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Abstract. In a triangulated category, there exists a bijection between silting subcate-
gories and bounded co-t-structures. In this article, as a generalization of this result, we
give a bijection between silting subcategories and bounded hereditary cotorsion pairs in
an extriangulated category. Moreover, we prove that our result recovers a bijection be-
tween basic tilting modules and contravariantly finite resolving subcategories for a finite
dimensional algebra with finite global dimension.

Throughout this article, we assume that every category is skeletally small, that is, the
isomorphism classes of objects form a set. In addition, all subcategories are assumed to
be full and closed under isomorphisms.

The notion of silting subcategories was firstly introduced by Keller and Vossieck [5].

Definition 1. Let D be a triangulated category with shift functor Σ. A subcategory M
of D is called a silting subcategory if it satisfies the following conditions.

• M is closed under direct summands.
• D(M,ΣkM) = 0 for each k ≥ 1.
• D = thickM, where thickM is the smallest thick subcategory containing M.

Bondarko ([3]) and Pauksztello ([8]) independently introduced co-t-structures as an
analog of t-structures.

Definition 2. Let D be a triangulated category with shift functor Σ. A pair (U ,V) of
subcategories of D is called a co-t-structure on D if it satisfies the following conditions.

• U and V are closed under direct summands.
• For each D ∈ D, there exists a triangle Σ−1U → D → V → U such that U ∈ U
and V ∈ V .

• D(Σ−1U ,V) = 0.
• U is closed under a negative shift, that is, Σ−1U ⊆ U .

A co-t-structure (U ,V) on D is said to be bounded if ∪n∈ZΣ
nU = D = ∪n∈ZΣ

nV .

Bondarko ([3]) and Mendoza–Santiago–Sáenz–Souto ([6]) gave the following result.

Theorem 3 ([3, 6]). Let D be a triangulated category. Then there exist mutually inverse
bijections between the set of silting subcategories of D and the set of bounded co-t-structures
on D.

The detailed version of this article has been published in [1].



The aim of this article is to generalize Theorem 3 to extriangulated categories in-
troduced by Nakaoka and Palu ([7]) as a simultaneous generalization of a triangulated
category and an exact category.

Let R be a commutative ring and let C := (C,E, s) be an R-linear extriangulated
category. For definition and terminologies of extriangulated categories, see [7, 4]. A

complex A
f−→ B

g−→ C in C is called an s-conflation if there exists δ ∈ E(C,A) such

that s(δ) = [A
f−→ B

g−→ C], where [A
f−→ B

g−→ C] is an equivalence class of a complex

A
f−→ B

g−→ C. We write the s-conflation as A
f−→ B

g−→ C
δ99K. Recently, Gorsky, Nakaoka

and Palu ([4]) gave an R-bilinear functor En : Cop×C → ModR for each n ≥ 2. We recall
examples of extriangulated categories (for detail, see [7, 4])

Example 4. (1) Let D be a triangulated category with shift functor Σ. Then D
becomes an extriangulated category by the following data.

• E(C,A) := D(C,ΣA) for all A,C ∈ D.

• For δ ∈ E(C,A), we take a triangle A
f−→ B

g−→ C
δ−→ ΣA. Then we define

s(δ) := [A
f−→ B

g−→ C].
In this case, we have Ek(C,A) = D(C,ΣkA) for all A,C ∈ D and k ≥ 1.

(2) Let E be an exact category. Then E becomes an extriangulated category by the
following data.

• E(C,A) := Ext1E(C,A), where Ext
1
E(C,A) is the set of isomorphism classes of

conflations in E of the form 0 → A → B → C → 0 for A,C ∈ E .
• s is the identity.

In this case, we have Ek(C,A) = ExtkE(C,A) for all A,C ∈ D and k ≥ 1.

For a subcategory X of C, we define a subcategory ⊥X as
⊥X := {M ∈ C | Ek(M,X ) = 0 for each k ≥ 1}.

Dually, we define a subcategory X⊥. Moreover, the following subcategories play a crucial
role in this article.

Definition 5. Let X ,Y be subcategories of C.
(1) Let X ∗ Y denote the subcategory of C consisting of M ∈ C which admits an

s-conflation X → M → Y 99K in C with X ∈ X and Y ∈ Y . We say that X is
closed under extensions if X ∗ X ⊆ X .

(2) Let Cone(X ,Y) denote the subcategory of C consisting of M ∈ C which admits
an s-conflation X → Y → M 99K in C with X ∈ X and Y ∈ Y . We say that X is
closed under cones if Cone(X ,X ) ⊆ X .

(3) Let Cocone(X ,Y) denote the subcategory of C consisting of M ∈ C which admits
an s-conflation M → X → Y 99K in C with X ∈ X and Y ∈ Y . We say that X is
closed under cocones if Cocone(X ,X ) ⊆ X .

(4) We call X a thick subcategory of C if it is closed under extensions, cones, co-
cones and direct summands. Let thickX denote the smallest thick subcategory
containing X .

(5) For each n ≥ 0, we inductively define subcategories X ∧
n and X ∨

n of C as X ∧
n :=

Cone(X ∧
n−1,X ) and X ∨

n := Cocone(X ,X ∨
n−1), where X ∧

−1 := {0} and X ∨
−1 := {0}.



Put

X ∧ :=
∪
n≥0

X ∧
n , X ∨ :=

∪
n≥0

X ∨
n .

When C is a triangulated category, descriptions of X ∧ and X ∨ are well-known. Indeed,
let D be a triangulated category (regarded as an extriangulated category) with shift
functor Σ. For a subcategory X and an integer n ≥ 0, we obtain

X ∧
n = X ∗ ΣX ∗ · · · ∗ ΣnX .

If X is closed under extensions and a negative shift, then X ∧
n = ΣnX holds. Similarly, if

X is closed under extensions and a positive shift, then X ∨
n = Σ−nX holds.

We introduce the notion of silting subcategories of an extriangulated category, which
is a generalization of silting subcategories of a triangulated category. For a class X of
objects in C, let addX denote the smallest subcategory of C containing X and closed under
finite direct sums and direct summands.

Definition 6. Let C be an extriangulated category and M a subcategory of C. We call
M a silting subcategory of C if it satisfies the following conditions.

(1) M is closed under direct summands.
(2) Ek(M,M) = 0 for each k ≥ 1.
(3) C = thickM.

Let siltC denote the set of all silting subcategories of C. An object M ∈ C is called a
silting object if addM is a silting subcategory of C.

We give examples of silting subcategories.

Example 7. (1) Let D be a triangulated category. Then silting subcategories of
a triangulated category D are exactly silting subcategories of an extriangulated
category D.

(2) Let A be an artin algebra and let P<∞(A) denote the category of finitely generated
right A-modules of finite projective dimension. Since P<∞(A) is closed under
extensions, it becomes an extriangulated category. We can check that silting
objects of P<∞(A) coincide with tilting A-modules. Thus if A has finite global
dimension, then silting objects of modA coincide with tilting A-modules.

Example 8. Let k be an algebraically closed field. Consider the bounded derived category
D of the path algebra k(1 → 2 → 3 → 4). Then the Auslander–Reiten quiver of D is as



follows.
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Let X := add( 3
4 ⊕ 2

3
4
⊕ 2 ⊕ Σ 3 ). Since X is closed under extensions, it follows from [7,

Remark 2.18] that X becomes an extriangulated category. Remark that X is neither an

exact category nor a triangulated category. We can check that 3
4 ⊕

2
3
4
⊕Σ 3 and

2
3
4
⊕ 2 ⊕Σ 3

are silting objects in X .

We recall the definition of hereditary cotorsion pairs.

Definition 9. Let C be an extriangulated category and let X ,Y be subcategories of C.
We call a pair (X ,Y) a hereditary cotorsion pair in C if it satisfies the following conditions.

(CP1) X and Y are closed under direct summands.
(CP2) Ek(X ,Y) = 0 for each k ≥ 1.
(CP3) C = Cone(Y ,X ).
(CP4) C = Cocone(Y ,X ).

Let hcotors C denote the set of hereditary cotorsion pairs in C. For (X1,Y1), (X2,Y2) ∈
hcotors C, we write (X1,Y1) ≤ (X2,Y2) if Y1 ⊆ Y2. Then (hcotors C,≤) clearly becomes a
partially ordered set. Remark that if (X ,Y) is a hereditary cotorsion pair in C, then X is
closed under extensions and cocones. Similarly, Y is closed under extensions and cones.

The following examples show that the notion of hereditary cotorsion pairs in an extrian-
gulated category is a common generalization of co-t-structures on a triangulated category
and hereditary cotorsion pairs in an exact category.

Example 10. (1) Let D be a triangulated category with shift functor Σ. By regard-
ing D as an extriangulated category, co-t-structures on D are exactly hereditary
cotorsion pairs.

(2) Let E be an exact category. A pair (X ,Y) of subcategories of E is called a hereditary
cotorsion pair in E if it satisfies the following conditions.

• X and Y are closed under direct summands.
• ExtkE(X ,Y) = 0 for each k ≥ 1.
• For each E ∈ E , there exists a conflation 0 → YE → XE → E → 0 such that
YE ∈ Y and XE ∈ X .

• For each E ∈ E , there exists a conflation 0 → E → Y E → XE → 0 such that
Y E ∈ Y and XE ∈ X .



By regarding E as an extriangulated category, hereditary cotorsion pairs in the
exact category E are exactly hereditary cotorsion pairs.

We say that a hereditary cotorsion pair (X ,Y) is bounded if C = X ∧ and C = Y∨. Let
bdd-hcotors C denote the partially ordered set of bounded hereditary cotorsion pairs in C.
The following theorem is a main result of this article.

Theorem 11 ([1, Theorem 5.7]). Let C be an extriangulated category. Then there exist
mutually inverse bijections

bdd-hcotors C
Φ // siltC,
Ψ

oo

where Φ(X ,Y) := X ∩ Y and Ψ(M) := (M∨,M∧) = (⊥M,M⊥).

For a triangulated category D, let bdd-co-t-strD denote the set of bounded co-t-
structures on D. By regarding D as an extriangulated category, it follows from Example
10(1) that bdd-co-t-strD = bdd-hcotorsD. Thus we can recover the following result by
Theorem 11.

Corollary 12 ([6, Corollary 5.9]). Let D be a triangulated category. Then there exist
mutually inverse bijections

bdd-co-t-strD
Φ // siltD,
Ψ

oo

where Φ(X ,Y) := X ∩ Y and Ψ(M) := (M∨,M∧).

For two subcategories M,N of C, we write M ≥ N if Ek(M,N ) = 0 for each k ≥ 1.
Since bdd-hcotors C is a partially ordered set, the correspondence in Theorem 11 induces
a partial order on siltC.

Corollary 13. Let M,N be silting subcategories of C. Then M ≥ N if and only if
M∧ ⊇ N ∧ holds. In particular, ≥ gives a partial order on siltC.

In the following, we explain that Theorem 11 can recover Auslander–Reiten’s result
(see Corollary 14). Let projC denote the subcategory of C consisting of all projective
objects in C. We assume that an extriangulated category C is a Krull–Schmidt category,
and has enough projective objects (i.e., C = Cone(C, projC)) and enough injective objects.
For a subcategory X of C, we call X a resolving subcategory of C if projC ⊆ X and it is
closed under extensions, cocones and direct summands. Let confin-resolv C denote the set
of contravariantly finite resolving subcategories of C. Then there exist mutually inverse
bijections

hcotors C
F // confin-resolv C,
G

oo

where F (X ,Y) = X and G(X ) = (X ,X⊥). By restricting these bijections, we have

bdd-hcotors C
F // {X ∈ confin-resolv C | X ∧ = C,X ⊆ (projC)∧}.
G

oo



By Theorem 11, we have mutually inverse bijections

siltC
F◦Ψ // {X ∈ confin-resolv C | X ∧ = C,X ⊆ (projC)∧}.
Φ◦G
oo

Let A be an artin algebra with finite global dimension. Applying these bijections to
C = modA, we obtain

silt(modA)
F◦Ψ // confin-resolv(modA).
Φ◦G
oo

Moreover, it follows from Example 7(2) that silting objects of modA coincide with tilting
A-modules. Therefore we have the following result.

Corollary 14 ([2, Corollary 5.6]). Let A be an artin algebra with finite global dimension.
Then T 7→ ⊥T gives a bijection between the set of isomorphism classes of basic tilting
modules and the set of contravariantly finite resolving subcategories, and T 7→ T⊥ gives
a bijection between the set of isomorphism classes of basic tilting modules and the set of
covariantly finite coresolving subcategories.
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