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ABSTRACT. In a triangulated category, there exists a bijection between silting subcate-
gories and bounded co-t-structures. In this article, as a generalization of this result, we
give a bijection between silting subcategories and bounded hereditary cotorsion pairs in
an extriangulated category. Moreover, we prove that our result recovers a bijection be-
tween basic tilting modules and contravariantly finite resolving subcategories for a finite
dimensional algebra with finite global dimension.

Throughout this article, we assume that every category is skeletally small, that is, the
isomorphism classes of objects form a set. In addition, all subcategories are assumed to
be full and closed under isomorphisms.

The notion of silting subcategories was firstly introduced by Keller and Vossieck [5].

Definition 1. Let D be a triangulated category with shift functor . A subcategory M
of D is called a silting subcategory if it satisfies the following conditions.

e M is closed under direct summands.

e D(M,¥*M) =0 for each k > 1.

e D = thick M, where thick M is the smallest thick subcategory containing M.

Bondarko ([3]) and Pauksztello ([8]) independently introduced co-t-structures as an
analog of t-structures.

Definition 2. Let D be a triangulated category with shift functor ¥. A pair (U, V) of
subcategories of D is called a co-t-structure on D if it satisfies the following conditions.

e |4 and V are closed under direct summands.
e For each D € D, there exists a triangle ¥~'U — D — V — U such that U € U
and V € V.
e DU, V) =0.
e U is closed under a negative shift, that is, X7 C U.
A co-t-structure (U, V) on D is said to be bounded if U,czX"U = D = U,z 5" V.

Bondarko ([3]) and Mendoza-Santiago-Saenz—Souto ([6]) gave the following result.

Theorem 3 ([3, 6]). Let D be a triangulated category. Then there exist mutually inverse
bijections between the set of silting subcategories of D and the set of bounded co-t-structures
on D.

The detailed version of this article has been published in [1].



The aim of this article is to generalize Theorem 3 to extriangulated categories in-
troduced by Nakaoka and Palu ([7]) as a simultaneous generalization of a triangulated
category and an exact category.

Let R be a commutative ring and let C := (C,E,s) be an R-linear extriangulated
category. For definition and terminologies of extriangulated categories, see [7, 4]. A

complex A 5 B % Cin Cis called an s-conflation if there exists § € E(C, A) such

that s(6) = [A EN; JER C], where [A ENy; JER C] is an equivalence class of a complex

AL B4 €. We write the s-conflation as A & B % ¢ 2, Recently, Gorsky, Nakaoka
and Palu ([4]) gave an R-bilinear functor E" : C°? x C — Mod R for each n > 2. We recall
examples of extriangulated categories (for detail, see [7, 4])

Example 4. (1) Let D be a triangulated category with shift functor ¥. Then D
becomes an extriangulated category by the following data.
e E(C,A):=D(C,XA) for all A,C € D.
e For § € E(C, A), we take a triangle A 5B % ¢ % YA Then we define
s(6)=[AL B % Q)
In this case, we have E*(C, A) = D(C,X*A) for all A,C € D and k > 1.
(2) Let € be an exact category. Then £ becomes an extriangulated category by the
following data.
e E(C, A) := Exts(C, A), where Ext;(C, A) is the set of isomorphism classes of
conflations in & of the foorm 0 -+ A — B - C — 0 for A,C € £.

e 5 is the identity.
In this case, we have EF(C, A) = Ext:(C, A) for all A,C € D and k > 1.

For a subcategory X of C, we define a subcategory * X as
tx ={MeC|EFM,X) =0 for each k > 1}.

Dually, we define a subcategory X*. Moreover, the following subcategories play a crucial
role in this article.

Definition 5. Let X, ) be subcategories of C.

(1) Let X % Y denote the subcategory of C consisting of M € C which admits an
s-conflation X - M — Y --» in C with X € X and Y € ). We say that X is
closed under extensions if X x X C X.

(2) Let Cone(X,)) denote the subcategory of C consisting of M € C which admits
an s-conflation X - Y — M --»in C with X € X and Y € ). We say that X is
closed under cones if Cone(X,X) C X.

(3) Let Cocone(X,)) denote the subcategory of C consisting of M € C which admits
an s-conflation M — X — Y --»in C with X € X and Y € V. We say that X s
closed under cocones if Cocone(X, X) C X.

(4) We call X a thick subcategory of C if it is closed under extensions, cones, co-
cones and direct summands. Let thick X denote the smallest thick subcategory
containing X.

(5) For each n > 0, we inductively define subcategories X and X of C as X :=
Cone(X ;,X) and XY := Cocone(X, X, ;), where X*, := {0} and X", := {0}.

n—1
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When C is a triangulated category, descriptions of X" and XV are well-known. Indeed,
let D be a triangulated category (regarded as an extriangulated category) with shift
functor . For a subcategory X and an integer n > 0, we obtain

XN =X DX %% L"X.

If X is closed under extensions and a negative shift, then X = ¥"X" holds. Similarly, if
X is closed under extensions and a positive shift, then XY = "X holds.

We introduce the notion of silting subcategories of an extriangulated category, which
is a generalization of silting subcategories of a triangulated category. For a class X of
objects in C, let add X’ denote the smallest subcategory of C containing X and closed under
finite direct sums and direct summands.

Definition 6. Let C be an extriangulated category and M a subcategory of C. We call
M a silting subcategory of C if it satisfies the following conditions.

(1) M is closed under direct summands.
(2) E¥(M, M) =0 for each k > 1.
(3) C = thick M.

Let siltC denote the set of all silting subcategories of C. An object M € C is called a
silting object if add M is a silting subcategory of C.

We give examples of silting subcategories.

Example 7. (1) Let D be a triangulated category. Then silting subcategories of
a triangulated category D are exactly silting subcategories of an extriangulated
category D.

(2) Let A be an artin algebra and let P<°°(A) denote the category of finitely generated
right A-modules of finite projective dimension. Since P<>°(A) is closed under
extensions, it becomes an extriangulated category. We can check that silting
objects of P<*(A) coincide with tilting A-modules. Thus if A has finite global
dimension, then silting objects of mod A coincide with tilting A-modules.

Example 8. Let k be an algebraically closed field. Consider the bounded derived category
D of the path algebra k(1 — 2 — 3 — 4). Then the Auslander-Reiten quiver of D is as



follows.
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Let X := add(3 & Z%1 @ 2 ®X3). Since X is closed under extensions, it follows from [7,
Remark 2.18] that X becomes an extriangulated category. Remark that X" is neither an
exact category nor a triangulated category. We can check that 3 @ % @¥3 and % D2pE3
are silting objects in X.

We recall the definition of hereditary cotorsion pairs.

Definition 9. Let C be an extriangulated category and let X', ) be subcategories of C.
We call a pair (X', Y) a hereditary cotorsion pair in C if it satisfies the following conditions.

(CP1) X and Y are closed under direct summands.
(CP2) E*¥(X,Y) =0 for each k > 1.

(CP3) C = Cone(Y, X).

(CP4) C = Cocone(Y, X).

Let hcotorsC denote the set of hereditary cotorsion pairs in C. For (&7, V), (X2, Vs) €
hcotors C, we write (X1, V1) < (&, Vs) if V1 € Vs, Then (hcotorsC, <) clearly becomes a
partially ordered set. Remark that if (X)) is a hereditary cotorsion pair in C, then X is
closed under extensions and cocones. Similarly, ) is closed under extensions and cones.

The following examples show that the notion of hereditary cotorsion pairs in an extrian-
gulated category is a common generalization of co-t-structures on a triangulated category
and hereditary cotorsion pairs in an exact category.

Example 10. (1) Let D be a triangulated category with shift functor 3. By regard-
ing D as an extriangulated category, co-t-structures on D are exactly hereditary
cotorsion pairs.

(2) Let € be an exact category. A pair (X, )) of subcategories of £ is called a hereditary
cotorsion pair in £ if it satisfies the following conditions.

e X and Y are closed under direct summands.

e Exti(X,)) =0 for each k > 1.

e For each F € &, there exists a conflation 0 — Yy — Xz — E — 0 such that
Y€ )Y and X € X.

e For each F € &, there exists a conflation 0 = £ — Y¥ — X — 0 such that
YE cYand XF € X.



By regarding £ as an extriangulated category, hereditary cotorsion pairs in the
exact category & are exactly hereditary cotorsion pairs.

We say that a hereditary cotorsion pair (X,)) is bounded if C = X" and C = YV. Let
bdd-hcotors C denote the partially ordered set of bounded hereditary cotorsion pairs in C.
The following theorem is a main result of this article.

Theorem 11 ([1, Theorem 5.7]). Let C be an extriangulated category. Then there exist
mutually inverse bijections

bdd-hcotors C é siltC,
o

where ®(X,Y) := X NY and ¥(M) := (MY, M") = (* M, M1).

For a triangulated category D, let bdd-co-t-str D denote the set of bounded co-t-
structures on D. By regarding D as an extriangulated category, it follows from Example
10(1) that bdd-co-t-str D = bdd-hcotors D. Thus we can recover the following result by
Theorem 11.

Corollary 12 ([6, Corollary 5.9]). Let D be a triangulated category. Then there exist
mutually inverse bijections

)
bdd-co-t-str D —siltD,
v

where ®(X,)) =X NY and V(M) := (MY, M").

For two subcategories M, N of C, we write M > N if E¥(M, N) = 0 for each k > 1.
Since bdd-hcotorsC is a partially ordered set, the correspondence in Theorem 11 induces
a partial order on siltC.

Corollary 13. Let M, N be silting subcategories of C. Then M > N if and only if
M” D N holds. In particular, > gives a partial order on siltC.

In the following, we explain that Theorem 11 can recover Auslander—Reiten’s result
(see Corollary 14). Let projC denote the subcategory of C consisting of all projective
objects in C. We assume that an extriangulated category C is a Krull-Schmidt category,
and has enough projective objects (i.e., C = Cone(C, projC)) and enough injective objects.
For a subcategory X of C, we call X a resolving subcategory of C if projC C X and it is
closed under extensions, cocones and direct summands. Let confin-resolvC denote the set
of contravariantly finite resolving subcategories of C. Then there exist mutually inverse
bijections

F .
hcotors C —— confin-resolv C,
G

where F(X,)) = X and G(X) = (X, X1). By restricting these bijections, we have

F
bdd-hcotors C ? {X € confin-resolvC | X" = C, X C (projC)"}.



By Theorem 11, we have mutually inverse bijections

FoW¥
siltC —= {X € confin-resolvC | X" = C, X C (projC)"}.
PoG
Let A be an artin algebra with finite global dimension. Applying these bijections to
C = mod A, we obtain

silt(mod A) % confin-resolv(mod A).
PoG

Moreover, it follows from Example 7(2) that silting objects of mod A coincide with tilting
A-modules. Therefore we have the following result.

Corollary 14 ([2, Corollary 5.6]). Let A be an artin algebra with finite global dimension.
Then T + T gives a bijection between the set of isomorphism classes of basic tilting
modules and the set of contravariantly finite resolving subcategories, and T +— T+ gives
a bijection between the set of isomorphism classes of basic tilting modules and the set of
covariantly finite coresolving subcategories.
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