A BIJECTION BETWEEN SILTING SUBCATEGORIES AND BOUNDED HEREDITARY COTORSION PAIRS

TAKAHIDE ADACHI AND MAYU TSUKAMOTO

ABSTRACT. In a triangulated category, there exists a bijection between silting subcategories and bounded co-t-structures. In this article, as a generalization of this result, we give a bijection between silting subcategories and bounded hereditary cotorsion pairs in an extriangulated category. Moreover, we prove that our result recovers a bijection between basic tilting modules and contravariantly finite resolving subcategories for a finite dimensional algebra with finite global dimension.

Throughout this article, we assume that every category is skeletally small, that is, the isomorphism classes of objects form a set. In addition, all subcategories are assumed to be full and closed under isomorphisms.

The notion of silting subcategories was firstly introduced by Keller and Vossieck [5].

Definition 1. Let \mathcal{D} be a triangulated category with shift functor Σ . A subcategory \mathcal{M} of \mathcal{D} is called a *silting subcategory* if it satisfies the following conditions.

- \mathcal{M} is closed under direct summands.
- $\mathcal{D}(\mathcal{M}, \Sigma^k \mathcal{M}) = 0$ for each $k \ge 1$.
- $\mathcal{D} = \text{thick}\mathcal{M}$, where thick \mathcal{M} is the smallest thick subcategory containing \mathcal{M} .

Bondarko ([3]) and Pauksztello ([8]) independently introduced co-t-structures as an analog of t-structures.

Definition 2. Let \mathcal{D} be a triangulated category with shift functor Σ . A pair $(\mathcal{U}, \mathcal{V})$ of subcategories of \mathcal{D} is called a *co-t-structure* on \mathcal{D} if it satisfies the following conditions.

- \mathcal{U} and \mathcal{V} are closed under direct summands.
- For each $D \in \mathcal{D}$, there exists a triangle $\Sigma^{-1}U \to D \to V \to U$ such that $U \in \mathcal{U}$ and $V \in \mathcal{V}$.
- $\mathcal{D}(\Sigma^{-1}\mathcal{U},\mathcal{V})=0.$
- \mathcal{U} is closed under a negative shift, that is, $\Sigma^{-1}\mathcal{U} \subseteq \mathcal{U}$.

A co-t-structure $(\mathcal{U}, \mathcal{V})$ on \mathcal{D} is said to be *bounded* if $\bigcup_{n \in \mathbb{Z}} \Sigma^n \mathcal{U} = \mathcal{D} = \bigcup_{n \in \mathbb{Z}} \Sigma^n \mathcal{V}$.

Bondarko ([3]) and Mendoza–Santiago–Sáenz–Souto ([6]) gave the following result.

Theorem 3 ([3, 6]). Let \mathcal{D} be a triangulated category. Then there exist mutually inverse bijections between the set of silting subcategories of \mathcal{D} and the set of bounded co-t-structures on \mathcal{D} .

The detailed version of this article has been published in [1].

The aim of this article is to generalize Theorem 3 to extriangulated categories introduced by Nakaoka and Palu ([7]) as a simultaneous generalization of a triangulated category and an exact category.

Let R be a commutative ring and let $\mathcal{C} := (\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be an R-linear extriangulated category. For definition and terminologies of extriangulated categories, see [7, 4]. A complex $A \xrightarrow{f} B \xrightarrow{g} C$ in \mathcal{C} is called an \mathfrak{s} -conflation if there exists $\delta \in \mathbb{E}(C, A)$ such that $\mathfrak{s}(\delta) = [A \xrightarrow{f} B \xrightarrow{g} C]$, where $[A \xrightarrow{f} B \xrightarrow{g} C]$ is an equivalence class of a complex $A \xrightarrow{f} B \xrightarrow{g} C$. We write the \mathfrak{s} -conflation as $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{\delta}$. Recently, Gorsky, Nakaoka and Palu ([4]) gave an R-bilinear functor $\mathbb{E}^n : \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \operatorname{Mod} R$ for each $n \geq 2$. We recall examples of extriangulated categories (for detail, see [7, 4])

Example 4. (1) Let \mathcal{D} be a triangulated category with shift functor Σ . Then \mathcal{D} becomes an extriangulated category by the following data.

- $\mathbb{E}(C, A) := \mathcal{D}(C, \Sigma A)$ for all $A, C \in \mathcal{D}$.
- For $\delta \in \mathbb{E}(C, A)$, we take a triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{\delta} \Sigma A$. Then we define $\mathfrak{s}(\delta) := [A \xrightarrow{f} B \xrightarrow{g} C].$

In this case, we have $\mathbb{E}^k(C, A) = \mathcal{D}(C, \Sigma^k A)$ for all $A, C \in \mathcal{D}$ and $k \ge 1$.

- (2) Let \mathcal{E} be an exact category. Then \mathcal{E} becomes an extriangulated category by the following data.
 - $\mathbb{E}(C, A) := \operatorname{Ext}^{1}_{\mathcal{E}}(C, A)$, where $\operatorname{Ext}^{1}_{\mathcal{E}}(C, A)$ is the set of isomorphism classes of conflations in \mathcal{E} of the form $0 \to A \to B \to C \to 0$ for $A, C \in \mathcal{E}$.
 - **s** is the identity.

In this case, we have $\mathbb{E}^k(C, A) = \operatorname{Ext}^k_{\mathcal{E}}(C, A)$ for all $A, C \in \mathcal{D}$ and $k \ge 1$.

For a subcategory \mathcal{X} of \mathcal{C} , we define a subcategory $^{\perp}\mathcal{X}$ as

 ${}^{\perp}\mathcal{X} := \{ M \in \mathcal{C} \mid \mathbb{E}^k(M, \mathcal{X}) = 0 \text{ for each } k \ge 1 \}.$

Dually, we define a subcategory \mathcal{X}^{\perp} . Moreover, the following subcategories play a crucial role in this article.

Definition 5. Let \mathcal{X}, \mathcal{Y} be subcategories of \mathcal{C} .

- (1) Let $\mathcal{X} * \mathcal{Y}$ denote the subcategory of \mathcal{C} consisting of $M \in \mathcal{C}$ which admits an \mathfrak{s} -conflation $X \to M \to Y \dashrightarrow$ in \mathcal{C} with $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$. We say that \mathcal{X} is closed under extensions if $\mathcal{X} * \mathcal{X} \subseteq \mathcal{X}$.
- (2) Let $\operatorname{Cone}(\mathcal{X}, \mathcal{Y})$ denote the subcategory of \mathcal{C} consisting of $M \in \mathcal{C}$ which admits an \mathfrak{s} -conflation $X \to Y \to M \dashrightarrow$ in \mathcal{C} with $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$. We say that \mathcal{X} is closed under cones if $\operatorname{Cone}(\mathcal{X}, \mathcal{X}) \subseteq \mathcal{X}$.
- (3) Let $\operatorname{Cocone}(\mathcal{X}, \mathcal{Y})$ denote the subcategory of \mathcal{C} consisting of $M \in \mathcal{C}$ which admits an \mathfrak{s} -conflation $M \to X \to Y \dashrightarrow$ in \mathcal{C} with $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$. We say that \mathcal{X} is closed under cocones if $\operatorname{Cocone}(\mathcal{X}, \mathcal{X}) \subseteq \mathcal{X}$.
- (4) We call \mathcal{X} a *thick subcategory* of \mathcal{C} if it is closed under extensions, cones, cocones and direct summands. Let thick \mathcal{X} denote the smallest thick subcategory containing \mathcal{X} .
- (5) For each $n \ge 0$, we inductively define subcategories \mathcal{X}_n^{\wedge} and \mathcal{X}_n^{\vee} of \mathcal{C} as $\mathcal{X}_n^{\wedge} := \operatorname{Cone}(\mathcal{X}_{n-1}^{\wedge}, \mathcal{X})$ and $\mathcal{X}_n^{\vee} := \operatorname{Cocone}(\mathcal{X}, \mathcal{X}_{n-1}^{\vee})$, where $\mathcal{X}_{-1}^{\wedge} := \{0\}$ and $\mathcal{X}_{-1}^{\vee} := \{0\}$.

$$\mathcal{X}^\wedge := igcup_{n\geq 0} \mathcal{X}^\wedge_n, \ \ \mathcal{X}^ee := igcup_{n\geq 0} \mathcal{X}^ee_n$$

When \mathcal{C} is a triangulated category, descriptions of \mathcal{X}^{\wedge} and \mathcal{X}^{\vee} are well-known. Indeed, let \mathcal{D} be a triangulated category (regarded as an extriangulated category) with shift functor Σ . For a subcategory \mathcal{X} and an integer $n \geq 0$, we obtain

$$\mathcal{X}_n^{\wedge} = \mathcal{X} * \Sigma \mathcal{X} * \cdots * \Sigma^n \mathcal{X}.$$

If \mathcal{X} is closed under extensions and a negative shift, then $\mathcal{X}_n^{\wedge} = \Sigma^n \mathcal{X}$ holds. Similarly, if \mathcal{X} is closed under extensions and a positive shift, then $\mathcal{X}_n^{\vee} = \Sigma^{-n} \mathcal{X}$ holds.

We introduce the notion of silting subcategories of an extriangulated category, which is a generalization of silting subcategories of a triangulated category. For a class \mathcal{X} of objects in \mathcal{C} , let $\mathsf{add}\mathcal{X}$ denote the smallest subcategory of \mathcal{C} containing \mathcal{X} and closed under finite direct sums and direct summands.

Definition 6. Let C be an extriangulated category and \mathcal{M} a subcategory of C. We call \mathcal{M} a *silting subcategory* of C if it satisfies the following conditions.

- (1) \mathcal{M} is closed under direct summands.
- (2) $\mathbb{E}^k(\mathcal{M}, \mathcal{M}) = 0$ for each $k \ge 1$.

(3) $C = \text{thick}\mathcal{M}$.

Let silt C denote the set of all silting subcategories of C. An object $M \in C$ is called a *silting object* if add M is a silting subcategory of C.

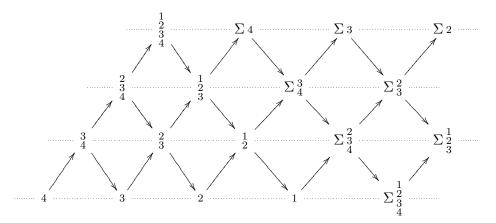
We give examples of silting subcategories.

- **Example 7.** (1) Let \mathcal{D} be a triangulated category. Then silting subcategories of a triangulated category \mathcal{D} are exactly silting subcategories of an extriangulated category \mathcal{D} .
 - (2) Let A be an artin algebra and let $\mathcal{P}^{<\infty}(A)$ denote the category of finitely generated right A-modules of finite projective dimension. Since $\mathcal{P}^{<\infty}(A)$ is closed under extensions, it becomes an extriangulated category. We can check that silting objects of $\mathcal{P}^{<\infty}(A)$ coincide with tilting A-modules. Thus if A has finite global dimension, then silting objects of mod A coincide with tilting A-modules.

Example 8. Let **k** be an algebraically closed field. Consider the bounded derived category \mathcal{D} of the path algebra $\mathbf{k}(1 \rightarrow 2 \rightarrow 3 \rightarrow 4)$. Then the Auslander–Reiten quiver of \mathcal{D} is as

 Put

follows.



Let $\mathcal{X} := \operatorname{add}(\frac{3}{4} \oplus \frac{2}{4} \oplus 2 \oplus \Sigma_3)$. Since \mathcal{X} is closed under extensions, it follows from [7, Remark 2.18] that \mathcal{X} becomes an extriangulated category. Remark that \mathcal{X} is neither an exact category nor a triangulated category. We can check that $\frac{3}{4} \oplus \frac{2}{4} \oplus \Sigma_3$ and $\frac{2}{4} \oplus 2 \oplus \Sigma_3$ are silting objects in \mathcal{X} .

We recall the definition of hereditary cotorsion pairs.

Definition 9. Let C be an extriangulated category and let \mathcal{X}, \mathcal{Y} be subcategories of C. We call a pair $(\mathcal{X}, \mathcal{Y})$ a *hereditary cotorsion pair* in C if it satisfies the following conditions.

- (CP1) \mathcal{X} and \mathcal{Y} are closed under direct summands.
- (CP2) $\mathbb{E}^k(\mathcal{X}, \mathcal{Y}) = 0$ for each $k \ge 1$.
- (CP3) $\mathcal{C} = \operatorname{Cone}(\mathcal{Y}, \mathcal{X}).$
- (CP4) $\mathcal{C} = \text{Cocone}(\mathcal{Y}, \mathcal{X}).$

Let hcotors \mathcal{C} denote the set of hereditary cotorsion pairs in \mathcal{C} . For $(\mathcal{X}_1, \mathcal{Y}_1), (\mathcal{X}_2, \mathcal{Y}_2) \in$ hcotors \mathcal{C} , we write $(\mathcal{X}_1, \mathcal{Y}_1) \leq (\mathcal{X}_2, \mathcal{Y}_2)$ if $\mathcal{Y}_1 \subseteq \mathcal{Y}_2$. Then (hcotors \mathcal{C}, \leq) clearly becomes a partially ordered set. Remark that if $(\mathcal{X}, \mathcal{Y})$ is a hereditary cotorsion pair in \mathcal{C} , then \mathcal{X} is closed under extensions and cocones. Similarly, \mathcal{Y} is closed under extensions and cones.

The following examples show that the notion of hereditary cotorsion pairs in an extriangulated category is a common generalization of co-*t*-structures on a triangulated category and hereditary cotorsion pairs in an exact category.

- **Example 10.** (1) Let \mathcal{D} be a triangulated category with shift functor Σ . By regarding \mathcal{D} as an extriangulated category, co-*t*-structures on \mathcal{D} are exactly hereditary cotorsion pairs.
 - (2) Let \mathcal{E} be an exact category. A pair $(\mathcal{X}, \mathcal{Y})$ of subcategories of \mathcal{E} is called a *hereditary* cotorsion pair in \mathcal{E} if it satisfies the following conditions.
 - \mathcal{X} and \mathcal{Y} are closed under direct summands.
 - $\operatorname{Ext}_{\mathcal{E}}^{k}(\mathcal{X},\mathcal{Y}) = 0$ for each $k \geq 1$.
 - For each $E \in \mathcal{E}$, there exists a conflation $0 \to Y_E \to X_E \to E \to 0$ such that $Y_E \in \mathcal{Y}$ and $X_E \in \mathcal{X}$.
 - For each $E \in \mathcal{E}$, there exists a conflation $0 \to E \to Y^E \to X^E \to 0$ such that $Y^E \in \mathcal{Y}$ and $X^E \in \mathcal{X}$.

By regarding \mathcal{E} as an extriangulated category, hereditary cotorsion pairs in the exact category \mathcal{E} are exactly hereditary cotorsion pairs.

We say that a hereditary cotorsion pair $(\mathcal{X}, \mathcal{Y})$ is *bounded* if $\mathcal{C} = \mathcal{X}^{\wedge}$ and $\mathcal{C} = \mathcal{Y}^{\vee}$. Let **bdd-hcotors** \mathcal{C} denote the partially ordered set of bounded hereditary cotorsion pairs in \mathcal{C} . The following theorem is a main result of this article.

Theorem 11 ([1, Theorem 5.7]). Let C be an extriangulated category. Then there exist mutually inverse bijections

bdd-hcotors
$$\mathcal{C} \xrightarrow{\Phi}_{\Psi}$$
 silt \mathcal{C} ,

where $\Phi(\mathcal{X}, \mathcal{Y}) := \mathcal{X} \cap \mathcal{Y}$ and $\Psi(\mathcal{M}) := (\mathcal{M}^{\vee}, \mathcal{M}^{\wedge}) = (^{\perp}\mathcal{M}, \mathcal{M}^{\perp}).$

For a triangulated category \mathcal{D} , let **bdd-co-t-str** \mathcal{D} denote the set of bounded co-*t*-structures on \mathcal{D} . By regarding \mathcal{D} as an extriangulated category, it follows from Example 10(1) that **bdd-co-t-str** $\mathcal{D} =$ **bdd-hcotors** \mathcal{D} . Thus we can recover the following result by Theorem 11.

Corollary 12 ([6, Corollary 5.9]). Let \mathcal{D} be a triangulated category. Then there exist mutually inverse bijections

bdd-co-t-str
$$\mathcal{D} \xleftarrow{\Phi}{\swarrow \Psi}$$
 silt \mathcal{D} ,

where $\Phi(\mathcal{X}, \mathcal{Y}) := \mathcal{X} \cap \mathcal{Y}$ and $\Psi(\mathcal{M}) := (\mathcal{M}^{\vee}, \mathcal{M}^{\wedge}).$

For two subcategories \mathcal{M}, \mathcal{N} of \mathcal{C} , we write $\mathcal{M} \geq \mathcal{N}$ if $\mathbb{E}^k(\mathcal{M}, \mathcal{N}) = 0$ for each $k \geq 1$. Since **bdd-hcotors** \mathcal{C} is a partially ordered set, the correspondence in Theorem 11 induces a partial order on silt \mathcal{C} .

Corollary 13. Let \mathcal{M}, \mathcal{N} be silting subcategories of \mathcal{C} . Then $\mathcal{M} \geq \mathcal{N}$ if and only if $\mathcal{M}^{\wedge} \supseteq \mathcal{N}^{\wedge}$ holds. In particular, \geq gives a partial order on silt \mathcal{C} .

In the following, we explain that Theorem 11 can recover Auslander-Reiten's result (see Corollary 14). Let $\operatorname{proj}\mathcal{C}$ denote the subcategory of \mathcal{C} consisting of all projective objects in \mathcal{C} . We assume that an extriangulated category \mathcal{C} is a Krull-Schmidt category, and has enough projective objects (i.e., $\mathcal{C} = \operatorname{Cone}(\mathcal{C}, \operatorname{proj}\mathcal{C})$) and enough injective objects. For a subcategory \mathcal{X} of \mathcal{C} , we call \mathcal{X} a resolving subcategory of \mathcal{C} if $\operatorname{proj}\mathcal{C} \subseteq \mathcal{X}$ and it is closed under extensions, cocones and direct summands. Let $\operatorname{confin-resolv}\mathcal{C}$ denote the set of contravariantly finite resolving subcategories of \mathcal{C} . Then there exist mutually inverse bijections

hcotors
$$\mathcal{C} \xrightarrow[G]{F}$$
 confin-resolv \mathcal{C} ,

where $F(\mathcal{X}, \mathcal{Y}) = \mathcal{X}$ and $G(\mathcal{X}) = (\mathcal{X}, \mathcal{X}^{\perp})$. By restricting these bijections, we have

$$\mathsf{bdd-hcotors}\,\mathcal{C} \xleftarrow{F}_{G} \{\mathcal{X} \in \mathsf{confin-resolv}\,\mathcal{C} \mid \mathcal{X}^{\wedge} = \mathcal{C}, \mathcal{X} \subseteq (\mathsf{proj}\mathcal{C})^{\wedge}\}.$$

By Theorem 11, we have mutually inverse bijections

$$\operatorname{silt} \mathcal{C} \xrightarrow[\Phi \circ G]{F \circ \Psi} \{ \mathcal{X} \in \operatorname{confin-resolv} \mathcal{C} \mid \mathcal{X}^{\wedge} = \mathcal{C}, \mathcal{X} \subseteq (\operatorname{proj} \mathcal{C})^{\wedge} \}.$$

Let A be an artin algebra with finite global dimension. Applying these bijections to C = modA, we obtain

$$\mathsf{silt}(\mathsf{mod} A) \xrightarrow[\Phi \circ G]{F \circ \Psi} \mathsf{confin-resolv}(\mathsf{mod} A).$$

Moreover, it follows from Example 7(2) that silting objects of mod A coincide with tilting A-modules. Therefore we have the following result.

Corollary 14 ([2, Corollary 5.6]). Let A be an artin algebra with finite global dimension. Then $T \mapsto {}^{\perp}T$ gives a bijection between the set of isomorphism classes of basic tilting modules and the set of contravariantly finite resolving subcategories, and $T \mapsto T^{\perp}$ gives a bijection between the set of isomorphism classes of basic tilting modules and the set of covariantly finite coresolving subcategories.

References

- T. Adachi, M. Tsukamoto, Hereditary cotorsion pairs and silting subcategories in extriangulated categories, J. Algebra 594 (2022), 109–137.
- [2] M. Auslander, I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), no. 1, 111–152.
- [3] M. V. Bondarko, Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general), J. K-Theory 6 (2010), no. 3, 387–504.
- M. Gorsky, H. Nakaoka, Y. Palu, Positive and negative extensions in extriangulated categories, arXiv:2103.12482.
- [5] B. Keller, D. Vossieck, Aisles in derived categories, Bull. Soc. Math. Belg. Sér. A 40 (1988), no. 2, 239–253.
- [6] O. Mendoza, V. Santiago, C. Sáenz, V. Souto, Auslander-Buchweitz context and co-t-structures, Appl. Categ. Structures 21 (2013), 417–440.
- [7] H. Nakaoka, Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Géom. Différ. Catég. 60 (2019), no. 2, 117–193.
- [8] D. Pauksztello, Compact corigid objects in triangulated categories and co-t-structures, Cent. Eur. J. Math. 6 (2008), no. 1, 25–42.

FACULTY OF GLOBAL AND SCIENCE STUDIES YAMAGUCHI UNIVERSITY YOSHIDA, YAMAGUCHI 753-8541, JAPAN *Email address*: tadachi@yamaguchi-u.ac.jp

GRADUATE SCHOOL OF SCIENCES AND TECHNOLOGY FOR INNOVATION YAMAGUCHI UNIVERSITY YOSHIDA, YAMAGUCHI 753-8512, JAPAN *Email address*: tsukamot@yamaguchi-u.ac.jp