LOCALIZATION OF TRIANGULATED CATEGORIES WITH RESPECT TO EXTENSION-CLOSED SUBCATEGORIES

YASUAKI OGAWA

ABSTRACT. The aim of this article is to develop a framework of the localization theory of triangulated categories via extriangulated categories. Actually, given the pair of a triangulated category C and an extension-closed subcategory N, we establish an exact sequence $N \to C \to C/N$ of extriangulated categories. Such a construction unifies the Verdier quotient and the heart of a *t*-structure.

1. INTRODUCTION

The abelian categories and triangulated categories, introduced by A. Grothendieck and J.-L. Verdier [5, 7], serve a foundation of the homological algebra. In the many blanches of mathematics, we often encounter interplays between abelian categories and triangulated categories. To name just a few important instances in the representation theory of algebra:

- for a given *t*-structure of a triangulated category C, there exists a cohomological functor from C to the abelian heart [2];
- for a 2-cluster tilting subcategory \mathcal{U} of a triagnulated category \mathcal{C} , the ideal quotient $\mathcal{C}/[\mathcal{U}]$ is abelian [9];
- for a Frobenius exact category \mathcal{C} and the subcategory \mathcal{N} of projective-injective objects, the ideal quotient $\mathcal{C}/[\mathcal{N}]$ is triangulated [6];
- the derived category $D(\mathcal{A})$ of an abelian category \mathcal{A} is defined to be the localization of the abelian category $C(\mathcal{A})$ of complexes in \mathcal{A} with respect to the subcategory of acyclic complexes.

To capture such phenomena in a more conceptual framework, the notion of *extriangulated* category was introduced by Nakaoka and Palu [10] as a simultaneous generalization of exact and triangulated categories. As a benefit of revealing an extriangulated structure, it is closed under basic categorical operations; taking extension-closed subcategories, ideal quotients by projective-injective objects and the relative theory [8]. Recently, it was shown that the extriangulated structure is still closed by certain localizations which were introduced in [11] as a unification of the Serre/Verdier quotients. Our aim is to formulate a new framework of localization of triangulated categories as an application of [11], namely, we establish an exact sequence

$$(1.1) \qquad \qquad \mathcal{N} \to \mathcal{C} \to \mathcal{C}/\mathcal{N}$$

of extriangulated categories arising from the pair of a triangulated category C and an extension-closed subcategory N. Precisely, the main theorem summarized as follows.

The detailed version of this paper will be submitted for publication elsewhere.

Theorem 1. [13, Thm. 2.20, 3.2, 4.2] Let C be a triangulated category and regard it as a natural extriangulated category ($C, \mathbb{E}, \mathfrak{s}$). Assume that a full subcategory \mathcal{N} of C is closed under direct summands and isomorphisms.

- (0) If \mathcal{N} is extension-closed in the triangulated category $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$, then \mathcal{N} naturally defines a relative extriangulated structure $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$.
- (1) If \mathcal{N} is extension-closed in the triangulated category $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$, then \mathcal{N} is thick with respect to the relative structure $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$. Moreover, we have an extriangulated localization $(Q, \mu) : (\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}}) \to (\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}})$.
- (2) Suppose that N is extension-closed. Then, N is thick in the triangulated category (C, E, s) if and only if N is biresolving with respect to the relative structure (C, E_N, s_N) if and only if the resulting category (C/N, E_N, s_N) is triangulated. In this case, the localization (Q, μ) is nothing but the Verdier quotient.
- (3) Suppose that N is extension-closed and functorially finite. Then, N satisfies Cone(N,N) = C in the triangulated category (C, E, s) if and only if N is Serre with respect to the relative structure (C, E_N, s_N) if and only if the resulting category C/N is abelian. Furthermore, the functor Q : (C, E, s) → C/N from the original triangulated category is cohomological.

\mathcal{N}	extension-closed	thick	$Cone(\mathcal{N},\mathcal{N})=\mathcal{C}$	$in \ (\mathcal{C}, \mathbb{E}, \mathfrak{s})$
	thick	biresolving	Serre	in $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$
\mathcal{C}/\mathcal{N}	extriangulated	triangulated	abelian	

The assertion (1) in the above theorem shows that the Verdier quotient is a typical example of the exact sequence (1.1). The assertion (2) contains some types of cohomological functors such as the heart of a *t*-structures, see Examples 10, 11 and 12.

Notation and convention. All categories and functors in this article are always assumed to be additive. All subcategory $\mathcal{U} \subseteq \mathcal{C}$ is always assumed to be full, additive and closed under isomorphisms. For $X \in \mathcal{C}$, if $\mathcal{C}(U, X) = 0$ for any $U \in \mathcal{U}$, we write abbreviately $\mathcal{C}(\mathcal{U}, X) = 0$. Similar notations will be used in obvious meanings.

2. Localization with respect to extension-closed subcategories

In the reset, we fix a triangulated category \mathcal{C} with a suspension [1] and an extensionclosed subcategory \mathcal{N} of \mathcal{C} and regard \mathcal{C} as a natural extriangulated category $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$. Note that $\mathbb{E}(C, A) = \mathcal{C}(C, A[1])$ for any objects $A, C \in \mathcal{C}$. First, we show that \mathcal{N} naturally determines an extriangulated structure on \mathcal{C} relative to the triangulated structure.

Proposition 2. For any objects $A, C \in C$, we define subsets of $\mathbb{E}(C, A)$ as follows.

- (1) A subset $\mathbb{E}^{L}_{\mathcal{N}}(C, A)$ is defined to be the set of morphisms $h : C \to A[1]$ satisfying the condition that, for any morphism $N \xrightarrow{x} C$ with $N \in \mathcal{N}$, $h \circ x$ factors through an object in $\mathcal{N}[1]$.
- (2) A subset $\mathbb{E}_{\mathcal{N}}^{R}(C, A)$ is defined to be the set of morphisms $h: C \to A[1]$ satisfying the condition that, for any morphism $A \xrightarrow{y} N$ with $N \in \mathcal{N}$, $y \circ h[-1]$ factors through an object in $\mathcal{N}[-1]$.

Then, both $\mathbb{E}_{\mathcal{N}}^{L}$ and $\mathbb{E}_{\mathcal{N}}^{R}$ give rise to closed subfunctors of \mathbb{E} in the sense of [8, Prop. 3.16]. In particular, putting $\mathbb{E}_{\mathcal{N}} := \mathbb{E}_{\mathcal{N}}^{L} \cap \mathbb{E}_{\mathcal{N}}^{R}$, we have three extriangulated structures

 $(\mathcal{C}, \mathbb{E}^L_{\mathcal{N}}, \mathfrak{s}^L_{\mathcal{N}}), \quad (\mathcal{C}, \mathbb{E}^R_{\mathcal{N}}, \mathfrak{s}^R_{\mathcal{N}}), \quad (\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$

which are relative to $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$. Here $\mathfrak{s}_{\mathcal{N}}$ is a restriction of \mathfrak{s} to $\mathbb{E}_{\mathcal{N}}$ and other symbols are used in similar meanings.

To understand the above relative extriangulated structures, we observe the following two extremal cases.

- **Example 3.** (1) Suppose that the subcategory \mathcal{N} is *thick* in the triangulated category $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$, namely it is closed under taking cones and cocones. Then, since $\mathcal{N} = \mathcal{N}[1] = \mathcal{N}[-1]$, we have equalities $\mathbb{E}_{\mathcal{N}}^{L} = \mathbb{E}_{\mathcal{N}}^{R} = \mathbb{E}$. In particular, the relative structure $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$ coincides with the original triangulated structure.
 - (2) Suppose that the subcategory \mathcal{N} is *rigid*, namely $\mathbb{E}(\mathcal{N}, \mathcal{N}) = 0$. Then, \mathcal{N} forms a subcategory of projective-injective objects in $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$. Moreover, the structure $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$ is maximal with respect to the above property. In this case, due to [10, Prop. 3.30], the ideal quotient $\overline{\mathcal{C}} := \mathcal{C}/[\mathcal{N}]$ admits a natural extriangulated structure $(\overline{\mathcal{C}}, \overline{\mathbb{E}}_{\mathcal{N}}, \overline{\mathfrak{s}}_{\mathcal{N}})$.

Recall that a subcategory \mathcal{N} of an arbitrary extriangulated category is said to be thick if it satisfies the 2-out-of-3 property for \mathfrak{s} -conflations, namely, for any \mathfrak{s} -conflation $A \longrightarrow B \longrightarrow C$, if two of $\{A, B, C\}$ belong to \mathcal{N} , so does the third¹. It is easily checked that any extension-closed subcategory \mathcal{N} of \mathcal{C} becomes a thick subcategory of $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$. Keeping in mind the case of the Verdier localization, we define the class $\mathcal{S}_{\mathcal{N}}$ of morphisms which one would like to consider to be isomorphisms in the quotient category \mathcal{C}/\mathcal{N} .

Definition 4. For a thick subcategory \mathcal{N} of an arbitrary extriangulated category, we associate the following classes of morphisms.

(1) $\mathcal{L} = \{ f \in \operatorname{Mor} \mathcal{C} \mid f \text{ is an } \mathfrak{s}\text{-inflation with } \operatorname{Cone}(f) \in \mathcal{N} \}.$

(2) $\mathcal{R} = \{g \in \operatorname{Mor} \mathcal{C} \mid g \text{ is an } \mathfrak{s}\text{-deflation with } \mathsf{CoCone}(g) \in \mathcal{N}\}.$

Define $S_{\mathcal{N}}$ to be the smallest subclass closed by compositions containing both \mathcal{L} and \mathcal{R} .

For the pair of triangulated category C and an extension-closed subcategory N, the above class S_N possesses nice properties.

Lemma 5. We consider the class $\overline{S_N}$ of morphisms \overline{s} with $s \in S_N$.

- (1) Let us denote by $\overline{S_N}^*$ the closure of $\overline{S_N}$ with respect to compositions with isomorphisms in \overline{C} . Then, we have $\overline{S_N} = \overline{S_N}^*$.
- (2) The class $S_{\mathcal{N}}$ forms a multiplicative system in the ideal quotient $\overline{\mathcal{C}}$. In particular, we have the additive localization $Q: \mathcal{C} \to \mathcal{C}/\mathcal{N} := \mathcal{C}[S_{\mathcal{N}}^{-1}]$ as follows:

¹Note that this definition is a generalization of thick subcategories of triangulated categories.

(3) The class $\overline{S_N}$ is saturated in the sense that, for any morphism $f \in \operatorname{Mor} \mathcal{C}$, if Q(f) is an isomorphism, then $f \in \overline{S_N}$.

Theorem 1 (2) says that the multiplicative system $\overline{\mathcal{S}_{\mathcal{N}}}$ satisfies the needed *compatibility with extriangulation* (see the conditions (MR1),..., (MR4) in [11, Thm. 3.5]). In particular, the relative structure $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$ determines a natural extriangulated structures $(\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}})$ on the localization \mathcal{C}/\mathcal{N} which makes the natural quotient functor $Q: \mathcal{C} \to \mathcal{C}/\mathcal{N}$ exact. The construction so far is depicted below.

$$\begin{array}{ccc} (\mathcal{N}, \mathbb{E}|_{\mathcal{N}}, \mathfrak{s}|_{\mathcal{N}}) & \xrightarrow{\text{inc}} & (\mathcal{C}, \mathbb{E}, \mathfrak{s}) \\ \text{extension-closed sub.} & & \text{triangulated cat.} \\ & & & \text{id} \\ & & & & \text{id} \\ (\mathcal{N}, \mathbb{E}_{\mathcal{N}}|_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}}|_{\mathcal{N}}) & \xrightarrow{\text{inc}} & (\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}}) \\ & & \text{thick sub.} & & \text{extriangulated cat.} \end{array}$$

Note that the all appearing functors are *exact* in the sense in [11, Def. 2.11].

We push further an observation on what the above diagram means in Example 3.

- **Example 6.** (1) Suppose that the subcategory \mathcal{N} is thick in the triangulated category $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$. Then, we get $\mathbb{E} = \mathbb{E}_{\mathcal{N}}$ and the quotient functor Q is the usual Verdier quotient.
 - (2) Suppose that the subcategory \mathcal{N} is *rigid*, namely $\mathbb{E}(\mathcal{N}, \mathcal{N}) = 0$. Then, $\overline{\mathcal{S}_{\mathcal{N}}}$ becomes the set of isomorphisms and the quotient functor Q is nothing other than the ideal quotient $\mathcal{C} \to \mathcal{C}/\mathcal{N} = \overline{\mathcal{C}}$. The extriangulated structure $(\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}})$ coincides with the natural one in $\overline{\mathcal{C}}$.

3. The triangulated case

As we have already seen in Example 6, if a given subcategory $\mathcal{N} \subseteq \mathcal{C}$ is thick, our extriangulated category \mathcal{C}/\mathcal{N} corresponds to a triangulated category. Conversely, if the quotient \mathcal{C}/\mathcal{N} is triangulated, then \mathcal{N} must be thick. To sharpen this assertion, we recall that a thick subcategory \mathcal{N} is said to be *biresolving* if, for any object $C \in \mathcal{C}$, there exist an \mathfrak{s} -inflation $C \to N$ and an \mathfrak{s} -deflation $N' \to C$ with $N, N' \in \mathcal{N}$

Corollary 7. We consider the extriangulated category $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$ and the localization $Q : (\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}}) \to (\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}})$ with respect to the subcategory \mathcal{N} . Then the following three conditions are equivalent.

- (i) The extriangulated category $(\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}})$ corresponds to a triangulated category.
- (ii) \mathcal{N} is a thick subcategory of the triangulated category $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$.
- (iii) \mathcal{N} is a biresolving subcategory of the extriangulated category $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$.

Under the above equivalent conditions, the localization $Q : (\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}}) \to (\widetilde{\mathcal{C}}_{\mathcal{N}}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}})$ coincides with the usual Verdier quotient.

4. The exact case

It is natural to ask when the extriangulated category \mathcal{C}/\mathcal{N} corresponds to an exact category. We denote by $\mathsf{Cone}(\mathcal{N}, \mathcal{N})$ the subcategory of \mathcal{C} consisting of objects X appearing in a triangle $N' \longrightarrow N \longrightarrow X \longrightarrow N'[1]$ with $N, N' \in \mathcal{N}$. The following is an exact version of Corollary 7.

Corollary 8. Let us consider the following conditions.

- (i) The extriangulated category $(\widetilde{\mathcal{C}}_{\mathcal{N}}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}})$ corresponds to an exact category.
- (ii) \mathcal{N} satisfies the condition $\mathsf{Cone}(\mathcal{N}, \mathcal{N}) = \mathcal{C}$ in the triangulated category $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$.
- (iii) \mathcal{N} is a Serre subcategory of the extriangulated category $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$.

The condition (ii) always implies (i) and (iii). Suppose that \mathcal{N} is functorially finite in \mathcal{C} . Then, the all conditions are equivalent.

We do not know whether the functorial finiteness on \mathcal{N} are really needed for the above corollary.

The following shows that \mathcal{C}/\mathcal{N} is actually an abelian category under the assumption $Cone(\mathcal{N},\mathcal{N}) = \mathcal{C}$ and provide a new construction of cohomological functors.

Corollary 9. Assume that $Cone(\mathcal{N}, \mathcal{N}) = \mathcal{C}$ holds in the triangulated category $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$. Then, the following assertions hold.

- (1) The resulting extriangulated category $(\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}})$ corresponds to an abelian exact category.
- (2) The exact functor $Q : (\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}}) \to (\mathcal{C}/\mathcal{N}, \widetilde{\mathbb{E}}_{\mathcal{N}}, \widetilde{\mathfrak{s}}_{\mathcal{N}})$ induces a cohomological functor $Q : (\mathcal{C}, \mathbb{E}, \mathfrak{s}) \to \mathcal{C}/\mathcal{N}$ from the original triangulated category.
- (3) The exact functor Q induces a right exact functor $Q : (\mathcal{C}, \mathbb{E}_{\mathcal{N}}^{R}, \mathfrak{s}_{\mathcal{N}}^{R}) \to \mathcal{C}/\mathcal{N}$ and a left exact functor $Q : (\mathcal{C}, \mathbb{E}_{\mathcal{N}}^{L}, \mathfrak{s}_{\mathcal{N}}^{L}) \to \mathcal{C}/\mathcal{N}$ in the sense of [12, Def. 2.7].

As mentioned so far, we have half/left/right exact functors $Q : \mathcal{C} \to \mathcal{C}/\mathcal{N}$ from an extension closed subcategory \mathcal{N} with $\mathsf{Cone}(\mathcal{N}, \mathcal{N}) = \mathcal{C}$ as depicted in the following commutative diagram.

Unlike the triangulated case, the above contains many important examples.

Example 10. [9] Let \mathcal{C} be a triangulated category and assume that \mathcal{U} is a 2-cluster tilting subcategory of \mathcal{C} , equivalently, $(\mathcal{U}, \mathcal{U})$ forms a cotorsion pair. Then, the ideal quotient $\mathcal{C}/[\mathcal{U}]$ is abelian and the natural functor $\pi : \mathcal{C} \to \mathcal{C}/[\mathcal{U}]$ is cohomological.

Sketch. Due to [1, Thm. 5.7], the pair $(\mathcal{U}, \mathcal{U})$ forms a cotorsion pair and we get its abelian heart $\mathcal{C}/[\mathcal{U}]$. We put $\mathcal{N} := \mathcal{U}$ and consider the relative structure $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$. Since \mathcal{N} is rigid and $\mathsf{Cone}(\mathcal{N}, \mathcal{N}) = \mathcal{C}$, Example 6 guarantees that our quotient functor $Q : \mathcal{C} \to \mathcal{C}/\mathcal{N}$ is nothing but the ideal quotient $\mathcal{C} \to \mathcal{C}/[\mathcal{N}]$. Corollary 9(2) shows Q is cohomological. \Box **Example 11.** [2] Let \mathcal{C} be a triangulated category and $(\mathcal{C}^{\leq 0}, \mathcal{C}^{\geq 0})$ be a *t*-structure of \mathcal{C} . Then, the subcategory $\mathcal{H} := \mathcal{C}^{\leq 0} \cap \mathcal{C}^{\geq 0}$ is abelian and there exists a natural cohomological functor $H : \mathcal{C} \to \mathcal{H}$.

Sketch. Due to [1, Thm. 5.7], the pair $(\mathcal{U}, \mathcal{V}) := (\mathcal{C}^{\leq -1}, \mathcal{C}^{\geq 1})$ forms a cotorsion pair and we get its heart \mathcal{H} . We put $\mathcal{N} := \mathsf{add}(\mathcal{U} * \mathcal{V})$ and consider the relative structure $(\mathcal{C}, \mathbb{E}_{\mathcal{N}}, \mathfrak{s}_{\mathcal{N}})$. Then, since $\mathsf{Cone}(\mathcal{N}, \mathcal{N}) = \mathcal{C}$ holds, by Corollary 9, we have the cohomolgical functor $Q : \mathcal{C} \to \mathcal{C}/\mathcal{N}$. By the universality, we can easily check an equivalence $\mathcal{C}/\mathcal{N} \simeq \mathcal{H}$.

Note that the general heart construction due to Abe-Nakaoka unifies the heart of a *t*-structure and Koenig-Zhu's abelian quotient C/[N] as mentioned above. Abe-Nakaoka's construction can be still understood through Corollary 9. However, we skip the details. The following example can not be explained by Abe-Nakaoka's construction.

Example 12. [3, 4] Let \mathcal{C} be a triangulated category and \mathcal{U} a contravariantly finite rigid subcategory of \mathcal{C} . Then, we have a cohomological functor $H := \mathcal{C}(\mathcal{U}, -) : \mathcal{C} \to \mathsf{mod}\mathcal{U}$ which is factored as follows:

where \mathcal{U}^{\perp} denotes the subcategory of objects X in \mathcal{C} with $\mathcal{C}(\mathcal{U}, X) = 0$ and Loc is a Gabriel-Zisman localization which admits left and right fractions.

Sketch. We clarify how the diagram (4.1) relates to our localization. Firstly, we put $\mathcal{N} := \mathcal{U}^{\perp}$ and note that $\mathsf{Cone}(\mathcal{N}, \mathcal{N}) = \mathcal{C}$ holds. Thus, the localization $Q : \mathcal{C} \to \mathcal{C}/\mathcal{N}$ is, by definition, factored as the ideal quotient $\pi : \mathcal{C} \to \overline{\mathcal{C}}$ followed by the localization of $\overline{\mathcal{C}}$ with respect to the multiplicative system $\overline{\mathcal{S}}_{\mathcal{N}}$ which is same as Loc in (4.1). As a bit more advantage of our results, Corollary 9 explains how the abelian exact structure on $\mathsf{mod}\mathcal{U} \simeq \mathcal{C}/\mathcal{N}$ inherits from the relative extriangulated structure on the triangulated category \mathcal{C} . Thus, their diagram (4.1) is nothing but our construction (2.1) of the quotient functor Q.

References

- N. Abe, H. Nakaoka, General heart construction on a triangulated category (II): Associated homological functor, Appl. Categ. Structures 20 (2012), no. 2, 161–174.
- [2] A. Beilinson, J. Bernstein, P. Deligne, *Faisceaux Pervers (Perverse sheaves)*, Analysis and Topology on Singular Spaces, I, Luminy, 1981, Asterisque **100** (1982) 5–171 (in French).
- [3] A. Beligiannis, Rigid objects, triangulated subfactors and abelian localizations, Math. Z. 274 (2013), no. 3-4, 841–883.
- [4] A. Buan, R. Marsh, From triangulated categories to module categories via localization II: calculus of fractions, J. Lond. Math. Soc. (2) 86 (2012), no. 1, 152–170.
- [5] A. Grothendieck, Sur quelques points d'algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221.
- [6] D. Happel, Triangulated categories in the representation theory of finite dimensional algebras, London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988.
- [7] R. Hartshorne, Algebraic geometry, Springer, 1977.
- [8] M. Herschend, Y. Liu, H. Nakaoka, n-exangulated categories (I): Definitions and fundamental properties, J. Algebra 570 (2021), 531-586.

- S. Koenig, B. Zhu, From triangulated categories to abelian categories: cluster tilting in a general framework, Math. Z. 258 (2008), no. 1, 143–160.
- [10] H. Nakaoka, Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Géom. Différ. Catég. 60 (2019), no. 2, 117–193.
- [11] H. Nakaoka, Y. Ogawa, A. Sakai, Localization of extriangulated categories, J. Algebra 611 (2022), 341–398.
- [12] _____, Auslander's defects over extriangulated categories: an application for the general heart construction, J. Math. Soc. Japan **73** (2021), no. 4, 1063–1089.
- [13] Y. Ogawa, Localization of triangulated categories with respect to extension-closed subcategories, arXiv:2205.12116v2.

Center for Educational Research of Science and Mathematics Nara University of Education Takabatake-cho, Nara, 630-8528, JAPAN

Email address: ogawa.yasuaki.gh@cc.nara-edu.ac.jp