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Abstract. A diagram consisting of differential graded (dg for short) categories and dg
functors is formulated as a colax functor X from a small category I to the 2-category
k-dgCat of small dg categories, dg functors and dg natural transformations for a fixed
commutative ring k. If I is a group regarded as a category with only one object ∗, then
X is nothing but a colax action of the group I on the dg category X(∗). In this sense,
this X can be regarded as a generalization of a dg category with a colax action of a
group. We define a notion of standard derived equivalence between such colax functors
by generalizing the corresponding notion between dg categories with a group action. Our
first main result gives some characterizations of this notion without an assumption of
k-flatness (or k-projectivity) on X, one of which is given in terms of generalized versions
of a tilting object and a quasi-equivalence. On the other hand, for such a colax functor
X, the dg categories X(i) with i objects of I can be glued together to have a single dg
category

∫
X, called the Grothendieck construction of X. Our second main result insists

that for such colax functors X and X ′, the Grothendieck construction
∫
X ′ is derived

equivalent to
∫
X if there exists a standard derived equivalence from X ′ to X. These

results generalize the main results of [3] and [4] to the dg case, respectively. These are
new even for dg categories with a group action. In particular, the second result gives a
new tool to show the derived equivalence between the orbit categories of dg categories
with a group action (see [6] for such examples).
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1. Introduction

Throughout this note k is a commutative ring, and I is a small category. In [2], when
k is an algebraically closed field, we classified (basic, connected) representation-finite
selfinjective algebras up to derived equivalences. They are divided into two classes: the
class sRFS of standard algebras and the class nRFS of nonstandard algebras. The sRFS
forms a major part. We denote by sRFS′ to be the subclass of sRFS consisting of algebras
not isomorphic to k. Then sRFS is a disjoint union of sRFS′ and the derived equivalence
class of k that coincides with the isoclass of k. We here review how sRFS′ was classified.
Each member A of sRFS′ has the form B̂/G of the orbit category, where B is a tilted
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algebra of Dynkin type ∆, and B̂ is the repetitive category of B having a G-action with
G an infinite cyclic group. Thus there exists a G-covering P : B̂ → A. Then we defined
the derived equivalence type typ(A) := (∆, f, t) (f ∈ Q, t ∈ {1, 2, 3}) of A, where f, t were
derived from the information of the action of a generator of G, and the typ(A) was shown
to be derived invariant of A. In addition, from each type T in the list of all possible
types, the normal form Λ(T ) was constructed. Let A′ be another member of sRFS′ with

a G-covering P ′ : B̂′ → A′, A′ ∼= B̂/G, and typ(A′) = (∆′, f ′, t′). To classify sRFS′, it
is enough to show that A and A′ are derived equivalent if and only if typ(A) = typ(A′).
The only if part means that typ(A) is derived invariant. The if part is proved by showing
that A is derived equivalent to Λ(typ(A)). (Thus we may assume that A′ = Λ(typ(A)).)
Note that if typ(A) = typ(A′), then since ∆ = ∆′, both B and B′ are derived equivalent
to the hereditary algebra kQ with Q a Dynkin quiver of type ∆, and hence B and B′ are
derived equivalent. Then the main tools for the proof of if part were as follows given in
[1]:

(1) If B and B′ are derived equivalent, then so are B̂ and B̂′.

(2) If B̂ and B̂′ are derived equivalent satisfying an additional compatibility condition

with P, P ′, then B̂/G and B̂′/G are derived equivalent.

The tool (2) is generalized in [3, 4] as follows. First, the setting is changed as follows.
The algebraically closed field k is changed to any commutative ring. The cyclic group G
is regarded as a category with single object ∗, and is changed to a small category I. B̂
is changed to any small k-category C . The G-action G→ Aut(C ) on C is regarded as a
functor X from G as a category with single object ∗ to the category of small k-categories
with X(∗) = C , and the G-action on C is changed to a colax functor X : I → k-Cat (see
Example 5). The “derived module categoy” D(ModX) is defined as a colax functor from
I to the 2-category k-TRI2 of triangulated 2-moderate1 categories, and X is defined to be
derived equivalent to another colax functor X ′ : I → k-Cat if D(ModX) and D(ModX ′)
are equivalent in the 2-category of colax functors I → k-TRI2. The orbit category C /G
for a category C with a G-actionX ∈ Aut(C ) is changed to the Grothendieck construction∫
X. In this general setting, the following two questions arise to generalize the tool (2).

Q 1. Characterize derived equivalence for X and X ′.
Q 2. When

∫
X and

∫
X ′ are derived equivalent?

Answers are given as the following two theorems.

Theorem 1. Let X,X ′ : I → k-Cat be colax functors. Then (1) implies (2):

(1) X ′ is derived equivalent to X.
(2) X ′ is equivalent to a tilting colax functor2 T for X.

If X is k-flat3, then the converse holds.

Theorem 2. If (2) above holds, then
∫
X ′ is derived equivalent to

∫
X.

Since characterization of derived equivalences of k-categories are well controlled in the
setting of dg categories as in Keller [8], it is interesting to generalize these theorems to

1See Definition 3.
2This is defined in a way similar to Definition 14(2).
3The k-modules X(i)(x, y) are flat for all objects i of I and objects x, y of X(i).



dg categories. In this connection, the purpose of the talk is to give a characterization of
standard derived equivalences of colax functors from I to the 2-category of dg categories,
and to extend Theorem 2 in this setting.

2. Preliminaries

In this section, we collect necessary terminologies.

2.1. A set theory for the foundation of category theory. First of all, we remark
the set theoretical foundation that we use here, which is needed because we collect many
categories. We refer the reader to [5, Appendix A] for details. To avoid the set theoretic
paradox, it is usually enough to consider three kinds of collections: sets, classes, and
conglomerates. However, to construct mathematical theory only within the scope of sets,
one considers a (Grothendieck) universe U, and assume the axiom of universes stating
that any set is an element of a universe. We note that the class of all universes is well-
ordered. An element of U is called a U-small set, and a subset of U is called a U-class.
If a collection S constructed from U-sets and U-classes cannot be a U-class, for example
a set of the form D(ModA)(X,Y ), where A is a U-small algebra, X,Y are objects of
the derived category of the U-small modules over A, then we take the smallest universe
U′ having S as its element, and we next consider U′-small sets, and U′-classes. If we
repeat this procedure, we need more and more universes. To avoid this repetition, we
adopt the hierarchy proposed by Levy [9]. First we fix a universe U once for all, and
we construct mathematical theory within U′-small sets, where U′ is the smallest universe
having the power set of U as its element. In particular, all categories discussed here are
small categories in the usual sense. For a category C , the set of all objects of C is denoted
by C0. Levy’s hierarchy defines a U′-small set Classk0 of the k-classes for each non-negative
integer k, and we have a sequence of strict inclusions

Class00 ⊂ Class10 ⊂ Class20 ⊂ · · · ,
where 0-classes are nothing but U-small sets, usually called just as small sets, and 1-classes
are nothing but U-classes. See [5, Definition A.2.5] for definition of Classk0 for k ≥ 2.

Definition 3. Let C be a category.

(1) C is called a small category4 if C0 and C (x, y) are small for all x, y ∈ C0.
(2) C is called a light category if C0 is a 1-class, and C (x, y) are small for all x, y ∈ C0.
(3) For each k ≥ 1, C is called a k-moderate category if C0 and C (x, y) are k-classes

for all x, y ∈ C0.

2.2. 2-categories and colax functors.

Definition 4. A 2-category C is a sequence of data:

(1) a non-empty set C0,
(2) a family of categories (C(x, y))x,y∈C0 ,
(3) a family of functors ◦ := (◦x,y,z : C(y, z)×C(x, y) → C(x, z))x,y,z∈C0 , and
(4) a family of functors (ux : 1 → C(x, x))x∈C0 , where 1 is the category consisting of

one object ∗ and one morphism 1∗ (we set 1lx := ux(∗), 1l1lx := ux(1l∗))

4abbreviation of a U-small category



that satisfies associativity and unitality.
Elements of C0 are called objects of C, elements of C1 :=

∪
x,y∈C0

C(x, y)0 are called 1-

morphisms ofC, and elements ofC2 :=
∪

x,y∈C0
C(x, y)1 are called 2-morphisms ofC. The

compositions in C(x, y) with x, y ∈ C0 are called vertical compositions of 2-morphisms,
and the composition ◦ for 2-morphisms are called horizontal compositions. Sometimes
2-categories are defined by giving the set of objects, 1-morphisms and 2-morphisms, and
by omitting the definitions of vertical and horizontal compositions and identities, when
they are obvious.

Example 5 (2-categories).

(1) We denote by k-Cat the 2-category of small categories, functors between them, and
natural transformations between those functors. Similarly, k-FRB, k-TRI and
k-TRIk denote the 2-category of light Frobenius k-categories, of light triangulated
k-categories and of k-moderate triangulated k-categories (k ≥ 1), respectively.

(2) Any category C can be regarded as a 2-category C ′ defined as follows, and we
identify C with C ′ below, especially for C = I: Objects of C ′ are the objects of
C ; 1-morphisms in C ′ are the morphisms in C ; and 2-morphisms in C ′ are the
identities 1lf with f ∈ C (x, y) for all x, y ∈ C0.

Definition 6. Let A and B be 2-categories. A 2-functor X : A → B is a pair of data:

(1) a map X0 : A0 → B0 (we set X(x) := X0(x) for all x ∈ A0 for short), and
(2) a family of functors (X(x,y) : A(x, y) → B(X(x), X(y)))x,y∈A0 (we set X(f) :=

X(x,y)(f) for all f ∈ A(x, y) for short)

that preserves compositions and identities.

Definition 7. Let A and B be 2-categories. A colax functor from A to B is a quadruple
of data:

(1) , (2) as above,
(3) a family (Xi)i∈A0 of 2-morphisms Xi : X(1li) ⇒ 1lX(i) in B indexed by i ∈ A0, and
(4) a family (Xb,a)(b,a) of 2-morphisms Xb,a : X(ba) ⇒ X(b)X(a) in B indexed by

(b, a) ∈ com(A) := {(b, a) ∈ A1 ×A1 | ba is defined}
that satisfies the axioms

(a) Counitality: For each a : i→ j in A1 the following are commutative:

X(a1li)
Xa,1li +3 X(a)X(1li)

X(a)Xi

��
X(a)1lX(i)

and

X(1lja)
X1lj ,a +3 X(1lj)X(a)

XjX(a)

��
1lX(j)X(a)

; and

(b) Coassociativity: For each i
a−→ j

b−→ k
c−→ l in A1 the following is commutative:

X(cba)
Xc,ba +3

Xcb,a

��

X(c)X(ba)

X(c)θb,a
��

X(cb)X(a)
Xc,bX(a)

+3 X(c)X(b)X(a).



A pseudofunctor is a colax functor with all Xi and Xb,a 2-isomorphisms. A 2-functor is
nothing but a colax functor with all Xi and Xb,a identities.

2.3. Dg categories. We now review necessary terminologies for dg categories.

Definition 8 (Dg categories and dg functors).

(1) A dg category (a short form of differential graded category) is a k-category A whose
morphism spaces A (x, y) are (cochain) complexes of k-modules for all x, y ∈ A0,
and whose compositions

A (y, z)⊗k A (x, y) → A (x, z)

are chain maps of complexes for all x, y, z ∈ A0. Note that the Leibniz rule is
automatically satisfied.

(2) Let A ,B be dg categories. Then a dg functor F : A → B is a sequence of data
(a) a map F0 : A0 → B0, where we set F (x) := F0(x) for all x ∈ A0 fir short; and
(b) a family (F(x,y) : A (x, y) → B(F (x), F (y)))(x,y)∈A0×A0 of chain maps, where

we set F (f) := F(x,y)(f) for all f ∈ A (x, y) for short;
that preserves compositions and identities.

Definition 9. Let A ,B be dg categories, E,F : A → B dg functors, and n ∈ Z. Then
we set Hom(E,F )n to be the set of all (αn

x)x∈A0 ∈
∏

x∈A0
B(E(x), F (x))n such that

F (f)αn
x = (−1)mnαn

yE(f) for all f ∈ A (x, y)m,m ∈ Z, x, y ∈ A0. Using this we define
a complex Hom(E,F ) :=

⊕
n∈Z Hom(F,G)n of k-modules with the differential d given

by Hom(E,F )n → Hom(E,F )n+1, (αn
x)x 7→ (dB(α

n
x))x. Then α

n := (αn
x)x∈A0 is called a

derived transformation of degree n, and α := (αn)n∈Z is called a derived transformation.
An element α of Z0(Hom(E,F )) is called a dg natural transformation, which is identified
with the family α := (αx)x ∈

∏
x∈A0

B(E(x), F (x))0 with d(α) = 0, and F (f)αx =
αyE(f) for all f ∈ A (x, y).

Definition 10. By Cdg(k) we denote the category of (co)chain complexes of k-modules,
where for any complexes M,N the morphism space is given by

Cdg(k)(M,N) :=
⊕
n∈Z

∏
p∈Z

Homk(M
p, Np+n)

with the differential d defined by d(f) := (dp+n
N fp−(−1)nfp+1ddM)p∈Z for all f = (fp)p∈Z ∈

Cdg(M,N)n. Then Cdg(k) is a light dg category.

We denote by k-dgCat the 2-category of small dg categories, dg functors between them,
and dg natural transformations between those dg functors. By changing small/light or dg
natural/derived transformations, we have the following four variants:

dg natural derived
small k-dgCat k-DGCat
light k-dgCAT k-DGCAT

Let A ∈ k-dgCat0 = k-DGCat0 ∋ Cdg(k). Then we define the dg category

Cdg(A ) := k-DGCat(A op,Cdg(k)) ∈ k-dgCAT0 = k-DGCAT0,

of dg A -modules, which is a light category. By taking the 0-cocycles, this defines the
category C (A ) := Z0(Cdg(A )) of dg A -modules, which is a light Frobenius category,



the homotopy category H (A ) := H0(Cdg(A )) of A , which is equal to the stable cat-
egory C (A ) of C (A ) that is a light triangulated category, and the derived category

D(A ) := H (A )[qis−1] of A as a quotient category of H (A ) with respect to the quasi-
isomorphisms (see Definition 11), which is known to be a 2-moderate triangulated cate-
gory. Then we have Cdg(A )0 = C (A )0 = H (A )0 = D(A )0.

Definition 11. Let M ∈ Cdg(A )0. A morpism f : M → N in C (A ) is called quasi-
isomorphism (qis for short) if Hn(f) : Hn(M) → Hn(N) is an isomorphism for all n ∈ Z.
M is said to be acyclic if Hn(M) = 0 for all n ∈ Z. M is said to be homotopically
projective if H (A )(M,A) = 0 for all acyclic complexes A ∈ H (A ). We set Hp(A ) to
be the full subcategoryy of H (A ) consisting of homotopically projective objects.

We formulate a diagram of dg categories and dg functors as a colax functor X from I to
k-dgCat. We can also regard X as a set of dg categories X(i)’s with an action of I, hence
as a generalization of a dg category with a group action when I is a group viewed as a
category with only one object ∗. For a 2-category C, the colax functors from I to C also
form a 2-category Colax(I,C) with suitably defined 1-morphisms and 2-morphisms, where
a 1-morphism is a pair (F, ϕ) : X ′ → X of a family F = (F (i) : X ′(i) → X(i))i∈I0 of 1-
morphisms in C, and a family ϕ = (ϕa : X(a)F (i) ⇒ F (j)X ′(a))(a : i→j)∈I1 of 2-morphisms
in C.

For a colax functor X in Colax(I, k-dgCat), a dg category
∫
X is constructed in [6] by

“gluing” all dg categories X(i)’s together, which is called the Grothendieck construction
of X, which is nothing but the orbit category X(∗)/G when I is a group G.

The correspondence A 7→ Cdg(A ) can be extended to a pseudofunctor Cdg : k-DGCat →
k-DGCAT. Similarly, we obtain pseudofunctors C : k-dgCAT → k-FRB, H : k-dgCat →
k-TRI, and D : k-dgCat → k-TRI2. For a colax functor X : I → k-dgCat, we can de-
fine its dg category of dg modules Cdg(X), category of dg modules C (X), homotopy
category H (X), and derived category D(X) as the composite Cdg(X) := Cdg ◦ X and
so on. The relationship of these constructions can be illustrated by the following strict
commutative diagram on the left.

Cdg(k-dgCat)

k-dgCat C (k-dgCat) k-FRB

H (k-dgCat) k-TRI

k-TRI2

Cdg

C

H

Z0

st

H0

D

L

,

H (A ) H (B)

Hp(A ) Hp(B)

D(A ) D(B)

H0(F )

pA

H0(F )|

jB

L(F )

QB
.

Here, in Cdg(k-dgCat), 1-morphisms F : Cdg(A ) → Cdg(B) are required to preserve
homotopically projective objects: F (Hp(A )0) ⊆ Hp(B)0 (similar for C (k-dgCat) and
H (k-dgCat)), which enables us to define a pseudofunctor L defined by L(F ) := L(H0(F ))
= jB◦H0(F )|◦pA in the diagram above, whereQB is the quotient functor, jB is the restric-
tion of QB to Hp(B), and pA is given by a “projective resolution” with pA ◦jA = 1lHp(A ).



Let α : E ⇒ F be a dg natural transformation of small dg functors E,F : A → B of
dg categories. Thus α is a 2-morphism in k-dgCat. We here observe how this α is sent
by the pseudofunctors Cdg, H

0 and L. By applying Cdg, we obtain a dg natural trans-
formation -⊗A α : -⊗AE ⇒ -⊗A F of dg functors -⊗AE, -⊗A F : Cdg(A ) → Cdg(B),
where we set E to be the A -B-bimodule B(-, E(?)) (similar for F ), and α to be the
morphism B(-, α(?)) of bimodules. This is sent by L ◦H0 to the natural transformation

-
L
⊗A α : -

L
⊗AE ⇒ -

L
⊗A F of triangle functors -

L
⊗AE, -

L
⊗A F : D(A ) → D(B) of derived

categories of A and B, respectively.

3. Results

In this section we state our main results. To state them we need the following three
definitions.

Definition 12. Let X,X ′ ∈ Colax(I, k-dgCat). Then X ′ is said to be standardly de-
rived equivalent to X if there exists a 1-morphism (F, ψ) : Cdg(X

′) → Cdg(X) in the
2-category Colax(I, k-dgCAT) such that L(F, ψ) : D(X ′) → D(X) is an equivalence
in Colax(I, k-TRI2). Here, this F is said to preserve homotopically projective objects if
F (i)(Hp(X

′(i))0) ⊆ Hp(X(i))0 for all i ∈ I0.

Remark 13. It is possible to state this sentence using a derived tensor such as: “There

exists an X ′-X-bimodule Z such that -
L
⊗X′Z : D(X ′) → D(X) is an equivalence in

Colax(I, k-TRI2).” See [6] for details.

Definition 14. Let A be a small dg category, and X ∈ Colax(I, k-dgCat).

(1) A dg subcategory T of Cdg(A ) is called a tilting dg subcategory for A if all
T ∈ T0 is compact and the smallest localizing subcategory of D(A ) containing
T0 coincides with D(A ).

(2) A colax subfunctor T of Cdg(X) is called a tilting colax subfunctor for X if there
exists a 1-morphism (σ, ρ) : T → Cdg(X) such that σ(i) : T (i) → Cdg(X(i)) is the
inclusion, and T (i) is a tilting dg subcategory for X(i) for all i ∈ I0.

Definition 15 (Quasi-equivalence 1-morphisms).

(1) A dg functor F : A → B of dg categories is said to be quasi-equivalence if
Hn(F ) : Hn(A ) → Hn(B) is fully faithful for all n ∈ Z, and H0(F ) : H0(A ) →
H0(B) is an equivalence.

(2) A dg natural transformation α : E ⇒ F of dg functors E,F : A → B of dg

categories is called a 2-quasi-isomorphism if -
L
⊗A α : -

L
⊗AE → -

L
⊗A F is an iso-

morphism.
(3) A 1-morphism (F, ϕ) : X → T in Colax(I, k-dgCat) is said to be quasi-equivalence

if F (i) is quasi-equivalence for all i ∈ I0 and ϕ(a) is 2-quasi-isomorphism for all
a ∈ I1.

We obtained the following characterization of standard derived equivalences of diagrams
of dg categories, where we do not need k-flatness assumption unlike a result by Keller [8].

Theorem 16. Let X,X ′ ∈ Colax(I, k-dgCat). Then the following are equivalent.



(1) There exists a 1-morphism (F, ψ) : Cdg(X
′) → Cdg(X) in Colax(I, k-dgCAT) such

that F preserves homotopically projective objects and L(F, ψ) : D(X ′) → D(X)
is an equivalence in Colax(I, k-TRI2).

(2) X ′ is standardly derived equivalent to X.
(3) There exists a quasi-equivalence (E, ϕ) : X ′ → T for some tilting colax functor T

for X.

Remark 17. The statement (1) guarantees that the relation to be standardly derived
equivalent is transitive. But we do not know whether this relation is reflexive.

Remark 18. We do not need k-flatness assumption on X. It is possible to remove this
assumption also from Keller’s theorem [8, Corollary 9.2] for dg categories. In connection
with this, we mention that Dugger–Shipley [7] proved Rickard’s theorem [10, Proposition
5.1] (it needed k-projectivity) without this assumption.

The following gives a sufficient condition for the Grothendieck constructions to be
derived equivalent.

Theorem 19. Let X,X ′ ∈ Colax(I, k-dgCat). Assume that X ′ is standardly derived
equivalent to X, or equivalently, there exists a quasi-equivalence from X ′ to a tilting colax
functor T for X (cf. Theorem 16). Then

∫
X ′ is derived equivalent to

∫
X.
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