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Abstract. Motivated by topological geometry, Staic defined the symmetric cohomology
of groups by constructing an action of the symmetric group on the standard resolution
which gives the group cohomology. In this paper, our aim is to construct the sym-
metric cohomology and the symmetric Hochschild cohomology for cocommutative Hopf
algebras as a generalization of group algebras. In details, we will investigate the relation-
ships between the symmetric cohomology and the symmetric Hochschild cohomology for
cocommutative Hopf algebras. Also, we will investigate the relationships between the
cohomology and the symmetric cohomology for cocommutative Hopf algebras.

1. Introduction

This paper is based on [4]. Let G be a group and X a G-module. For n ≥ 0, we set
Cn(G,X) = {f : Gn → X }. Motivated by topological geometry, Staic [5] defined the
symmetric cohomology HS•(G,X) of a group G by constructing an action of the symmet-
ric group S•+1 on the standard resolution C•(G,X) which gives the group cohomology
H•(G,X). Also, Staic [6] studied the injectivity of the canonical map

HS•(G,X) → H•(G,X)

induced by the inclusion CS•(G,X) ↪→ C•(G,X), where CS•(G,X) := C•(G,X)S•+1 is
the subcomplex of C•(G,X). Moreover, Staic [6] proved that the secondary symmetric
cohomology group HS2(G,X) is corresponding to extensions of groups which satisfies
some conditions.

0 // C0(G,X) // C1(G,X) // C2(G,X) // · · · +3 H•(G,X)

0 // CS0(G,X) / /
?�

OO

CS1(G,X) //
?�

OO

CS2(G,X) //
?�

OO

· · · +3 HS•(G,X)

↑

In general, the cohomology of groups can be seen as the cohomology of group algebras.
Recently, Coconet-Todea [1] defined the symmetric Hochschild cohomology HHS•(A,M)
of twisted group algebras A which is a generalization of group algebras, where M is an
A-bimodule.

0 // C0
e(A,M) // C1

e(A,M) // C2
e(A,M) // · · · +3 HH•(A,M)

0 // CS0e(A,M) //
?�

OO

CS1e(A,M) //
?�

OO

CS2e(A,M) //
?�

OO

· · · +3 HHS•(A,M)

↑

The detailed version of this paper has been submitted for publication elsewhere.



In this paper, our aim is to construct the symmetric cohomology and the symmet-
ric Hochschild cohomology for cocommutative Hopf algebras as another generalization of
group algebras. In details, we investigate the relationships between the symmetric co-
homology and the symmetric Hochschild cohomology for cocommutative Hopf algebras
(Theorem 6). Also, we investigate the relationships between the cohomology and the
symmetric cohomology for cocommutative Hopf algebras (Theorem 8).

2. Symmetric cohomology and symmetric Hochschild cohomology for
cocomutative Hopf algebras

In the rest of this paper, let k be a field. For simplicity, we put ⊗ = ⊗k.
A k-algebra A is called a Hopf algebra if A is a k-algebra and a k-coalgebra satisfying

π ◦ (idA ⊗ S) ◦∆ = η ◦ ε = π ◦ (S ⊗ idA) ◦∆,

where the structure morphisms are as follows:

• π : A⊗ A → A: product; a⊗ b 7→ ab,
• η : k → A: unit; x 7→ x · 1A,
• ∆ : A → A⊗ A: coproduct,
• ε : A → k: counit,
• S : A → A: antipode.

A Hopf algebra A is cocommutative if a(1) ⊗ a(2) = a(2) ⊗ a(1) holds. Note that we use
some standard notation for the coproduct, so called Sweedler notation; we write ∆(a) =∑

a(1) ⊗ a(2), where the notation a(1), a(2) for tensor factors is symbolic. Throughout the
paper, we omit the summation symbol

∑
of Sweedler notation when no confusion occurs

(for details, see [7]).

Example 1. (1) Let G be a group, A = kG a group algebra. For g ∈ G, we set
• coproduct ∆(g) := g ⊗ g,
• counit ε(g) := 1,
• antipode S(g) := g−1,

then A is a cocommutive Hopf algebra.
(2) Let A = k[X] be a polynomial ring. We set

• coproduct ∆(X) := 1⊗X +X ⊗ 1,
• counit ε(X) := 0,
• antipode S(X) := −X,

then A is a cocommutive Hopf algebra.
(3) Let A be a (cocommutaive) Hopf algebra. Then the opposite algebra Aop of A is

a (cocommutative) Hopf algebra.
(4) Let A and B be (cocommutaive) Hopf algebras. Then A⊗B is a (cocommutative)

Hopf algebra. In particular, if A is a (cocommutative) Hopf algebra, then the
enveloping algebra Ae := A⊗ Aop of A is a (cocommutative) Hopf algebra.

We recall the definition of a module over a Hopf algebra.

Definition 2 (cf. [9, Section 9.2]). Let A be a Hopf algebra and M , N left A-modules.

(1) For a ∈ A, m ∈ M and n ∈ N ,

a · (m⊗ n) := a(1)m⊗ a(2)n.Then M ⊗N is a left A-module.



(2) For a ∈ A, f ∈ Homk(M,N) and m ∈ M ,

(a · f)(m) := a(1)f(S(a(2))m).Then Homk(M,N) is a left A-module.

(3) A submodule AM of M is defined by AM := {m ∈ M | a ·m = ε(a)m}, which is
called an A-invariant submodule of M . For a right A-module M , MA is defined
similarly.

(4) Let M an A-bimodule. For a ∈ A and m ∈ M , a · m := a(1)mS(a(2)), which is
called a left adjoint action. Using this action, we denote the left A-module by
adM . Similarly, we define a right adjoint action and Mad.

Let A be a Hopf algebra, and M and N left A-modules. Then there is an isomorphism
HomA(M,N) ∼= A(Homk(M,N)) as k-vector spaces (cf. [9, Lemma 9.2.2]). We define the
cohomology of a Hopf algebra Hn(A,M) := ExtnA(k,M).

Here, we construct the projective resolution of k as left A-modules as follows.

• T̃n(A) = A⊗n+1; ∀b ∈ A,

b · (a1 ⊗ a2 ⊗ · · · ⊗ an+1) = b(1)a1 ⊗ b(2)a2 ⊗ · · · ⊗ b(n+1)an+1.

• · · · −→ T̃n(A)
dT̃n−→ T̃n−1(A) −→ · · · −→ T̃0(A)

dT̃0−→ k −→ 0,

dT̃n (a1 ⊗ · · · ⊗ an+1) =
n+1∑
i=1

(−1)i−1a1 ⊗ · · · ⊗ ε(ai)ai+1 ⊗ · · · ⊗ an+1.

We set the complex K•(A,M) := HomA(T̃•(A),M).
Let A be a cocommutative Hopf algebra and M a left A-module. The n-th symmetric

group is denoted by Sn. We define an action σi = (i, i + 1) ∈ Sn+1 on Kn(A,M). For
f ∈ Kn(A,M) (1 ≤ ∀i ≤ n),

(σi · f)(a1 ⊗ · · · ⊗ an+1) := −f(a1 ⊗ · · · ⊗ ai+1 ⊗ ai ⊗ · · · ⊗ an+1).

We set the subcomplex KS•(A,M) := K•(A,M)S•+1 of K•(A,M).

Definition 3 ([4, Definition 3.3]). We define the symmetric cohomology of a cocommuta-
tive Hopf algebra

HSn(A,M) := Hn(KS•(A,M)),

Let A be a Hopf algebra and M an A-bimodule, where Ae = A⊗Aop is the enveloping
algebra of A. We define Hochschild cohomology HHn(A,M) = ExtnAe(A,M) of A. We
construct the projective resolution of A as A-bimodules as follows.

• T̃e
n(A) = A⊗n+2; for b⊗ cop ∈ Ae,

(b⊗ cop) · (a1 ⊗ a2 ⊗ · · · ⊗ an+2) = b(1)a1 ⊗ b(2)a2 ⊗ · · · ⊗ b(n+2)an+2c.

• · · · −→ T̃e
n(A)

dT̃
e

n−−→ T̃e
n−1(A) −→ · · · −→ T̃e

0(A)
dT̃

e
0−−→ A −→ 0,

dT̃
e

n (a1 ⊗ · · · ⊗ an+2) =
n+1∑
i=1

(−1)i−1a1 ⊗ · · · ⊗ ε(ai)ai+1 ⊗ · · · ⊗ an+2.



We set the complex K•
e(A,M) := HomAe(T̃e

•(A),M).
Let A be a cocommutative Hopf algebra and M an A-bimodule. The n-th symmetric

group is denoted by Sn. We define an action σi = (i, i + 1) ∈ Sn+1 on Kn
e (A,M). For

f ∈ Kn
e (A,M) (1 ≤ ∀i ≤ n),

(σi · f)(a1 ⊗ · · · ⊗ an+2) := −f(a1 ⊗ · · · ⊗ ai+1 ⊗ ai ⊗ · · · ⊗ an+2).

We set the subcomplex KS•
e(A,M) := K•

e(A,M)S•+1 of K•
e(A,M).

Definition 4 ([4, Definition 3.8]). We define the symmetric Hochschild cohomology of a
cocommutative Hopf algebra

HHSn(A,M) := Hn(KS•
e(A,M)).

3. Main results

First, our aim is to investigate the relationships between the symmetric cohomology
and the symmetric Hochschild cohomology for cocommutative Hopf algebras.

Theorem 5 ([2, Section 5]). Let G be a group and X a G-bimodule. Then, for each
n ≥ 0, there is an isomorphism

HHn(ZG,X) ∼= Hn(G, adX)

as Z-modules, where adX is a left G-module by g · x = gxg−1 for g ∈ G and x ∈ X.

Theorem 5 is generalized to the case of Hopf algebras by Ginzburg-Kumar [3, Section
5].

For a cocomutative Hopf algebra, we have the following result which is a symmetric
version of the classical results by Eilenberg-MacLane and Ginzburg-Kumar.

Theorem 6 ([4, Theorem 4.5]). Let A be a cocommutative Hopf algebra and M an A-
bimodule. Then, for each n ≥ 0, there is an isomorphism

HHSn(A,M) ∼= HSn(A, adM)

as k-vector spaces, where adM is a left A-module acting by the left adjoint action, that is,
a ·m = a(1)mS(a(2)) for m ∈ adM and a ∈ A.

As a byproduct of Theorem 6, we have the following assertion.

Corollary 7 ([4, Corollary 4.6]). Let A be a finite dimensional, commutative and cocom-
mutative Hopf algebra. Then, for each n ≥ 0, there is an isomorphism

HHSn(A,A) ∼= A⊗ HSn(A, k)

as k-vector spaces.

Secondly, our aim is to investigate the relationships between the cohomology and the
symmetric cohomology for cocommutative Hopf algebras.

In [6] and [8], the following consequences were proved for the lower degree.

• HS0(G,X) ∼= H0(G,X).
• HS1(G,X) ∼= H1(G,X).
• HS2(G,X) ↪→ H2(G,X).
Moreover, if G has no elements of order 2, then HS2(G,X) ∼= H2(G,X).



We consider the resolution of k;

• k is a trivial left kSn+1-module; τ · x = ε(τ)x = x (τ ∈ Sn+1, x ∈ k).

• T̃n(A) is a right kSn+1-module; for σi ∈ Sn+1 (1 ≤ ∀i ≤ n)

(a1 ⊗ · · · ⊗ an+1) · σi = −a1 ⊗ · · · ⊗ ai+1 ⊗ ai ⊗ · · · ⊗ an+1.

• S̃n(A) := T̃n(A)⊗kSn+1 k.

• · · · −→ S̃n(A)
dS̃n−→ · · · −→ S̃0(A)

dS̃0−→ k −→ 0,

dS̃n((a1 ⊗ · · · ⊗ an+1)⊗kSn+1 x) = dT̃n (a1 ⊗ · · · ⊗ an+1)⊗kSn x.

Then we have the following isomorphism as complexes KS•(A,M) ∼= HomA(S̃•(A),M).

Therefore, we have HSn(A,M) ∼= Hn(HomA(S̃•(A),M)).

Theorem 8 ([4, Theorem 4.9, Remark 4.10]). Let A be a cocommutative Hopf algebra.

For each n ≥ 1, if ch k ∤ n+ 1, then S̃n(A) is projective as a left A-module.
Therefore, if ch k ∤ (n+ 1)!, then, for each 0 ≤ m ≤ n, there is an isomorphism

Hm(A,M) ∼= HSm(A,M)

as k-vector spaces.

Remark 9. (1) By Theorem 8, if ch k = 0, then S̃•(A) is a projective resolution of k, and
hence there is an isomorphism H•(A,M) ∼= HS•(A,M) as k-vector spaces.

(2) Moreover, by Theorem 6 and Theorem 8, if ch k = 0, then there is an isomorphism
H•(A, adM) ∼= HS•(A, adM) ∼= HHS•(A,M) as k-vector spaces, where adM is a left
A-module acting by the left adjoint action.

Finally, we give an example of the resolution which gives symmetric cohomology. Let
p be an odd prime number, k a field of characteristic p and Cp a cyclic group of order p.
Then we calculate the symmetric cohomology of A = kCp.

Proposition 10 ([4, Proposition 4.11]). Let p be an odd prime number, ch k = p and

A = kCp. Then S̃n(A) is a free A-module with rank
pCn+1

p
for each 1 ≤ n ≤ p− 2.

Since S̃p−1(A) is isomorphic to k as a left A-module, the resolution of k is the following
exact sequence

0 → k
dS̃p−1−−→ S̃p−2(A) → · · · → S̃1(A)

dS̃1−→ S̃0(A)
dS̃0−→ k → 0,

where S̃i(A) is a free A-module for each 0 ≤ i ≤ p − 2. This implies that there is an
isomorphism

Hn(A,M) ∼= HSn(A,M)

for any left A-module M and each 0 ≤ n ≤ p−2. Also, in the case of n = p−1, the above
isomorphism is obtained by simple calculation. Note that the period of the cohomology
group Hn(A,M) of A is 2.



Summarizing the above, we have

HSn(A,M) ∼=

{
Hn(A,M) (0 ≤ n ≤ p− 1),

0 (p ≤ n).
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