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ABSTRACT. In noncommutative algebraic geometry, noncommutative quadric hypersur-
faces are major objects of study. In this paper, we focus on studying the homogeneous
coordinate algebras A of noncommutative conics Proj,. A embedded into Calabi-Yau
quantum projective planes. We give a complete classification of A up to isomorphism
of graded algebras. As a consequence, we show that there are exactly 9 isomorphism
classes of noncommutative conics Proj,. A in Calabi-Yau quantum projective planes.

1. MOTIVATION

Throughout this paper, we fix an algebraically closed field k of characteristic 0. By
Sylvester’s theorem, it is elementary to classify (commutative) quadric hypersurfaces in
P21 namely, they are isomorphic to

Proj k[zy,. .., x4/ (x4 - - +$§) c pé!

for some j =1,...,d. When d = 3, we see that there are exactly 3 isomorphism classes of
conics, exactly 1 of them is smooth and exactly 1 of them is irreducible (the same one).

The ultimate goal of our project is to classify noncommutative quadric hypersurfaces
in quantum P?'’s. As a first step to this ultimate goal, we define and classify noncom-
mutative conics in quantum P?’s.

2. QUANTUM POLYNOMIAL ALGEBRAS

Definition 1 ([1]). A d-dimensional quantum polynomial algebra is a connected graded
algebra S such that

(1) gldim S = d < oo,

(2) Ext%(k,S) =0 if ¢ # d, and Ext%(k, S) = k, and

(3) Hs(t) =1/(1—t).

A d-dimensional quantum polynomial algebra S is a noncommutative analogue of the
commutative polynomial algebra k[z1, ..., x4], so the noncommutative projective scheme
Proj,. S associated to S in the sense of [3] is regarded as a quantum P41 (see Section 3
for details).

Next, we recall a notion of geometric algebra for a quadratic algebra.

Definition 2. Let A = T(V)/(R) be a quadratic algebra where V' is a finite dimensional
vector space and R C V ® V' is a subspace.
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(1) A geometric pair (E, o) consists of a projective scheme £ C P(V*) and an auto-
morphism o € Aut E.
(2) We say that A satisfies (G1) if there exists a geometric pair (E, o) such that

(
V(R) = {(p,o(p)) e P(V") x B(V") | p € E}.
In this case, we write P(A) = (£, 0).

(3) We say that A satisfies (G2) if there exists a geometric pair (F, o) such that

R={feVaV|f(polp)=0VpeE}

In this case, we write A = A(F, o).
(4) We say that A is geometric if it satisfies both (G1) and (G2) such that A(P(A4)) =
A.

Theorem 3 ([2]). Every 3-dimensional quantum polynomial algebra A = A(E, o) is
geometric where either E = P? or E C P? is a cubic divisor.

Example 4. A typical example of a 3-dimensional quadratic AS-regular algebra is a
3-dimensional Sklyanin algebra

k(z,y,2)/(ayz + bzy + cx?®, azx + brz + cy?, axy + byx + c2*) = A(E, o),

where E = V((a®+b0°+)zyz —abe(x® +y* +2%)) C P? is an elliptic curve, and o € Aut E
is the translation by a point (a,b,¢) € E.

3. QUANTUM PROJECTIVE SPACES
Artin and Zhang introduced a notion of noncommutative schemes.

Definition 5 ([3]). A noncommutative scheme is a pair X = (mod X, Ox) consisting
of a k-linear abelian category mod X and an object Ox € mod X. We say that two
noncommutative schemes X and Y are isomorphic, denoted by X = Y if there exists an
equivalence functor F': mod X — modY such that F(Ox) = Oy.

We give some examples of noncommutative schemes.

Example 6. If X is a commutative noetherian scheme, then we view X as a noncommu-
tative scheme by X = (coh X, Oy).

Example 7. The noncommutative affine scheme associated to a right noetherian algebra
R is a noncommutative scheme defined by Spec,. R := (mod R, R). If R is commutative,
then Specy,. R = Spec R.

Example 8. Let A be a right noetherian connected graded algebra. We define the quo-
tient category tails A := grmod A/ tors A where tors A is the full subcategory of grmod A
consisting of finite dimensional modules over k. The noncommutative projective scheme
associated to A is a noncommutative scheme defined by Proj,. A := (tails A, 7A) where
m : grmod A — tails A is the quotient functor. If A is commutative and generated in
degree 1 over k, then Proj,. A = Proj A.

Definition 9. A quantum P?! is a noncommutative projective scheme Proj,. S for some
d-dimensional quantum polynomial algebra S.



4. TWISTED SUPERPOTENTIALS
Definition 10. Let V be a finite dimensional vector space and m € NT. Define a linear
map ¢ : V" = VO by ¢(v QUa @+ @ Uy 1 Q@ Upy) = Uy QU1 R+ + @ U2 @ Uppy_1.

(1) w e VO™ is called superpotential if ¢p(w) = w.

(2) w € V®™ is called twisted superpotential if (1 ® id®™ " ¢(w) = w for some 7 €
GL(V).

(3) The i-th derivation quotient algebra of w € V™ is defined by D(w, ) := T(V)/(9'w)
where 0'w is the “i-th left partial derivatives” of w.

The next theorem plays a key role to classify quantum polynomial algebras.

Theorem 11 ([4, Theorem 11]). For every d-dimensional quantum polynomial algebra S,
there exists a unique twisted superpotential w such that S = D(w,d — 2).

Example 12. w = a(zyz + yzx + zzy) + b(zzy + yrz + 2yx) + c(2® + ¢ + 2°) is a
superpotential such that

D(w, 1) = k{zx,y, 2)/(ayz + bzy + cx?, azx + bxz + cy?, axy + byx + c2?)
is a 3-dimensional Sklyanin algebra.

The next theorem is a characterization of “Calabi-Yau” algebras by using twisted su-
perpotentials.

Theorem 13 ([9, Corollary 4.5]). Let S = D(w,d — 2) be a d-dimensional quantum
polynomial algebra where w s a twisted superpotential. Then S is “Calabi- Yau” if and
only if w is (—1) twisted superpotential.

Example 14. Every 3-dimensional Sklyanin algebra is Calabi-Yau.

A classification of twisted superpotentials whose derivation-quotient algebras are 3-
dimensional quantum polynomial algebras is completed.

Theorem 15 ([10]). Superpotentials w such that D(w,1) are 3-dimensional quantum
polynomial algebras are classified.

Theorem 16 ([7, Theorem 3.4], [8, Theorem 4.2]). Twisted superpotentials w such that
D(w, 1) are 8-dimensional quantum polynomial algebras are classified.

By the above theorem, we have finally completed the Artin-Schelter’s project in the
quadratic case proposed in [1]. As an application, we have the following.

Theorem 17 ([7, Theorem 4.4]). For every 5-dimensional quantum polynomial alge-

bra S, there exists a 3-dimensional Calabi-Yau quantum polynomial algebra S such that
Proju. S = Proj,. S.

The above theorem tells that every quantum P? is isomorphic to a “Calabi-Yau” quan-
tum P2,



5. NONCOMMUTATIVE CONICS

In this section, we define a notion of noncommutative quadric hypersurface in a quan-
tum P41

Definition 18. A noncommutative quadric hypersurface in a (Calabi-Yau) quantum P!
is the noncommutative projective scheme Proj,.S/(f) for some d-dimensional (Calabi-
Yau) quantum polynomial algebra S and for some regular central element f € Z(S),. In
particular, when d = 3 (resp. d = 4), we say that Proj,.S/(f) is a noncommutative conic
(resp. quadric).

Let Sym(3) be the symmetric group of degree 3 and
Sym*V ={w e V|- w = 1wVl € Sym(3)}.
The following is one of the main results.

Theorem 19 ([5, Proposition 3.4, Lemma 3.5], [6, Corollary 3.8]). Let S = A(E,0) be a
3-dimensional Calabi- Yau quantum polynomial algebra, 0 # f € Z(S)s2, and A = S/(f).

(1) If A is commutative, then
(a) either E =P? or E C P? is a triple line, and
(b) A is isomorphic to one of the following algebras:
(2) If A is not commutative, then
(a) |o] =2, and
(b) S =D(w, 1) for some w € Sym®V, and
>~ k(x,y,2)/(yz + 2y + ax®, 2z + x2 + by?, vy + yx + c2?)/(ax® + By + v2?)
for some (a,b,c) € k* and (o, 8,7) € P2.

A

6. CLASSIFICATION OF A

Lemma 20 ([6, Corollary 3.8]). Let S = A(F, o) be a 3-dimensional Calabi-Yau quantum
polynomial algebra, 0 # f € Z(S)2, and A = S/(f). If A is not commutative, then the
quadratic dual algebra A' = k[X Y, Z]/(F\, Fy) is a complete intersection where Fy, Fy €
KX, Y, Z)s.

Lemma 21. There are exactly 6 isomorphism classes of complete intersections of the

form k[X,Y, Z]/(Fy, Fy) where Fy, Fy € k[X,Y, Z]5. (Classification of pencils of conics,
see Table 1.)

TABLE 1. List of k[X,Y, Z]/(F}, F3)

k[X7KZ]/(X27Y2)7 k[X7Y7Z]/(X2_Y2722)7
kXY, Z]/(XZ +Y? Y Z), KXY, Z]/(X* - Y2, Z7),
k[XaKZ]/<X2 — YZ,YQ — XZ)a k[X7KZ]/(X2 — Y27X2 — Z2>




Corollary 22 ([6, Corollary 3.9]). Let S be a 3-dimensional Calabi-Yau quantum poly-
nomial algebra, 0 # f € Z(S)a, and A = S/(f). There are exactly 9 isomorphism classes
of A (3 of them are commutative, and 6 of them are not commutative, see Table 2).

TABLE 2. List of A

klz,y, 2l/(@%),  klv,y 2]/(a® +y°),  klz,y,2]/@@% + 7 + 27),
S(O’O’O)/(:(:2), 5(0,0,0)/(1,2 + y2)7 S(O,O,O)/(xQ i y2 i 22),
5(1,1,0)/(1,2)’ 5(1,1,0)/(3$2 + 3y2 T 422)7 5(1’1’0)/(I2 + y2 R 422)_

S@b) .= k(x,y, 2)/(yz + 2y + ax?, zx + 22 + by?, 2y + yr + c2?).

7. CLASSIFICATION OF E4 AND C'(A)

If S is a d-dimensional quantum polynomial algebra, f € Z(S) is a regular central
element, and A = S/(f), then there exists a unique regular central element f' € Z(A'),
such that S' = A'/(f'). We define C(A) := A'[(f")o.

Theorem 23 ([12, Proposition 5.2]). If S is a d-dimensional quantum polynomial algebra,
f € Z(S)y is a reqular central element, and A = S/(f), then CM%(A) = D*(mod C(A)).

Theorem 24 ([5, Lemma 2.6], [6, Proposition 4.3, Lemma 4.4]). Let S = A(E,0) be a
3-dimensional Calabi-Yau quantum polynomial algebra, 0 # f € Z(S)s, and A = S/(f).
If A is not commutative, then the following holds:

(1) C(A) is a 4-dimensional commutative Frobenius algebra.
(2) Z(S)a={g*| g € S1} (every 0 # f € Z(S)s is reducible!)
(3) A satisfies (G1). In fact, if f = g* for g € Sy, then P(A) = (E4,04) where

Es=(ENV(9)Ua(ENV(g)), 0a=0ls,.
Lemma 25 ([6, Proposition 4.3]). If
S =k(x,y,2)/(yz + zy + ax®, zx + vz + by?, 2y + yr + cz?)

is a 3-dimensional Calabi-Yau quantum polynomial algebra, 0 # f € Z(S)2, and A =
S/(f), then A is not commutative, and

Spec C(A) = {(a, 8,7) € A% | (az + By +72)* = f in S}/ ~
where (o, 3,7) ~ (—a, =B, —7).
Example 26. If S = A(F,0) = k(z,y,2)/(yz + 2y, zx + 2z, xy + yz) is a 3-dimensional
Calabi-Yau quantum polynomial algebra, then
E=V(zyz),

a(0,b,¢) = (0,b, —c),

o(a,0,¢) = (—a,0,c),

o(a,b,0) = (a,—b,0).



Further, if f = 2%+ y*+ 2% € Z(9),, and A = S/(f), then

(@+y+z)f=(@ty—2’=@-y+2)=@—-y—2°=f
in S and C(A) 2 k*, so

Spec C(A) = {(1,1,1), (1,1, —1),(1,—1,1),(1,—-1,-1)} c A%
Further, if g = 2 + y + 2 so that ¢ = f, then

Es={(0,1,-1),(=1,0,1),(1,~1,0) U ({(0, 1, —1),(=1,0,1), (1,—1,0)})
=1{(0,1,-1),(—1,0,1), (1,-1,0),(0,1,1),(1,0,1),(1,1,0)} C P2.

Theorem 27 ([6, Theorem 4.14)). Let S,S" be 3-dimensional Calabi-Yau quantum poly-
nomial algebras, 0 # f € Z(S)a, f' € Z(S")e, and A= S/(f), A = S"/(f") such that A, A’
are not commutative. Then Ey = Ea if and only if C(A) = C(A"). There are exactly
6 isomorphism classes of Ea (see Table 3), so there are exactly 6 isomorphism classes

of C(A) (see Table 4). Moreover, every 4-dimensional commutative Frobenius algebra
appears as C(A).

TABLE 3. Pictures of £4 when A is not commutative

1 line | 1 point | 2 points | 3 points | 4 points 6 points

TABLE 4. List of C(A) when A is not commutative

Rl /(2 0%), R/, K@) < F,
Rlul/ () x Klul/ (%), R/ x B% K.

Corollary 28. Let S be a 3-dimensional Calabi-Yau quantum polynomial algebra, 0 #
f€Z(S)s, and A= S/(f). There are exactly 9 isomorphism classes of C'(A).

8. CLASSIFICATION OF Proj,. A

It is not easy to classify Proj,. A directly. Thanks to the classification of A and that of
C(A), we can complete the classification of Projy. A.

Theorem 29 ([6, Theorem 5.10]). Let S,S" be 3-dimensional Calabi-Yau quantum poly-
nomial algebras, 0 # f € Z(5)2,0# f' € Z(S")2, and A= S/(f), A = S"/(f"). Then

A= A" = Proju. A = Proj,. A= C(A) = C(4)).

Corollary 30 ([6, Theorem 5.11]). There are exactly 9 isomorphism classes of noncom-
mutative conics in Calabi- Yau quantum P?’s.



Finally, we focus on studying noncommutative smooth conics.
Definition 31. We say that Proj,. A is smooth if gldim(tails A) < oo.

Theorem 32 ([12, Theorem 5.6], [11, Theorem 5.5]). Let S be a d-dimensional quantum
polynomial algebra, f € Z(S)s a regular central element, and A = S/(f). Then Proj,. A
is smooth if and only if C(A) is semisimple.

Theorem 33 ([6, Theorem 5.15]). Let S be a 3-dimensional Calabi-Yau quantum poly-

nomial algebra, 0 # f € Z(S)2, and A = S/(f). If Proju. A is smooth, then exactly one
of the following two cases occur:

(1) (a) A is commutative.
f s irreducible.

(b)
(c) C(A) = My(k). N N
(d) DP(tails A) = D’(mod kA,), where kA; is the path algebra of the quiver

1—=2 (A type).

A is not commutative.
f s reducible.

a)
b)
c) C(A) =k N
(d) DP(tails A) = D®(mod kD,), where kD, is the path algebra of the quiver

1\5/2
3/ \4

It is known that there are infinitely many Calabi-Yau quantum P?’s, so it is rather
surprising that there are only 9 noncommutative conics in Calabi-Yau quantum P?’s up
to isomorphism of noncommutative schemes, exactly two of them are smooth, and exactly
one of them is irreducible.

(Dy type).
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