Characterization of eventually periodic modules and its applications

Satoshi Usui

Tokyo University of Science

September 7, 2022

1. Motivation

- \bullet R : a left noetherian ring
- Modules = finitely generated left modules

Definition (Buchweitz '86, Orlov '04)

 $\mathcal{D}_{\rm sg}(R):=\mathcal{D}^{\rm b}(R\operatorname{\!-mod})/\mathcal{K}^{\rm b}(R\operatorname{\!-proj})$: the singularity category of R

• $\mathrm{pd}_R M < \infty \iff M \cong 0$ in $\mathcal{D}_{\mathrm{sg}}(R)$

Question

Can we use $\mathcal{D}_{sg}(R)$ to describe homological properties of M with $pd_R M = \infty$?

 \bullet In the rest, R : a left artin ring

Definition

(1)
$$_{R}M$$
: periodic $\stackrel{\text{def}}{\iff} \Omega^{p}_{R}(M) \cong M$ in R -mod $(\exists p > 0)$

The least such \boldsymbol{p} is called the period of \boldsymbol{M}

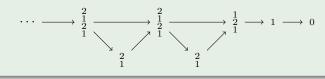
(2) $_RM$: eventually periodic $\stackrel{\text{def}}{\iff} \Omega^n_R(M)$ is non-zero periodic $(\exists n \ge 0)$

Remark Eisenbud ('80) dealt with eventually periodic modules

Example

$$\Lambda: 1 \xrightarrow{\alpha}_{\beta} 2 \quad \alpha \beta \alpha = 0; \qquad P_1 = \frac{1}{2} \qquad P_2 = \frac{2}{2}$$

• $S_1 = 1$ is eventually periodic, because



Definition (B '86)

$$\widehat{\operatorname{Ext}}_{R}^{i}(M,M) := \operatorname{Hom}_{\mathcal{D}_{\operatorname{sg}}(R)}(M,M[i]) \quad (i \in \mathbb{Z})$$

is called the Tate cohomology group of $_{R}\!M$

 $\underline{\mathsf{Remark}} \ \ \mathsf{He} \ \text{observed that} \ \widehat{\mathrm{Ext}}^i_{\mathbb{Z}G}(\mathbb{Z},\mathbb{Z}) \cong \widehat{\mathrm{H}}^i(G,\mathbb{Z}) \ \text{for a finite group} \ G$

• $\widehat{\operatorname{Ext}}_{R}^{\bullet}(M,M) = \bigoplus_{i \in \mathbb{Z}} \widehat{\operatorname{Ext}}_{R}^{i}(M,M)$: the Tate cohomology ring of $_{R}M$

<u>Remark</u> $\operatorname{pd}_R M < \infty \iff \widehat{\operatorname{Ext}}_R^{\bullet}(M, M) = 0$

Theorem (U '21)

Λ : a fin. dim. Gorenstein algebra (i.e. $id_{\Lambda}\Lambda$, $id \Lambda_{\Lambda} < \infty$). TFAE for $_{\Lambda}M$.

- O M is eventually periodic
- $\textcircled{G} \ \widehat{\operatorname{Ext}}^{\bullet}_{\Lambda}(M,M)$ has a non-zero homogeneous invertible element of positive degree

Our aim is to

extend the above theorem to more general rings!

 \underline{Remark} Eventually periodic modules have been characterized by Croll ('13) and Bergh ('06)

2. Main result

Theorem (U '22)

R: a left artin ring, and p > 0. TFAE for $_RM$.

$$\ \ \, \Omega^{n+p}_R(M)\cong\Omega^n_R(M)(\neq 0) \ \, \text{in R-mod for some $n\geq 0$}$$

 $\textcircled{O} \ \widehat{\operatorname{Ext}}^{\bullet}_R(M,M) \text{ has a homog. invertible element } \chi(\neq 0) \text{ with } \deg \chi = p$

<u>Remark</u> $\widehat{\operatorname{Ext}}_R^{\bullet}(M, M)$ is related only to p in $\Omega_R^{n+p}(M) \cong \Omega_R^n(M)$

 $\begin{array}{ll} \underline{\operatorname{Proof}} & \text{The existence of an invertible element } \chi \text{ with } \deg \chi = p \\ & \Longleftrightarrow & M \cong M[p] \text{ in } \mathcal{D}_{\operatorname{sg}}(R) \\ & \Longleftrightarrow & \Omega_R^{l+p}(M) \cong \Omega_R^l(M) & \text{ in } R\operatorname{-mod} \quad (\exists l \ge 0) \\ & \Leftrightarrow & \Omega_R^{n+p}(M) \cong \Omega_R^n(M) & \text{ in } R\operatorname{-mod} \quad (\exists n \ge 0) \\ & \text{Hom}_{\mathcal{D}_{\operatorname{sg}}(R)}(M, M[p]) \cong \lim_{l \to \infty} & \underline{\operatorname{Hom}}_R(\Omega_R^{l+p}(M), \Omega_R^l(M)) \text{ (Keller-Vossieck '87)} \end{array}$

Definition (Küpper '10)

 $\Lambda: \textit{eventually periodic} \stackrel{def}{\longleftrightarrow} {}_{\Lambda^e}\Lambda \text{ is eventually periodic, where } \Lambda^e = \Lambda \otimes \Lambda^{\mathrm{op}}$

<u>Recall</u> Λ : *periodic* $\stackrel{\text{def}}{\iff} {}_{\Lambda^{e}}\Lambda$ is periodic

Example

$$\Lambda: 1 \xrightarrow{\alpha}_{\beta} 2 \quad \alpha \beta \alpha = 0 \quad \text{and} \quad \Gamma: \ \alpha \bigcap 1 \xrightarrow{\beta} 2 \quad \alpha^2 = 0$$

- $\Omega^2_{\Lambda^{\rm e}}(\Lambda)$ and $\Omega^2_{\Gamma^{\rm e}}(\Gamma)$ are the first periodic syzygies
- $\bullet~\Gamma$ is Gorenstein, while Λ is not Gorenstein

Definition (Wang '15)

 $\widehat{\operatorname{HH}}^i(\Lambda):=\widehat{\operatorname{Ext}}^i_{\Lambda^{\operatorname{e}}}(\Lambda,\Lambda): \text{ the $Tate-Hochschild cohomology group of Λ}$

Theorem (W '21)

 $\widehat{HH}^{\bullet}(\Lambda)=\widehat{Ext}^{\bullet}_{\Lambda^{e}}(\Lambda,\Lambda)$ is graded commutative

• Applying our main result to $_RM={}_{\Lambda^{\rm e}}\Lambda,$ we have

Corollary TFAE for a finite dimensional algebra Λ • Λ is eventually periodic • $\widehat{HH}^{\bullet}(\Lambda)$ has a homog. invertible element $\chi \neq 0$ with $\deg \chi > 0$ In this case, $\widehat{HH}^{\bullet}(\Lambda) \cong \widehat{HH}^{\geq 0}(\Lambda)[\chi^{-1}]$

3. Applications

- There are two results obtained from the corollary
- Let Λ and Γ be finite dimensional algebras over a field k

Definition (W '15)

 $(_{\Lambda}M_{\Gamma}, _{\Gamma}N_{\Lambda})$ defines a singular equivalence of Morita type with level (SEML) $l \ge 0$ $\stackrel{\text{def}}{\longleftrightarrow}$

 $\begin{tabular}{ll} \begin{tabular}{ll} {\bf O} & M \otimes_{\Gamma} N \cong \Omega^l_{\Lambda^{\rm e}}(\Lambda) \mbox{ in } \Lambda^{\rm e} \mbox{-} \underline{{\rm mod}} & \mbox{ and } & N \otimes_{\Lambda} M \cong \Omega^l_{\Gamma^{\rm e}}(\Gamma) \mbox{ in } \Gamma^{\rm e} \mbox{-} \underline{{\rm mod}} & \end{tabular} \end{tabular}$

Theorem (W '15)

$$\bullet \ \Lambda \overset{\rm SEML}{\sim} \Gamma \implies \mathcal{D}_{\rm sg}(\Lambda) \cong \mathcal{D}_{\rm sg}(\Gamma) \ \text{ and } \ \widehat{\rm HH}^{\bullet}(\Lambda) \cong \widehat{\rm HH}^{\bullet}(\Gamma)$$

• There are many invariants under SEML such as fin.dim $< \infty$ (W '15), finiteness condition (Skartsæterhagen '16), being syzygy-finite, being Igusa-Todorov, injectives generation, and projectives cogeneration (Qin '21)

Theorem (Erdmann-Skowroński '08)

Assume $\Lambda \overset{\rm der}{\sim} \Gamma.$ If Λ is connected and periodic, then so is $\Gamma.$ Moreover, their periods coincide.

Theorem (U '22)

Assume $\Lambda \stackrel{\text{SEML}}{\sim} \Gamma$. If Λ is eventually periodic, then so is Γ . Moreover, the periods of their periodic syzygies coincide.

 \bullet The key is the fact that $\widehat{HH}^{\bullet}(\Lambda)\cong \widehat{HH}^{\bullet}(\Gamma)$

Example

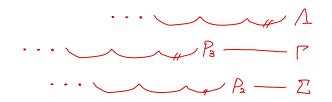
$$\Lambda: \alpha \bigcap_{\tau} 1 \qquad \alpha^2 = 0,$$

$$\Gamma: \alpha \bigcap_{\tau} 1 \xrightarrow{\beta} 2 \qquad \alpha^2 = 0 = \beta \alpha,$$

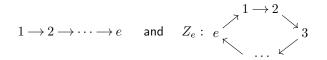
$$\Sigma: 1 \xleftarrow{\alpha}{\beta} 2 \qquad \alpha \beta \alpha = 0$$

• $\Lambda \stackrel{\text{SEML}}{\sim} \Gamma \stackrel{\text{SEML}}{\sim} \Sigma$, and Λ is periodic $\implies \Gamma$ and Σ are eventually periodic

• Λ , $\Omega^3_{\Gamma^e}(\Gamma)$, $\Omega^2_{\Sigma^e}(\Sigma)$ are the first periodic syzygies



- Assume now that $k = \overline{k} \quad (\Longrightarrow \mathrm{pd}_{\Lambda^{\mathrm{e}}}\Lambda = \mathrm{gl.dim}\Lambda)$
- $CN := \{ \text{ finite dimensional connected Nakayama algebras } \}$
- $\Lambda \in \mathcal{CN}$ is Morita equivalent to kQ/I, where Q is one of



• Thanks to Asashiba ('99), Shen ('14,'15) and Qin ('21), we obtain

Proposition

 $\left\{\begin{array}{l}k,\ kZ_e/R^N\mid e\geq 1, N\geq 2\end{array}\right\} \text{ is a complete set of representatives of equivalence classes in $\mathcal{CN}/\stackrel{\rm SEML}{\sim}$}$

Corollary

 $\Lambda \in \mathcal{CN}$ is eventually periodic $\iff {\rm gl.dim}\,\Lambda = \infty$

<u>Proof</u> It suffices to show (\Leftarrow).

gl.dim $\Lambda = \infty \implies \Lambda \stackrel{\text{SEML}}{\sim} kZ_e/R^N$, and kZ_e/R^N is periodic $\implies \Lambda$ is eventually periodic