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Abstract. Wang and Zhang introduced the notion of stable equivalences of Morita
type relative to pairs of modules for blocks of finite groups. First, in this paper, we give
a method of constructing, in certain situations, relative stable equivalences of Morita
type for the principal blocks of finite groups. Second, we introduce the notion of relative
Brauer indecomposability, and give an equivalent condition for certain modules to be
relatively Brauer indecomposable.

1. Introduction

Let G be a finite group, and k a filed of characteristic p > 0. We can decompose kG as
a direct product of indecomposable k-algebras:

kG = B1 × · · · ×Bn.

Each Bi is called a block of G. For any indecomposable kG-module U , there exists a
unique block Bi such that UBi = U . We write kG for the trivial kG-module, that is, a
one-dimensional k-vector space on which every element of G acts trivially. The group
algebra kG has a unique block B such that kGB = kG, which is called the principal block
of G and denoted by B0(G). We are interested in constructing Morita equivalences for
the principal blocks of finite groups.

Broué [1] introduced the notion of stable equivalences of Morita type, and developed
a method of constructing them for the principal blocks. This method has been used
as one of the useful tools for constructing Morita equivalences for the principal blocks.
However, we cannot use the method for finite groups having a common nontrivial central
p-subgroup. On the other hand, Wang and Zhang [10] introduced the notion of relative
stable equivalences of Morita type for blocks of finite groups, which is a generalization of
stable equivalences of Morita type. In this paper, we state, as our first main theorem,
a method for constructing relative stable equivalences of Morita type for the principal
blocks.

In [5], the notion of Brauer indecomposability was introduced. The Brauer indecom-
posability of modules called Scott modules plays an important role in the method of
Broué. Ishioka and the first author [4] gave an equivalent condition for Scott modules to
be Brauer indecomposable. Although Brauer indecomposability of Scott modules is also
useful for our first main theorem, somewhat more general condition is more appropriate.
Therefore, in this paper, we introduce the notion of relative Brauer indecomposability,
and state, as our second main theorem, an equivalent condition for Scott modules to be
relatively Brauer indecomposable.

The detailed version of this paper will be submitted for publication elsewhere.



2. Preliminaries

In this section, we recall basic notation and definitions on modular representation theory
and fusion systems.

Throughout this paper, we assume that k is an algebraically closed field of characteristic
p, G is a finite group, and, unless other wise stated, modules are finitely generated right
modules. We write Z(G) for the center of G. Let H be a subgroup of G. We write [H\G]
for a set of representatives of the right cosets of H in G. For a kG-module M , we write
M↓GH for the restriction of M to H, and for a kH-module N , we write N ↑GH= N ⊗kH kG
for the induced kG-module of N . For a kG-module M , we write M∗ = Homk(M,k) for
the k-dual of M , considered as a left kG-module.

For a p-subgroup Q of G, there is a unique indecomposable summand of kQ↑G such
that it has kG as a direct summand of the top. This indecomposable summand is called
the Scott kG-module with vertex Q, and denoted by S(G,Q).
Let M be a kG-module. For a subgroup H of G, we write MH for the set of fixed

points of H in M . For a p-subgroup Q of G, the Brauer construction of M with respect
to Q is the kNG(Q)-module M(Q) defined as follows:

M(Q) = MQ/
∑
R

trQR(M
R),

where R runs over the set of proper subgroups of Q, and trQR : MR → MQ, trQR(m) =∑
t∈[R\Q] mt.
For subgroups H and K of G, we write

HomG(H,K) = {φ ∈ Hom(H,K) | φ = cg for some g ∈ G such that Hg ≤ K},

where cg is a conjugation map. Let P be a p-subgroup of G. The fusion system of G
over P is the category FP (G) whose objects are the subgroups of P and morphisms are
given by HomFP (G)(Q,R) = HomG(Q,R). For subgroups Q and R of P , we say that Q
and R are FP (G)-conjugate if Q and R are isomorphic in FP (G). Let Q be a subgroup
of P . We say that Q is fully automized in FP (G) if AutP (Q) is a Sylow p-subgroup of
AutFP (G)(Q). We say that Q is receptive in FP (G) if for any subgroup R of P and any
φ ∈ IsoFP (G)(R,Q), there is an element φ̄ ∈ HomFP (G)(Nφ, P ) such that φ̄|Q = φ, where

Nφ = {g ∈ NP (R) | cgφ
−1 ∈ AutP (Q)}. We say that Q is fully normalized in FP (G) if

|NP (Q)| ≥ |NP (R)| for any subgroup R of P that is FP (G)-conjugate to Q. The fusion
system FP (G) is saturated if any subgroup of P is FP (G)-conjugate to a subgroup that
is fully automized and receptive.

3. Relative stable equivalences of Morita type

In this section, we first introduce results of Broué [1] and Linckelmann [7]. Next, we
define the notion of relative stable equivalences of Morita type that was introduced by
Wang and Zhang [10]. Finally, we state the first main theorem of this paper.

Broué [1] gave a method of constructing stable equivalences of Morita type:

Theorem 1. (see [1, Theorem 6.3]) Let G and G′ be finite groups with a common Sylow p-
subgroup P such that FP (G) = FP (G

′), and M = S(G×G′,∆P ). If (M(∆Q),M(∆Q)∗)



induces a Morita equivalence between B0(CG(Q)) and B0(CG′(Q)) for any nontrivial sub-
group Q of P , then (M,M∗) induces a stable equivalence of Morita type between B0(G)
and B0(G

′).

Linckelmann showed the following:

Theorem 2. (see [7, Theorem 2.1]) Let B and B′ be blocks of G and G′, and M a B-
B′-bimodule that is projective as a left module and a right module. Assume that −⊗B M
induces mod(B) ∼=mod(B′). If for any simple B-module S, the B′-module S ⊗B M is
simple, then −⊗B M induces an equivalence between mod(B) and mod(B′).

Theorem 1 has been used as one of the useful tools for constructing Morita equivalences
for principal blocks. In fact, we may construct a stable equivalences of Morita type
by using Theorem 1, and lift it to a Morita equivalence by using Theorem 2. In this
way, Morita equivalences has been confirmed in some cases, for example see [9] and [6].
However, we cannot use Theorem 1 if the common Sylow p-subgroup has a nontrivial
subgroup Z that is a subgroup of Z(G) and Z(G′). We see that CG(Z) = G and CG′(Z) =
G′. Hence we need to show that B0(G) and B0(G

′) are Morita equivalent in order to apply
Theorem 1.

Okuyama [8] introduced the notion of projectivity relative to modules:

Definition 3. (see [8] and also [2, Section 8]) Let W be a kG-module. A kG-module M
is relatively W -projective if M is a direct summand of V ⊗W for some kG-module V .

Then we can define a relative stable category that is an analogue of the stable category.
Let W be a kG-module. The relative W -stable category modW (kG) of mod(kG) is the
category whose objects are the finitely generated kG-modules, and whose morphisms are
given by

HomW
kG(M,N) = HomkG(M,N)/HomW

kG(M,N),

where HomW
kG(M,N) is the subspace of HomkG(M,N) consisting of all homomorphisms

that factor through a W -projective kG-module. Let B be a block of G. We write
modW (B) for the full subcategory of modW (kG) whose objects are all B-modules. It
follows that modW (kG) has a structure of triangulated category (see [3, Theorem 6.2]),
and modW (B) is a triangulated subcategory of modW (kG) (see [10, Proposition 3.1]).

Wang and Zhang [10] introduced the notion of relative stable equivalences of Morita
type by using the notion of projectivity relative to modules:

Definition 4. (see [10, Definition 5.1]) Let G and G′ be finite groups and B and B′ blocks
of G and G′, respectively. For a kG-module W , a kG′-module W ′, a B-B′-bimodule M ,
and a B′-B-bimodule N , we say that the pair (M,N) induces a relative (W,W ′)-stable
equivalence of Morita type between B and B′ if M and N are finitely generated projective
as left modules and right modules with the property that there are isomorphisms of
bimodules

M ⊗B′ N ∼= B ⊕X and N ⊗B M ∼= B′ ⊕ Y,

where X is W ∗ ⊗W -projective as a k[G×G]-module and Y is W ′∗ ⊗W ′-projective as a
k[G′ ×G′]-module.



If W = kG, then it follows that X is projective as B-B-bimodule. Hence the notion of
relative stable equivalences is a generalization of the notion of stable equivalences.

Finally, we state the first main theorem of this paper:

Theorem 5. Let G and G′ be finite groups with a common Sylow p-subgroup P such that
FP (G) = FP (G

′), and M = S(G×G′,∆P ). Assume that Z is a subgroup of P that is cen-
tral in G and G′. If (M(∆Q),M(∆Q)∗) induces a Morita equivalence between B0(CG(Q))
and B0(CG′(Q)) for any subgroup Q of P properly containing Z, then (M,M∗) induces a

relative (kZ↑G, kZ↑G
′
)-stable equivalence of Morita type between B0(G) and B0(G

′).

Note that Theorem 5 with Z = 1 implies Theorem 1 as k1↑G ∼= kG.

4. Relative Brauer indecomposability

In this section, we first recall from [5] and [4] the definition and some results of the
Brauer indecomposability of kG-modules. Next, we introduce the notion of relative Brauer
indecomposability and then state the second main theorem of this paper.

In [5], the notion of Brauer indecomposability was introduced:

Definition 6. (see [5]) A kG-module M is Brauer indecomposable if M(Q) is indecom-
posable as kQCG(Q)-module or zero.

In order to apply Theorem 1, the Scott module M must be Brauer indecomposable.
In fact, for any nontrivial subgroup Q of P , we have to confirm that (M(∆Q),M(∆Q)∗)
induces a Morita equivalence between B0(CG(Q)) and B0(CG′(Q)), that is, the following
bimodule isomorphisms hold:

M(∆Q)⊗B0(CG′ (Q))M(∆Q)∗ ∼= B0(CG(Q)) and M(∆Q)∗⊗B0(CG(Q))M(∆Q) ∼= B0(CG′(Q)).

Since B0(CG(Q)) and B0(CG′(Q)) are indecomposable, the Brauer construction M(∆Q)
must be indecomposable as a B0(CG(Q))-B0(CG′(Q))-bimodule, or equivalently, as a
kCG×G′(∆Q)-module. This means that M must be Brauer indecomposable.

Ishioka and the first author [4] gave conditions for Scott modules to be Brauer inde-
composable:

Theorem 7. (see [4, Theorem 1.3]) Let P be a p-subgroup of G, and M = S(G,P ).
Suppose that the fusion system FP (G) is saturated. Then the following are equivalent:

(i) The module M is Brauer indecomposable.

(ii) The module S(NG(Q), NP (Q))↓NG(Q)
QCG(Q) is indecomposable for each fully normalized

subgroup Q of P .

Moreover, if these conditions hold, then M(Q) ∼= S(NG(Q), NP (Q)) for any fully normal-
ized subgroup Q of P .

Theorem 8. (see [4, Theorem 1.4]) Let P be a p-subgroup of G, and Q a fully normalized
subgroup of P . Assume that FP (G) is saturated. If there exists a subgroup HQ of NG(Q)
satisfying the following conditions:

(a) NP (Q) is a Sylow p-subgroup of HQ,
(b) |NG(Q) : HQ| = pa, a ≥ 0,

then S(NG(Q), NP (Q))↓QCG(Q) is indecomposable.



Theorem 7 enables us to confirm the Brauer indecomposability of Scott modules by
using the group-theoretic conditions in Theorem 8.

In Theorem 5, it suffices to show that M(∆Q) is indecomposable as a kCG×G′(∆Q)-
module for any subgroup Q of P properly containing Z while in Theorem 1, M must be
Brauer indecomposable. Therefore we introduce the notion of relative Brauer indecom-
posability:

Definition 9. Let M be an indecomposable kG-module with vertex P , and R a subgroup
of P . We say that M is relatively R-Brauer indecomposable if for any p-subgroup Q of G
containing R, the Brauer construction M(Q) is indecomposable (or zero) as a kQCG(Q)-
module.

Finally, we state the second main theorem of this paper:

Theorem 10. Let P be a p-subgroup of G, and M = S(G,P ). Suppose that the fusion
system FP (G) is saturated, and Z is a subgroup of Z(G) ∩ P . Then the following are
equivalent.

(i) The module M is relatively Z-Brauer indecomposable.

(ii) The module S(NG(Q), NP (Q))↓NG(Q)
QCG(Q) is indecomposable for each fully normalized

subgroup Q of P containing Z.

Moreover, if these conditions hold, then M(Q) ∼= S(NG(Q), NP (Q)) for any fully normal-
ized subgroup Q of P containing Z.

Note that Theorem 10 with Z = 1 implies Theorem 7. Theorem 10 enables us to con-
firm the relative Brauer indecomposability of Scott modules by using the group-theoretic
conditions in Theorem 8.
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