NONCOMMUTATIVE CONICS IN CALABI-YAU QUANTUM PROJECTIVE PLANES I, II

HAIGANG HU, MASAKI MATSUNO AND IZURU MORI

Abstract

In noncommutative algebraic geometry, noncommutative quadric hypersurfaces are major objects of study. In this paper, we focus on studying the homogeneous coordinate algebras A of noncommutative conics $\operatorname{Proj}_{\mathrm{nc}} A$ embedded into Calabi-Yau quantum projective planes. We give a complete classification of A up to isomorphism of graded algebras. As a consequence, we show that there are exactly 9 isomorphism classes of noncommutative conics $\operatorname{Proj}_{n c} A$ in Calabi-Yau quantum projective planes.

1. Motivation

Throughout this paper, we fix an algebraically closed field k of characteristic 0 . By Sylvester's theorem, it is elementary to classify (commutative) quadric hypersurfaces in \mathbb{P}^{d-1}, namely, they are isomorphic to

$$
\operatorname{Proj} k\left[x_{1}, \ldots, x_{d}\right] /\left(x_{1}^{2}+\cdots+x_{j}^{2}\right) \subset \mathbb{P}^{d-1}
$$

for some $j=1, \ldots, d$. When $d=3$, we see that there are exactly 3 isomorphism classes of conics, exactly 1 of them is smooth and exactly 1 of them is irreducible (the same one).

The ultimate goal of our project is to classify noncommutative quadric hypersurfaces in quantum \mathbb{P}^{d-1} 's. As a first step to this ultimate goal, we define and classify noncommutative conics in quantum \mathbb{P}^{2},s.

2. Quantum polynomial algebras

Definition 1 ([1]). A d-dimensional quantum polynomial algebra is a connected graded algebra S such that
(1) $\operatorname{gldim} S=d<\infty$,
(2) $\operatorname{Ext}_{S}^{q}(k, S)=0$ if $q \neq d$, and $\operatorname{Ext}_{S}^{d}(k, S) \cong k$, and
(3) $H_{S}(t)=1 /(1-t)^{d}$.

A d-dimensional quantum polynomial algebra S is a noncommutative analogue of the commutative polynomial algebra $k\left[x_{1}, \ldots, x_{d}\right]$, so the noncommutative projective scheme Proj $_{\text {nc }} S$ associated to S in the sense of [3] is regarded as a quantum \mathbb{P}^{d-1} (see Section 3 for details).

Next, we recall a notion of geometric algebra for a quadratic algebra.
Definition 2. Let $A=T(V) /(R)$ be a quadratic algebra where V is a finite dimensional vector space and $R \subset V \otimes V$ is a subspace.

The detailed version of this paper will be submitted for publication elsewhere.
(1) A geometric pair (E, σ) consists of a projective scheme $E \subset \mathbb{P}\left(V^{*}\right)$ and an automorphism $\sigma \in$ Aut E.
(2) We say that A satisfies (G1) if there exists a geometric pair (E, σ) such that

$$
\mathcal{V}(R)=\left\{(p, \sigma(p)) \in \mathbb{P}\left(V^{*}\right) \times \mathbb{P}\left(V^{*}\right) \mid p \in E\right\} .
$$

In this case, we write $\mathcal{P}(A)=(E, \sigma)$.
(3) We say that A satisfies (G2) if there exists a geometric pair (E, σ) such that

$$
R=\{f \in V \otimes V \mid f(p, \sigma(p))=0 \forall p \in E\} .
$$

In this case, we write $A=\mathcal{A}(E, \sigma)$.
(4) We say that A is geometric if it satisfies both (G1) and (G2) such that $\mathcal{A}(\mathcal{P}(A))=$ A.

Theorem 3 ([2]). Every 3-dimensional quantum polynomial algebra $A=\mathcal{A}(E, \sigma)$ is geometric where either $E=\mathbb{P}^{2}$ or $E \subset \mathbb{P}^{2}$ is a cubic divisor.

Example 4. A typical example of a 3-dimensional quadratic AS-regular algebra is a 3-dimensional Sklyanin algebra

$$
k\langle x, y, z\rangle /\left(a y z+b z y+c x^{2}, a z x+b x z+c y^{2}, a x y+b y x+c z^{2}\right)=\mathcal{A}(E, \sigma),
$$

where $E=\mathcal{V}\left(\left(a^{3}+b^{3}+c^{3}\right) x y z-a b c\left(x^{3}+y^{3}+z^{3}\right)\right) \subset \mathbb{P}^{2}$ is an elliptic curve, and $\sigma \in$ Aut E is the translation by a point $(a, b, c) \in E$.

3. Quantum projective spaces

Artin and Zhang introduced a notion of noncommutative schemes.
Definition 5 ([3]). A noncommutative scheme is a pair $X=\left(\bmod X, \mathcal{O}_{X}\right)$ consisting of a k-linear abelian category $\bmod X$ and an object $\mathcal{O}_{X} \in \bmod X$. We say that two noncommutative schemes X and Y are isomorphic, denoted by $X \cong Y$, if there exists an equivalence functor $F: \bmod X \rightarrow \bmod Y$ such that $F\left(\mathcal{O}_{X}\right) \cong \mathcal{O}_{Y}$.

We give some examples of noncommutative schemes.
Example 6. If X is a commutative noetherian scheme, then we view X as a noncommutative scheme by $X=\left(\operatorname{coh} X, \mathcal{O}_{X}\right)$.

Example 7. The noncommutative affine scheme associated to a right noetherian algebra R is a noncommutative scheme defined by $\mathrm{Spec}_{\mathrm{nc}} R:=(\bmod R, R)$. If R is commutative, then $\operatorname{Spec}_{\text {nc }} R \cong \operatorname{Spec} R$.

Example 8. Let A be a right noetherian connected graded algebra. We define the quotient category tails $A:=\operatorname{grmod} A /$ tors A where tors A is the full subcategory of $\operatorname{grmod} A$ consisting of finite dimensional modules over k. The noncommutative projective scheme associated to A is a noncommutative scheme defined by $\operatorname{Proj}_{\text {nc }} A:=($ tails $A, \pi A)$ where $\pi: \operatorname{grmod} A \rightarrow \operatorname{tails} A$ is the quotient functor. If A is commutative and generated in degree 1 over k, then $\operatorname{Proj}_{\mathrm{nc}} A \cong \operatorname{Proj} A$.
Definition 9. A quantum \mathbb{P}^{d-1} is a noncommutative projective scheme Proj ${ }_{n c} S$ for some d-dimensional quantum polynomial algebra S.

4. Twisted superpotentials

Definition 10. Let V be a finite dimensional vector space and $m \in \mathbb{N}^{+}$. Define a linear $\operatorname{map} \phi: V^{\otimes m} \rightarrow V^{\otimes m}$ by $\phi\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{m-1} \otimes v_{m}\right)=v_{m} \otimes v_{1} \otimes \cdots \otimes v_{m-2} \otimes v_{m-1}$.
(1) $w \in V^{\otimes m}$ is called superpotential if $\phi(w)=w$.
(2) $w \in V^{\otimes m}$ is called twisted superpotential if $\left(\tau \otimes \mathrm{id}^{\otimes m-1}\right) \phi(w)=w$ for some $\tau \in$ $\mathrm{GL}(V)$.
(3) The i-th derivation quotient algebra of $w \in V^{\otimes m}$ is defined by $D(w, i):=T(V) /\left(\partial^{i} w\right)$ where $\partial^{i} w$ is the " i-th left partial derivatives" of w.

The next theorem plays a key role to classify quantum polynomial algebras.
Theorem 11 ([4, Theorem 11]). For every d-dimensional quantum polynomial algebra S, there exists a unique twisted superpotential w such that $S=D(w, d-2)$.

Example 12. $w=a(x y z+y z x+z x y)+b(x z y+y x z+z y x)+c\left(x^{3}+y^{3}+z^{3}\right)$ is a superpotential such that

$$
D(w, 1)=k\langle x, y, z\rangle /\left(a y z+b z y+c x^{2}, a z x+b x z+c y^{2}, a x y+b y x+c z^{2}\right)
$$

is a 3-dimensional Sklyanin algebra.
The next theorem is a characterization of "Calabi-Yau" algebras by using twisted superpotentials.

Theorem 13 ([9, Corollary 4.5]). Let $S=D(w, d-2)$ be a d-dimensional quantum polynomial algebra where w is a twisted superpotential. Then S is "Calabi-Yau" if and only if w is $(-1)^{d+1}$ twisted superpotential.

Example 14. Every 3-dimensional Sklyanin algebra is Calabi-Yau.
A classification of twisted superpotentials whose derivation-quotient algebras are 3dimensional quantum polynomial algebras is completed.

Theorem 15 ([10]). Superpotentials w such that $D(w, 1)$ are 3-dimensional quantum polynomial algebras are classified.

Theorem 16 ([7, Theorem 3.4], [8, Theorem 4.2]). Twisted superpotentials w such that $D(w, 1)$ are 3-dimensional quantum polynomial algebras are classified.

By the above theorem, we have finally completed the Artin-Schelter's project in the quadratic case proposed in [1]. As an application, we have the following.

Theorem 17 ([7, Theorem 4.4]). For every 3-dimensional quantum polynomial algebra S, there exists a 3-dimensional Calabi-Yau quantum polynomial algebra \tilde{S} such that $\operatorname{Proj}_{\mathrm{nc}} S \cong \operatorname{Proj}_{\mathrm{nc}} \tilde{S}$.

The above theorem tells that every quantum \mathbb{P}^{2} is isomorphic to a "Calabi-Yau" quantum \mathbb{P}^{2}.

5. Noncommutative conics

In this section, we define a notion of noncommutative quadric hypersurface in a quantum \mathbb{P}^{d-1}.

Definition 18. A noncommutative quadric hypersurface in a (Calabi-Yau) quantum \mathbb{P}^{d-1} is the noncommutative projective scheme $\operatorname{Proj}_{n c} S /(f)$ for some d-dimensional (CalabiYau) quantum polynomial algebra S and for some regular central element $f \in Z(S)_{2}$. In particular, when $d=3$ (resp. $d=4$), we say that $\operatorname{Proj}_{\mathrm{nc}} S /(f)$ is a noncommutative conic (resp. quadric).

Let $\operatorname{Sym}(3)$ be the symmetric group of degree 3 and

$$
\operatorname{Sym}^{3} V=\left\{w \in V^{\otimes 3} \mid \theta \cdot w=w \forall \theta \in \operatorname{Sym}(3)\right\}
$$

The following is one of the main results.
Theorem 19 ([5, Proposition 3.4, Lemma 3.5], [6, Corollary 3.8]). Let $S=\mathcal{A}(E, \sigma)$ be a 3-dimensional Calabi-Yau quantum polynomial algebra, $0 \neq f \in Z(S)_{2}$, and $A=S /(f)$.
(1) If A is commutative, then
(a) either $E=\mathbb{P}^{2}$ or $E \subset \mathbb{P}^{2}$ is a triple line, and
(b) A is isomorphic to one of the following algebras:

$$
k[x, y, z] /\left(x^{2}\right), k[x, y, z] /\left(x^{2}+y^{2}\right), k[x, y, z] /\left(x^{2}+y^{2}+z^{2}\right) .
$$

(2) If A is not commutative, then
(a) $|\sigma|=2$, and
(b) $S=\mathcal{D}(w, 1)$ for some $w \in \operatorname{Sym}^{3} V$, and

$$
\begin{aligned}
& A \cong k\langle x, y, z\rangle /\left(y z+z y+a x^{2}, z x+x z+b y^{2}, x y+y x+c z^{2}\right) /\left(\alpha x^{2}+\beta y^{2}+\gamma z^{2}\right) \\
& \quad \text { for some }(a, b, c) \in k^{3} \text { and }(\alpha, \beta, \gamma) \in \mathbb{P}^{2} .
\end{aligned}
$$

6. Classification of A

Lemma 20 ([6, Corollary 3.8]). Let $S=\mathcal{A}(E, \sigma)$ be a 3-dimensional Calabi-Yau quantum polynomial algebra, $0 \neq f \in Z(S)_{2}$, and $A=S /(f)$. If A is not commutative, then the quadratic dual algebra $A^{!} \cong k[X, Y, Z] /\left(F_{1}, F_{2}\right)$ is a complete intersection where $F_{1}, F_{2} \in$ $k[X, Y, Z]_{2}$.

Lemma 21. There are exactly 6 isomorphism classes of complete intersections of the form $k[X, Y, Z] /\left(F_{1}, F_{2}\right)$ where $F_{1}, F_{2} \in k[X, Y, Z]_{2}$. (Classification of pencils of conics, see Table 1.)

TABLE 1. List of $k[X, Y, Z] /\left(F_{1}, F_{2}\right)$

$k[X, Y, Z] /\left(X^{2}, Y^{2}\right)$,	$k[X, Y, Z] /\left(X^{2}-Y Z, Z^{2}\right)$,
$k[X, Y, Z] /\left(X Z+Y^{2}, Y Z\right)$,	$k[X, Y, Z] /\left(X^{2}-Y^{2}, Z^{2}\right)$,
$k[X, Y, Z] /\left(X^{2}-Y Z, Y^{2}-X Z\right)$,	$k[X, Y, Z] /\left(X^{2}-Y^{2}, X^{2}-Z^{2}\right)$.

Corollary 22 ([6, Corollary 3.9]). Let S be a 3-dimensional Calabi-Yau quantum polynomial algebra, $0 \neq f \in Z(S)_{2}$, and $A=S /(f)$. There are exactly 9 isomorphism classes of A (3 of them are commutative, and 6 of them are not commutative, see Table 2).

Table 2. List of A

$k[x, y, z] /\left(x^{2}\right)$,	$k[x, y, z] /\left(x^{2}+y^{2}\right)$,	$k[x, y, z] /\left(x^{2}+y^{2}+z^{2}\right)$,
$S^{(0,0,0)} /\left(x^{2}\right)$,	$S^{(0,0,0)} /\left(x^{2}+y^{2}\right)$,	$S^{(0,0,0)} /\left(x^{2}+y^{2}+z^{2}\right)$,
$S^{(1,1,0)} /\left(x^{2}\right)$,	$S^{(1,1,0)} /\left(3 x^{2}+3 y^{2}+4 z^{2}\right)$,	$S^{(1,1,0)} /\left(x^{2}+y^{2}-4 z^{2}\right)$.
$S^{(a, b, c)}:=k\langle x, y, z\rangle /\left(y z+z y+a x^{2}, z x+x z+b y^{2}, x y+y x+c z^{2}\right)$		

7. Classification of E_{A} and $C(A)$

If S is a d-dimensional quantum polynomial algebra, $f \in Z(S)_{2}$ is a regular central element, and $A=S /(f)$, then there exists a unique regular central element $f^{!} \in Z\left(A^{!}\right)_{2}$ such that $S^{!}=A^{!} /\left(f^{!}\right)$. We define $C(A):=A^{!}\left[\left(f^{!}\right)^{-1}\right]_{0}$.
Theorem 23 ([12, Proposition 5.2]). If S is a d-dimensional quantum polynomial algebra,

Theorem 24 ([5, Lemma 2.6], [6, Proposition 4.3, Lemma 4.4]). Let $S=\mathcal{A}(E, \sigma)$ be a 3-dimensional Calabi-Yau quantum polynomial algebra, $0 \neq f \in Z(S)_{2}$, and $A=S /(f)$. If A is not commutative, then the following holds:
(1) $C(A)$ is a 4 -dimensional commutative Frobenius algebra.
(2) $Z(S)_{2}=\left\{g^{2} \mid g \in S_{1}\right\}$ (every $0 \neq f \in Z(S)_{2}$ is reducible!)
(3) A satisfies (G1). In fact, if $f=g^{2}$ for $g \in S_{1}$, then $\mathcal{P}(A)=\left(E_{A}, \sigma_{A}\right)$ where

$$
E_{A}=(E \cap \mathcal{V}(g)) \cup \sigma(E \cap \mathcal{V}(g)), \sigma_{A}=\left.\sigma\right|_{E_{A}} .
$$

Lemma 25 ([6, Proposition 4.3]). If

$$
S=k\langle x, y, z\rangle /\left(y z+z y+a x^{2}, z x+x z+b y^{2}, x y+y x+c z^{2}\right)
$$

is a 3-dimensional Calabi-Yau quantum polynomial algebra, $0 \neq f \in Z(S)_{2}$, and $A=$ $S /(f)$, then A is not commutative, and

$$
\operatorname{Spec} C(A) \cong\left\{(\alpha, \beta, \gamma) \in \mathbb{A}^{3} \mid(\alpha x+\beta y+\gamma z)^{2}=f \text { in } S\right\} / \sim
$$

where $(\alpha, \beta, \gamma) \sim(-\alpha,-\beta,-\gamma)$.
Example 26. If $S=\mathcal{A}(E, \sigma)=k\langle x, y, z\rangle /(y z+z y, z x+x z, x y+y x)$ is a 3-dimensional Calabi-Yau quantum polynomial algebra, then

$$
\begin{aligned}
& E=\mathcal{V}(x y z), \\
& \left\{\begin{array}{l}
\sigma(0, b, c)=(0, b,-c), \\
\sigma(a, 0, c)=(-a, 0, c), \\
\sigma(a, b, 0)=(a,-b, 0) .
\end{array}\right.
\end{aligned}
$$

Further, if $f=x^{2}+y^{2}+z^{2} \in Z(S)_{2}$, and $A=S /(f)$, then

$$
(x+y+z)^{2}=(x+y-z)^{2}=(x-y+z)^{2}=(x-y-z)^{2}=f
$$

in S and $C(A) \cong k^{4}$, so

$$
\operatorname{Spec} C(A) \cong\{(1,1,1),(1,1,-1),(1,-1,1),(1,-1,-1)\} \subset \mathbb{A}^{3} .
$$

Further, if $g=x+y+z$ so that $g^{2}=f$, then

$$
\begin{aligned}
E_{A} & =\{(0,1,-1),(-1,0,1),(1,-1,0) \cup \sigma(\{(0,1,-1),(-1,0,1),(1,-1,0)\}) \\
& =\{(0,1,-1),(-1,0,1),(1,-1,0),(0,1,1),(1,0,1),(1,1,0)\} \subset \mathbb{P}^{2} .
\end{aligned}
$$

Theorem 27 ([6, Theorem 4.14]). Let S, S^{\prime} be 3-dimensional Calabi-Yau quantum polynomial algebras, $0 \neq f \in Z(S)_{2}, f^{\prime} \in Z\left(S^{\prime}\right)_{2}$, and $A=S /(f), A^{\prime}=S^{\prime} /\left(f^{\prime}\right)$ such that A, A^{\prime} are not commutative. Then $E_{A} \cong E_{A^{\prime}}$ if and only if $C(A) \cong C\left(A^{\prime}\right)$. There are exactly 6 isomorphism classes of E_{A} (see Table 3), so there are exactly 6 isomorphism classes of $C(A)$ (see Table 4). Moreover, every 4-dimensional commutative Frobenius algebra appears as $C(A)$.

Table 3. Pictures of E_{A} when A is not commutative

1 line	1 point	2 points	3 points	4 points	6 points
/	-	- \cdot •	$\cdots \cdot$	$\because \quad$.	

Table 4. List of $C(A)$ when A is not commutative

$k[u, v] /\left(u^{2}, v^{2}\right)$,	$k[u] /\left(u^{4}\right)$,	$k[u] /\left(u^{3}\right) \times k$,
$k[u] /\left(u^{2}\right) \times k[u] /\left(u^{2}\right)$,	$k[u] /\left(u^{2}\right) \times k^{2}$,	k^{4}.

Corollary 28. Let S be a 3-dimensional Calabi-Yau quantum polynomial algebra, $0 \neq$ $f \in Z(S)_{2}$, and $A=S /(f)$. There are exactly 9 isomorphism classes of $C(A)$.

8. Classification of $\operatorname{Proj}_{\mathrm{nc}} A$

It is not easy to classify $\operatorname{Proj}_{\text {nc }} A$ directly. Thanks to the classification of A and that of $C(A)$, we can complete the classification of $\operatorname{Proj}_{\mathrm{nc}} A$.

Theorem 29 ([6, Theorem 5.10]). Let S, S^{\prime} be 3-dimensional Calabi-Yau quantum polynomial algebras, $0 \neq f \in Z(S)_{2}, 0 \neq f^{\prime} \in Z\left(S^{\prime}\right)_{2}$, and $A=S /(f), A^{\prime}=S^{\prime} /\left(f^{\prime}\right)$. Then

$$
A \cong A^{\prime} \Rightarrow \operatorname{Proj}_{\mathrm{nc}} A \cong \operatorname{Proj}_{\mathrm{nc}} A^{\prime} \Rightarrow C(A) \cong C\left(A^{\prime}\right)
$$

Corollary 30 ([6, Theorem 5.11]). There are exactly 9 isomorphism classes of noncommutative conics in Calabi-Yau quantum \mathbb{P}^{2} 's.

Finally, we focus on studying noncommutative smooth conics.
Definition 31. We say that $\operatorname{Proj}_{\mathrm{nc}} A$ is smooth if gldim $(\operatorname{tails} A)<\infty$.
Theorem 32 ([12, Theorem 5.6], [11, Theorem 5.5]). Let S be a d-dimensional quantum polynomial algebra, $f \in Z(S)_{2}$ a regular central element, and $A=S /(f)$. Then $\operatorname{Proj}_{\mathrm{nc}} A$ is smooth if and only if $C(A)$ is semisimple.

Theorem 33 ([6, Theorem 5.15]). Let S be a 3-dimensional Calabi-Yau quantum polynomial algebra, $0 \neq f \in Z(S)_{2}$, and $A=S /(f)$. If $\operatorname{Proj}_{\mathrm{nc}} A$ is smooth, then exactly one of the following two cases occur:
(1) (a) A is commutative.
(b) f is irreducible.
(c) $C(A) \cong M_{2}(k)$.
(d) $\mathcal{D}^{b}($ tails $A) \cong \mathcal{D}^{b}\left(\bmod k \widetilde{A_{1}}\right)$, where $k \widetilde{A}_{1}$ is the path algebra of the quiver

$$
1 \Longrightarrow 2 \quad\left(\widetilde{A_{1}} \text { type }\right) .
$$

(2) (a) A is not commutative.
(b) f is reducible.
(c) $C(A) \cong k^{4}$.
(d) $\mathcal{D}^{b}(\operatorname{tails} A) \cong \mathcal{D}^{b}\left(\bmod k \widetilde{D_{4}}\right)$, where $k \widetilde{D}_{4}$ is the path algebra of the quiver

It is known that there are infinitely many Calabi-Yau quantum \mathbb{P}^{2} 's, so it is rather surprising that there are only 9 noncommutative conics in Calabi-Yau quantum \mathbb{P}^{2} 's up to isomorphism of noncommutative schemes, exactly two of them are smooth, and exactly one of them is irreducible.

References

[1] M. Artin and W. Schelter, Graded algebras of global dimension 3, Adv. Math., 66 (1987), 171-216.
[2] M. Artin, J. Tate and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, vol. 1, Progress in Mathematics vol. 86 (Birkhäuser, Basel, 1990) 33-85.
[3] M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), 228-287.
[4] M. Dubois-Violette, Multilinear forms and graded algebras, J. Algebra 317 (2007), 198-215, MR2360146 (2010e:16011).
[5] H. Hu, Classification of noncommutative conics associated to symmetric regular superpotentials, preprint (arXiv:2005.03918).
[6] H. Hu, M. Matsuno and I. Mori, Noncommutative conics in Calabi-Yau quantum projective planes, preprint (arXiv:2104.00221).
[7] A. Itaba and M. Matsuno, AS-regularity of geometric algebras of plane cubic curves, J. Aust. Math. Soc. 112, no. 2 (2022), 193-217.
[8] M. Matsuno, A complete classification of 3-dimensional quadratic AS-regular algebras of Type EC, Canad. Math. Bull. 64 (1) (2021), 123-141.
[9] I. Mori and S. P. Smith, m-Koszul Artin-Schelter regular algebras, J. Algebra 446 (2006), 373-399.
[10] I. Mori and S. P. Smith, The classification of 3-Calabi-Yau algebras with 3 generators and 3 quadratic relations, Math. Z. 287 (2017), no. 1-2, 215-241.
[11] I. Mori and K. Ueyama, Noncommutative Knörrer's periodicity theorem and noncommutative quadric hypersurfaces, to appear in Algebra Number Theory, (arXiv:1905.12266).
[12] S. P. Smith, M. Van den Bergh, Noncommutative quadric surfaces, J. Noncommut. Geom. 7 (2013) 817-856.

Haigang Hu
School of Mathematical Sciences
University of Science and Technology of China
No.96, Jinzhai Road, Hefei Anhui 230026 CHINA
Email address: huhaigang@ustc.edu.cn

Masaki Matsuno
Graduate School of science and technology
Shizuoka University
Ohya 836, Shizuoka 422-8529 JAPAN
Email address: matsuno.masaki.14@shizuoka.ac.jp

Izuru Mori
Department of Mathematics
Faculty of Science
Shizuoka University
Онүa 836, Shizuoka 422-8529 JAPAN
Email address: mori.izuru@shizuoka.ac.jp

