F \to \mathbb{P}^n \end{array} \right\} \longleftrightarrow \coprod_{i=1}^n A_i(F) / \sim \end{array}$$

as sets, where for $v_i \in A_i(F)$ and $v_j \in A_j(F)$, $v_i \sim v_j$ if there exists a homomorphism $v \colon A^{(i,j)} \to F$ such that $v|_{A^{(i)}} = v_i$ and $v|_{A^{(j)}} = v_j$. So we may write

$$\mathbb{P}^n(F) = \prod_{i=1}^n A_i(F) / \sim .$$

Shingo Okuyama

Partial Monoids	Partial Rings	Partial Schemes	
		00000000	

For any subset $\{i_1, \ldots, i_r\} \subseteq \{0, 1, \ldots, n\}$, we put

$$A_{i_1,\ldots,i_r}(F) = \operatorname{Hom}_{\mathcal{PR}ing}\left(A^{(i_1,\ldots,i_r)},F\right).$$

Then as sets,

$$A_{i_1,\dots,i_r}(F) \cong \left(\begin{array}{c} n\text{-tuples } (x_1,\dots,x_n) \text{ for which} \\ 1+x_1+\dots+x_n \text{ can be calculated in } F \\ \text{and } x_1,\dots,x_{r-1} \neq 0 \end{array}\right)$$

.

For $F = \mathbb{F}_q$ (including the case q = 1!), we have that

$$#A_{i_1,\dots,i_r}(F) = (\kappa - 1)^{r-1} \kappa^{n-r+1},$$

where $\kappa = \kappa(F)$ denotes the number of elements of *F* which is summable with 1.

Shingo Okuyama

	Partial Monoids	Partial Rings	Partial Schemes	
000000000	000000	000000	00000000	0000000

Now we can calculate $\#\mathbb{P}^n(F)$ as

$$#\mathbb{P}^{n}(F) = \sum_{r=1}^{n+1} (-1)^{r-1} \binom{n+1}{r} (\kappa-1)^{r-1} \kappa^{n-r+1}$$
$$= \frac{1}{\kappa-1} \left(\sum_{r=0}^{n+1} (-1)^{r-1} \binom{n+1}{r} (\kappa-1)^{r-1} \kappa^{n-r+1} + \kappa^{n+1} \right)$$
$$= -\frac{(\kappa-(\kappa-1))^{n+1} - \kappa^{n+1}}{\kappa-1}$$
$$= \frac{\kappa^{n+1} - 1}{\kappa-1} = \kappa^{n} + \dots + \kappa + 1.$$

Of course, $\kappa(\mathbb{F}_q) = q$, where \mathbb{F}_q denotes the finite field with q elements, and $\kappa(\mathbb{F}_1) = 1$.

Shingo Okuyama

Let A be a partial ring. An A-submodule of A_n given by

$$A_{(n)} = \left\{ \begin{array}{c} (a_1, \dots, a_n) \in A^n \middle| \begin{array}{c} (c_1 a_1, \dots, c_n a_n) \in A_n, \\ \forall (c_1, \dots, c_n) \in A^n \end{array} \right\}$$

is isomorphic to the dual A-module of A^n .

Accordingly, the *A*-module of the *A*-homomorphisms $A^n \to A^m$ is isomorphic to the *A*-module $M_{m,n}(A)$ of $m \times n$ -matrices whose rows are in $A_{(n)}$.

Shingo Okuyama

	Partial Monoids	Partial Rings		\mathbb{GL}_n
000000000	000000	000000	0000000	000000

Unfortunately, the correspondence

$$A \mapsto A_{(n)}$$

is not a (Set-valued) functor.

Nor is the correspondence

 $A \mapsto M_{m,n}(A).$

Shingo Okuyama

We say that a partial ring A is **good** if $A_n = A_{(n)}$.

- 1 Abelian monoids and commutative rings are good.
- 2 Every good partial field is a semifield or a commutative group.
- 3 There are good partial rings that are not abelian monoids nor commutative rings [0, 1] and $\mathbb{N}_1[x]$ are such.
- The correspondence

 $A \mapsto A_n$

is a (Set-valued) functor. So is the correspondence

 $A \mapsto M'_{m,n}(A),$

where $M'_{m,n}(A)$ is the A-module of $m \times n$ matrices whose rows are in A_n .

Shingo Okuyama

Introduction 000000000	Partial Monoids	Partial Rings	Partial Schemes	\mathbb{GL}_n 0000000
We have that				
$1 M_n(A) = N$	$M_{n,n}(A)$ is a non-	commutative monoid.		

- 2 $M'_n(A) = M'_{n,n}(A)$ is a non-commutative partial magma.
- 3 $M_n(A) = M'_n(A)$ for a good partial ring A.

Let $GL_n(A)$ denote the subset of $M_n(A)$ which consists of invertible matrices. Put $GL'_n(A) = GL_n(A) \cap M'_n(A)$.

Then we have that

- **1** $GL_n(A)$ is a non-commutative group.
- **2** $GL'_n(A)$ is a non-commutative partial group.
- 3 $GL_n(A) = GL'_n(A)$ for a good partial ring A.

Shingo Okuyama

	Partial Monoids	Partial Rings		\mathbb{GL}_n
000000000	000000	000000	0000000	0000000

Theorem

There exists a representable functor $\mathbb{GL}_n : \mathcal{PR}ing \to \mathcal{PG}rp$ which enjoys the following properties:

- 1 *its restriction to the category of good partial rings factors through* $\mathbb{GL}_n: \mathcal{PR}ing \to \mathcal{G}rp.$
- **2** $\mathbb{GL}_n(A)$ is the group of *n*-th general linear group with entries in *A*, if *A* is a commutative rings with 1, and
- **3** $\mathbb{GL}_n(\mathbb{F}_1) = \mathfrak{S}_n$ is *n*-th symmetric group.

	Partial Monoids	Partial Rings		\mathbb{GL}_n
000000000	000000	000000	0000000	0000000

Thank you for your attention!

Shingo Okuyama