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Abstract. For a triangulated category T with a split generator G and an exact end-
ofunctor Φ : T → T , Dimitrov-Haiden-Katzarkov-Kontsevich introduced the invariant
hT
t (Φ) which is called the categorical entropy. In this article, we will determine the

categorical entropy of the Frobenius pushforward functor.

1. Introduction

This report is based on joint work with Ryo Takahashi [5].
For a triangulated category T and an exact endofunctor Φ : T → T , Dimitrov, Haiden,

Katzarkov, and Kontsevich [1] introduced the invariant hT
t (Φ) which is called the cate-

gorical entropy of Φ as a categorical analog of the topological entropy. The categorical
entropy hT

t (Φ) is a function in one real variable t with values in R∪ {−∞} and measures
the complexity of the exact endofunctor Φ.

For a commutative noetherian local ring with prime characteristic p, the ring endomor-
phism F : R → R, which is called the Frobenius endomorphism, is defined by F (a) = ap.
Assume further that F : R → R is module finite. The Frobenius endomorphism F induces
two exact endofunctors: the Frobenius pushforward

RF∗ : D
b(R) → Db(R)

on the bounded derived category Db(R) of finitely generated R-modules and the Frobenius
pullback

LF ∗ : Kb(R) → Kb(R)

on the bounded homotopy category Kb(R) of finitely generated projective R-modules.
Both these functors are the main tools to study singularities with positive characteristics.

For the Frobenius pullback functor LF ∗, Majidi-Zolbanin and Miasnikov [3] considered
the full subcategory Kb

fl(R) of Kb(R) consisting of perfect complexes with finite length

cohomologies and computed the categorical entropy h
Kb

fl(R)
t (LF ∗).

In this report, we study the Frobenius pushforward functor F∗ and compute its categor-

ical entropy h
Db(R)
t (RF∗). We will also discuss the relation between the categorical entropy

h
Db(R)
t (Rϕ∗) of the pushforward functor along a local ring endomorphism ϕ : R → R and

the local entropy hloc(ϕ) of ϕ which has been introduced in [4].

The detailed version of this paper will be submitted for publication elsewhere.



2. Categorical Entropy

Let T be a triangulated category. We begin with fixing notations.

Notation 1. (1) For an object X ∈ T , denote by thick(X) the smallest thick sub-
category containing T .

(2) For objects X1, X2, . . . , Xr ∈ T , we write X1 ∗X2 ∗ · · · ∗Xr the subcategory of T
consisting of objects Y ∈ T such that there are exact triangles

Xi → Yi → Yi+1 → Xi[1] (i = 1, 2, . . . , r − 1)

with Y1 = Y and Yr = Xr.

The following fact is basic:

Lemma 2. The following conditions are equivalent for X,Y ∈ T :

(1) Y ∈ thick(X).
(2) There are Y ′ ∈ T , n1, n2, . . . , nr ∈ Z such that Y ⊕Y ′ ∈ X[n1]∗X[n2]∗· · ·∗X[nr].

Now, let us state the definitions of complexities and categorical entropies introduced in
[1], which play central roles in this report.

Definition 3. (Dimitrov-Haiden-Katzarkov-Kontsevich)

(1) For X,Y ∈ T and t ∈ R, define the complexity of Y relative to X by

δt(X,Y ) := inf

{
r∑

i=1

enit

∣∣∣∣∣ ∃Y ′ ∈ T ,∃n1, n2, . . . , nr ∈ Z s.t.
Y ⊕ Y ′ ∈ X[n1] ∗X[n2] ∗ · · · ∗X[nr]

}
∈ [0,∞].

By Lemma 2, δt(X,Y ) < ∞ if and only if Y ∈ thick(X).
(2) Assume that T has a split generator G (i.e., T = thick(G)). For an exact endo-

functor Φ : T → T , define the categorical entropy of (T ,Φ) by

hT
t (Φ) := lim

n→∞

1

n
log δt(G,Φn(G)).

This limit exists in [−∞,∞) and is independent of the choice of G by [1, Lemma
2.6].

Here, we list basic properties of δt(X,Y ).

Lemma 4. Let T be a triangulated category.

(1) For X,Y, Z ∈ T with Z ∈ thickY ⊆ thickX, one has δt(X,Z) ≤ δt(X,Y )δt(Y, Z).
(2) For X,Y, Z ∈ T , one has δt(X,Y ) ≤ δt(X,Y ⊕ Z) ≤ δt(X,Y ) + δt(X,Z).
(3) For X,Y, Z ∈ T , one has δt(X ⊕ Y, Z) ≤ δt(X,Z).
(4) For X,Y ∈ T , one has δt(X,Y [n]) = δt(X,Y )ent.
(5) For X,Y, Y1, . . . , Yr ∈ T with Y ∈ Y1 ∗ · · · ∗Yr, one has δt(X,Y ) ≤

∑r
i=1 δt(X,Yi).

(6) For an exact functor Φ : T → T ′ and X,Y ∈ T , one has δt(Φ(X),Φ(Y )) ≤
δt(X,Y ).



3. Local and Categorical Entropies

Let (R,m, k) be a d-dimensional commutative noetherian local ring. Let ϕ : R → R be
a finite local ring homomorphism.

Majidi-Zolbanin, Miasnikov, and Szpiro [4] defined the local entropy which measures
the complexity of ϕ:

Definition 5. (Majidi Zolbanin-Miasnikov-Szpiro) Define the local entropy by

hloc(ϕ) := lim
n→∞

1

n
log(lengthR(R/ϕn(m)R)).

This limit exists and non-negative by [4, Theorem 1].

They determined the local entropy for the Frobenius homomorphism.

Proposition 6. ([4, Theorem 1]) If R has prime characteristic p, then the equality

hloc(F ) = d log p

holds.

The aim of this report is to compare the local entropy of ϕ and the categorical entropy
of exact endofunctors associated with ϕ. Let us recall two basic exact endofunctors. The
pushforward functor

ϕ∗ : ModR → ModR

along ϕ is defined as follows: for an R-module M , ϕ∗(M) := M is an abelian group
together with the R-module structure via ϕ. This functor is exact by definition. The
pullback functor

ϕ∗ : ModR → ModR

along ϕ is defined by ϕ∗(M) := M ⊗R ϕ∗(R). Deriving these functors, we obtain exact
functors

Rϕ∗ : Db(R) −−−−−−−→ Db(R)

⊆ ⊆

Db
fl(R) −−−−−−−→ Db

fl(R),

and
Lϕ∗ : Kb(R) −−−−−−−→ Kb(R)

⊆ ⊆

Kb
fl(R) −−−−−−−→ Kb

fl(R).

Here, Db
fl(R) and Kb

fl(R) stand for the subcategories of Db(R) and Kb(R) consisting of
complexes with finite length cohomologies, respectively.

For the pullback functor Lϕ∗, Majidi-Zolbanin and Miasnikov compared the categorical
entropy of Lϕ∗ and the local entropy of ϕ. Moreover, they determined the categorical
entropy for the Frobenius pullback functor:

Theorem 7. Let R be a d-dimensional commutative noetherian local ring and ϕ : R → R
a finite local ring homomorphism.

(1) For any t ∈ R, one has the inequality

h
Kb

fl(R)
t (Lϕ∗) ≥ hloc(ϕ).



(2) Assume further that R is a complete noetherian local ring with prime characteristic
p. For any t ∈ R, the equality

h
Dpf

fl (R)
t (LF ∗) = hloc(F ) = d log p

holds.

On the other hand, we can also compute h
Kb(R)
t (LF ∗) and h

Db
fl(R)

t (RF ∗).

Proposition 8. Assume that R has prime characteristic and the Frobenius homomor-
phism F : R → R is finite. For any t ∈ R, the following equalities hold:

(1) h
Kb(R)
t (LF ∗) = 0.

(2) h
Db

fl(R)
t (RF ∗) = log[F∗(k) : k].

Remark 9. The triangulated categories Kb
fl(R),Kb(R),Db

fl(R) have generators K(x) (the
Koszul complex of a system of generators x of m), R, k, respectively. Therefore the cate-
gorical entropies that appeared in the preceding results are defined.

From the above two results, the remained problem is to compute h
Db(R)
t (RF∗), which

we will consider in the next section.

4. Main Theorem

First note that if R is excellent, then the derived category Db(R) has a split generator

and hence we can consider the categorical entropy h
Db(R)
t (Rϕ∗).

Theorem 10. Let R be a d-dimensional excellent noetherian local ring.

(1) Let ϕ : R → R be a finite local ring homomorphism. For any t ∈ R, the equality

h
Db(R)
t (Rϕ∗) ≥ hloc(ϕ) + log[ϕ∗(k) : k]

holds.
(2) Assume further that R has prime characteristic p and the Frobenius homomor-

phism F : R → R is finite. For any t ∈ R, the equality

h
Db(R)
t (RF∗) = hloc(F ) + log[F∗(k) : k] = d log p+ log[F∗(k) : k]

holds.

Using Theorem 10(1), we can globalize the inequality for the Frobenius pushforward
functor:

Corollary 11. Let X be a connected noetherian scheme with prime characteristic p.
Assume that the Frobenius homomorphism F : X → X is finite. For any t ∈ R and
x ∈ X, the inequality

h
Db(cohX)
t (RF∗) ≥ dimOX,x · log p+ log[F∗(k(x)) : k(x)]

holds.

Remark 12. Since X is connected the number dimOX,x · log p + log[F∗(k(x)) : k(x)] is
independent of x ∈ X.



For the rest of this report, let us give a sketch of the proof of Theorem 10.
The proof of Theorem 10(1) needs the following lemma which generalizes [3, Lemma

2.1].

Lemma 13. Let (R,m, k) be a commutative noetherian local ring. Let 0 ̸= G ∈ Db(R), 0 ̸=
P ∈ Kb

fl(R) and take an integer N with Hi(G ⊗ P ) = 0 for all |i| > N . Set B :=
max{lengthR(H

i(G⊗ P )) | −N ≤ i ≤ N}. Then for any E ∈ Db(R), m ∈ Z, and t ∈ R,
the inequality

δt(G,E) ≥ B−1e−mte−N |t| · lengthR(H
m(E ⊗R P ))

holds.

(Proof of Theorem 10(1)). We note that for a finitely generated R-module M with finite
length, one has

lengthR((ϕ
∗)n(M)) = [ϕn(k) : k] · lengthR(M) = [ϕ(k) : k]n · lengthR(M).

In particular, lengthR((ϕ
∗)n(R)/m(ϕ∗)n(R))) = [ϕ(k) : k]n · lengthR(R/ϕn(m)R).

Take a split generator G ∈ Db(R) such that Hi(G) = 0 for i < 0 and that R is a direct
summand of H0(G). Let x be a system of generators of m and set P = K(x) the Koszul
complex of x. Then it follows from Lemma 13 that

δt(G, (Rϕ∗)
n(G)) ≥ B−1e−N |t| · lengthR(H

0((Rϕ∗)
n(G)⊗R P ))

= B−1e−N |t| · lengthR(H
0((Rϕ∗)

n(G))⊗R H0(P ))

= B−1e−N |t| · lengthR((ϕ∗)
n(H0(G)) · ⊗RR/m)

≥ B−1e−N |t| · lengthR((ϕ∗)
n(R)⊗R R/m)

= B−1e−N |t| · lengthR((ϕ∗)
n(R/ϕn(m)R))

= B−1e−N |t| · [ϕ(k) : k]n · lengthR(R/ϕn(m)R)

Taking lim
n→∞

1

n
log(−), we obtain ht(Rϕ∗) ≥ hloc(ϕ) + log[ϕ(k) : k]. □

Since the proof of Theorem 10(2), i.e., the proof of

h
Db(R)
t (RF∗) ≤ hloc(F ) + log[ϕ∗(k) : k]

is more difficult and complicated than the converse inequality, we shall give quite rough
sketch of the proof. This difficulty comes from the fact that no explicit descriptions
of a split generator of Db(R) is known unlike Kb

fl(R),Kb(R),Db
fl(R). Therefore, we use

induction to reduce the case of d = 0 so that Db(R) = Db
fl(R). The proof is done as

follows:

• The case of d = 0 follows from Proposition 8(2).
• For the case of d > 0, first we reduce to domain case and then take a regular
element x with xExt2d+1

R (−,−) = 0. We can take such a regular element by [2,
Theorem 5.3]. Then for a split generator G′ of Db(R/xR), G := G′ ⊕ R is a split
generator of Db(R).



• Using Lemma 4, reduce to the computations of δt(G
′, (RF∗)

n(G′)), δt(G, (F∗)
n(R)).

δt(G
′, (RF∗)

n(G′)) is known by induction hypothesis. To compute δt(G, (F∗)
n(R)),

we use an exact sequence

0 → Ω2d((F∗)
n(R)) → R⊕β2d−1((F∗)n(R)) → · · · → R⊕β1((F∗)n(R)) → R⊕β0((F∗)n(R)) → (F∗)

n(R) → 0

and the equality

lim
n→∞

1

n
log βi((F∗)

n(R)) = d log p+ log[F∗(k) : k];

see [6].
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