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Abstract. The aim of this article is to develop a framework of the localization theory
of triangulated categories via extriangulated categories. Actually, given the pair of a
triangulated category C and an extension-closed subcategory N , we establish an exact
sequence N → C → C/N of extriangulated categories. Such a construction unifies the
Verdier quotient and the heart of a t-structure.

1. Introduction

The abelian categories and triangulated categories, introduced by A. Grothendieck and
J.-L. Verdier [5, 7], serve a foundation of the homological algebra. In the many blanches of
mathematics, we often encounter interplays between abelian categories and triangulated
categories. To name just a few important instances in the representation theory of algebra:

- for a given t-structure of a triangulated category C, there exists a cohomological
functor from C to the abelian heart [2];

- for a 2-cluster tilting subcategory U of a triagnulated category C, the ideal quotient
C/[U ] is abelian [9];

- for a Frobenius exact category C and the subcategory N of projective-injective
objects, the ideal quotient C/[N ] is triangulated [6];

- the derived category D(A) of an abelian categoryA is defined to be the localization
of the abelian category C(A) of complexes in A with respect to the subcategory
of acyclic complexes.

To capture such phenomena in a more conceptual framework, the notion of extriangulated
category was introduced by Nakaoka and Palu [10] as a simultaneous generalization of
exact and triangulated categories. As a benefit of revealing an extriangulated structure,
it is closed under basic categorical operations; taking extension-closed subcategories, ideal
quotients by projective-injective objects and the relative theory [8]. Recently, it was
shown that the extriangulated structure is still closed by certain localizations which were
introduced in [11] as a unification of the Serre/Verdier quotients. Our aim is to formulate a
new framework of localization of triangulated categories as an application of [11], namely,
we establish an exact sequence

(1.1) N → C → C/N

of extriangulated categories arising from the pair of a triangulated category C and an
extension-closed subcategory N . Precisely, the main theorem summarized as follows.

The detailed version of this paper will be submitted for publication elsewhere.



Theorem 1. [13, Thm. 2.20, 3.2, 4.2] Let C be a triangulated category and regard it as a
natural extriangulated category (C,E, s). Assume that a full subcategory N of C is closed
under direct summands and isomorphisms.

(0) If N is extension-closed in the triangulated category (C,E, s), then N naturally
defines a relative extriangulated structure (C,EN , sN ).

(1) If N is extension-closed in the triangulated category (C,E, s), then N is thick with
respect to the relative structure (C,EN , sN ). Moreover, we have an extriangulated

localization (Q,µ) : (C,EN , sN ) → (C/N , ẼN , s̃N ).
(2) Suppose that N is extension-closed. Then, N is thick in the triangulated cate-

gory (C,E, s) if and only if N is biresolving with respect to the relative structure

(C,EN , sN ) if and only if the resulting category (C/N , ẼN , s̃N ) is triangulated. In
this case, the localization (Q,µ) is nothing but the Verdier quotient.

(3) Suppose that N is extension-closed and functorially finite. Then, N satisfies
Cone(N ,N ) = C in the triangulated category (C,E, s) if and only if N is Serre
with respect to the relative structure (C,EN , sN ) if and only if the resulting category
C/N is abelian. Furthermore, the functor Q : (C,E, s) → C/N from the original
triangulated category is cohomological.

N extension-closed thick Cone(N ,N ) = C in (C,E, s)
thick biresolving Serre in (C,EN , sN )

C/N extriangulated triangulated abelian

The assertion (1) in the above theorem shows that the Verdier quotient is a typical ex-
ample of the exact sequence (1.1). The assertion (2) contains some types of cohomological
functors such as the heart of a t-structures, see Examples 10, 11 and 12.

Notation and convention. All categories and functors in this article are always as-
sumed to be additive. All subcategory U ⊆ C is always assumed to be full, additive
and closed under isomorphisms. For X ∈ C, if C(U,X) = 0 for any U ∈ U , we write
abbreviately C(U , X) = 0. Similar notations will be used in obvious meanings.

2. Localization with respect to extension-closed subcategories

In the reset, we fix a triangulated category C with a suspension [1] and an extension-
closed subcategory N of C and regard C as a natural extriangulated category (C,E, s).
Note that E(C,A) = C(C,A[1]) for any objects A,C ∈ C. First, we show that N naturally
determines an extriangulated structure on C relative to the triangulated structure.

Proposition 2. For any objects A,C ∈ C, we define subsets of E(C,A) as follows.
(1) A subset EL

N (C,A) is defined to be the set of morphisms h : C → A[1] satisfying

the condition that, for any morphism N
x−→ C with N ∈ N , h ◦ x factors through

an object in N [1].
(2) A subset ER

N (C,A) is defined to be the set of morphisms h : C → A[1] satisfying

the condition that, for any morphism A
y−→ N with N ∈ N , y ◦ h[−1] factors

through an object in N [−1].



Then, both EL
N and ER

N give rise to closed subfunctors of E in the sense of [8, Prop. 3.16].
In particular, putting EN := EL

N ∩ ER
N , we have three extriangulated structures

(C,EL
N , sLN ), (C,ER

N , sRN ), (C,EN , sN )

which are relative to (C,E, s). Here sN is a restriction of s to EN and other symbols are
used in similar meanings.

To understand the above relative extriangulated structures, we observe the following
two extremal cases.

Example 3. (1) Suppose that the subcategoryN is thick in the triangulated category
(C,E, s), namely it is closed under taking cones and cocones. Then, since N =
N [1] = N [−1], we have equalities EL

N = ER
N = E. In particular, the relative

structure (C,EN , sN ) coincides with the original triangulated structure.
(2) Suppose that the subcategory N is rigid, namely E(N ,N ) = 0. Then, N forms a

subcategory of projective-injective objects in (C,EN , sN ). Moreover, the structure
(C,EN , sN ) is maximal with respect to the above property. In this case, due to
[10, Prop. 3.30], the ideal quotient C := C/[N ] admits a natural extriangulated
structure (C,EN , sN ).

Recall that a subcategory N of an arbitrary extriangulated category is said to be
thick if it satisfies the 2-out-of-3 property for s-conflations, namely, for any s-conflation
A −→ B −→ C, if two of {A,B,C} belong to N , so does the third1. It is easily checked
that any extension-closed subcategory N of C becomes a thick subcategory of (C,EN , sN ).
Keeping in mind the case of the Verdier localization, we define the class SN of morphisms
which one would like to consider to be isomorphisms in the quotient category C/N .

Definition 4. For a thick subcategory N of an arbitrary extriangulated category, we
associate the following classes of morphisms.

(1) L = {f ∈ Mor C | f is an s-inflation with Cone(f) ∈ N}.
(2) R = {g ∈ Mor C | g is an s-deflation with CoCone(g) ∈ N}.

Define SN to be the smallest subclass closed by compositions containing both L and R.

For the pair of triangulated category C and an extension-closed subcategory N , the
above class SN possesses nice properties.

Lemma 5. We consider the class SN of morphisms s with s ∈ SN .

(1) Let us denote by SN
∗
the closure of SN with respect to compositions with isomor-

phisms in C. Then, we have SN = SN
∗
.

(2) The class SN forms a multiplicative system in the ideal quotient C. In particular,
we have the additive localization Q : C → C/N := C[S−1

N ] as follows:

(2.1) C

ideal quot. ��<
<<

<<
<<

<
Q // C/N

C
Localization

==||||||||

1Note that this definition is a generalization of thick subcategories of triangulated categories.



(3) The class SN is saturated in the sense that, for any morphism f ∈ Mor C, if Q(f)
is an isomorphism, then f ∈ SN .

Theorem 1 (2) says that the multiplicative system SN satisfies the needed compati-
bility with extriangulation (see the conditions (MR1), . . . , (MR4) in [11, Thm. 3.5]). In
particular, the relative structure (C,EN , sN ) determines a natural extriangulated struc-

tures (C/N , ẼN , s̃N ) on the localization C/N which makes the natural quotient functor
Q : C → C/N exact. The construction so far is depicted below.

(N ,E|N , s|N )
extension-closed sub.

inc // (C,E, s)
triangulated cat.

(N ,EN |N , sN |N )
thick sub.

inc //

id

OO

(C,EN , sN )
extriangulated cat.

Q //

id

OO

(C/N , ẼN , s̃N )
extriangulated cat.

Note that the all appearing functors are exact in the sense in [11, Def. 2.11].
We push further an observation on what the above diagram means in Example 3.

Example 6. (1) Suppose that the subcategoryN is thick in the triangulated category
(C,E, s). Then, we get E = EN and the quotient functor Q is the usual Verdier
quotient.

(2) Suppose that the subcategoryN is rigid, namely E(N ,N ) = 0. Then, SN becomes
the set of isomorphisms and the quotient functor Q is nothing other than the ideal

quotient C → C/N = C. The extriangulated structure (C/N , ẼN , s̃N ) coincides
with the natural one in C.

3. The triangulated case

As we have already seen in Example 6, if a given subcategory N ⊆ C is thick, our
extriangulated category C/N corresponds to a triangulated category. Conversely, if the
quotient C/N is triangulated, then N must be thick. To sharpen this assertion, we recall
that a thick subcategory N is said to be biresolving if, for any object C ∈ C, there exist
an s-inflation C → N and an s-deflation N ′ → C with N,N ′ ∈ N

Corollary 7. We consider the extriangulated category (C,EN , sN ) and the localization

Q : (C,EN , sN ) → (C/N , ẼN , s̃N ) with respect to the subcategory N . Then the following
three conditions are equivalent.

(i) The extriangulated category (C/N , ẼN , s̃N ) corresponds to a triangulated category.
(ii) N is a thick subcategory of the triangulated category (C,E, s).
(iii) N is a biresolving subcategory of the extriangulated category (C,EN , sN ).

Under the above equivalent conditions, the localization Q : (C,EN , sN ) → (C̃N , ẼN , s̃N )
coincides with the usual Verdier quotient.

4. The exact case

It is natural to ask when the extriangulated category C/N corresponds to an exact cat-
egory. We denote by Cone(N ,N ) the subcategory of C consisting of objects X appearing



in a triangle N ′ −→ N −→ X −→ N ′[1] with N,N ′ ∈ N . The following is an exact
version of Corollary 7.

Corollary 8. Let us consider the following conditions.

(i) The extriangulated category (C̃N , ẼN , s̃N ) corresponds to an exact category.
(ii) N satisfies the condition Cone(N ,N ) = C in the triangulated category (C,E, s).
(iii) N is a Serre subcategory of the extriangulated category (C,EN , sN ).

The condition (ii) always implies (i) and (iii). Suppose that N is functorially finite in C.
Then, the all conditions are equivalent.

We do not know whether the functorial finiteness on N are really needed for the above
corollary.

The following shows that C/N is actually an abelian category under the assumption
Cone(N ,N ) = C and provide a new construction of cohomological functors.

Corollary 9. Assume that Cone(N ,N ) = C holds in the triangulated category (C,E, s).
Then, the following assertions hold.

(1) The resulting extriangulated category (C/N , ẼN , s̃N ) corresponds to an abelian ex-
act category.

(2) The exact functor Q : (C,EN , sN ) → (C/N , ẼN , s̃N ) induces a cohomological func-
tor Q : (C,E, s) → C/N from the original triangulated category.

(3) The exact functor Q induces a right exact functor Q : (C,ER
N , sRN ) → C/N and a

left exact functor Q : (C,EL
N , sLN ) → C/N in the sense of [12, Def. 2.7].

As mentioned so far, we have half/left/right exact functors Q : C → C/N from an
extension closed subcategory N with Cone(N ,N ) = C as depicted in the following com-
mutative diagram.

(C,EN , sN )

(C,ER
N , sRN )

(C,EL
N , sLN )

(C,E, s)

C̃N
77ooooooo

��/
//
//
//
//
//

��/
//
//
//
//
//

77ooooooo

aaaaaaaaaa
exact 00aaaaaaaaaaaaaaaaaaaaaa

right exact

''

left exact

FF

cohomological

66mmmmmmmmmmmmmmmm

Unlike the triangulated case, the above contains many important examples.

Example 10. [9] Let C be a triangulated category and assume that U is a 2-cluster tilting
subcategory of C, equivalently, (U ,U) forms a cotorsion pair. Then, the ideal quotient
C/[U ] is abelian and the natural functor π : C → C/[U ] is cohomological.

Sketch. Due to [1, Thm. 5.7], the pair (U ,U) forms a cotorsion pair and we get its abelian
heart C/[U ]. We put N := U and consider the relative structure (C,EN , sN ). Since N is
rigid and Cone(N ,N ) = C, Example 6 guarantees that our quotient functor Q : C → C/N
is nothing but the ideal quotient C → C/[N ]. Corollary 9(2) showsQ is cohomological. □



Example 11. [2] Let C be a triangulated category and (C≤0, C≥0) be a t-structure of C.
Then, the subcategory H := C≤0∩C≥0 is abelian and there exists a natural cohomological
functor H : C → H.

Sketch. Due to [1, Thm. 5.7], the pair (U ,V) := (C≤−1, C≥1) forms a cotorsion pair and we
get its heart H. We put N := add(U ∗ V) and consider the relative structure (C,EN , sN ).
Then, since Cone(N ,N ) = C holds, by Corollary 9, we have the cohomolgical functor
Q : C → C/N . By the universality, we can easily check an equivalence C/N ≃ H. □
Note that the general heart construction due to Abe-Nakaoka unifies the heart of a t-

structure and Koenig-Zhu’s abelian quotient C/[N ] as mentioned above. Abe-Nakaoka’s
construction can be still understood through Corollary 9. However, we skip the details.
The following example can not be explained by Abe-Nakaoka’s construction.

Example 12. [3, 4] Let C be a triangulated category and U a contravariantly finite rigid
subcategory of C. Then, we have a cohomological functor H := C(U ,−) : C → modU
which is factored as follows:

(4.1) C

π " "E
EE

EE
EE

EE
H // modU

C/[U⊥]
Loc

99tttttttttt

where U⊥ denotes the subcategory of objects X in C with C(U , X) = 0 and Loc is a
Gabriel-Zisman localization which admits left and right fractions.

Sketch. We clarify how the diagram (4.1) relates to our localization. Firstly, we put
N := U⊥ and note that Cone(N ,N ) = C holds. Thus, the localization Q : C → C/N
is, by definition, factored as the ideal quotient π : C → C followed by the localization
of C with respect to the multiplicative system SN which is same as Loc in (4.1). As a
bit more advantage of our results, Corollary 9 explains how the abelian exact structure
on modU ≃ C/N inherits from the relative extriangulated structure on the triangulated
category C. Thus, their diagram (4.1) is nothing but our construction (2.1) of the quotient
functor Q. □
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