HIGHER VERSIONS OF MORPHISMS REPRESENTED BY MONOMORPHISMS

YUYA OTAKE

ABSTRACT. In this article, we introduce and study a new class of morphisms which includes morphisms represented by monomorphisms in the sense of Auslander and Bridger. As an application, we give a common generalization of several results due to Auslander and Bridger that describe relationships between torsionfreeness and the grades of Ext modules.

Key Words: morphism represented by monomorphisms, *n*-torsionfree module, syzygy, (Auslander) transpose, grade.

2000 Mathematics Subject Classification: 13D02, 16E05, 16D90.

1. INTRODUCTION

Throughout this article, let R be a two-sided noetherian ring. We assume that all modules are finitely generated right ones. It is a natural and classical question to ask when a given homomorphism of R-modules is stably equivalent to another homomorphism satisfying certain good properties. A well-studied one is about stable equivalence to a monomorphism: A homomorphism $f: X \to Y$ of R-modules is said to be represented by monomorphisms if there is an R-homomorphism $t: X \to P$ with P projective such that $\binom{f}{t}: X \to Y \oplus P$ is a monomorphism. This notion has been introduced by Auslander and Bridger [1], and later studied in detail by Kato [3]. Among other things, Kato gave the following characterization; we denote by Tr(-) the (Auslander) transpose.

Theorem 1 (Kato). Let $f : X \to Y$ be an *R*-homomorphism. Then the following are equivalent.

- (1) The morphism f is represented by monomorphisms.
- (2) The map $\operatorname{Ext}^{1}_{R^{\operatorname{op}}}(\operatorname{Tr} f, R) : \operatorname{Ext}^{1}_{R^{\operatorname{op}}}(\operatorname{Tr} X, R) \to \operatorname{Ext}^{1}_{R^{\operatorname{op}}}(\operatorname{Tr} Y, R)$ is injective.

Motivated by the above theorem, we define a condition which we call (T_n) for each integer $n \ge 0$ so that (T_1) is equivalent to being represented by monomorphisms, and find out several properties.

The notion of *n*-torsionfree modules was also introduced by Auslander and Bridger [1]: An *R*-module *M* is called *n*-torsionfree if $\operatorname{Ext}_{R^{\operatorname{op}}}^{i}(\operatorname{Tr} M, R) = 0$ for all $1 \leq i \leq n$. Auslander and Bridger found various important properties related to *n*-torsionfree modules. For example, for an *R*-module *M*, Auslander and Bridger figured out the relationship between the grade of the Ext module $\operatorname{Ext}_{R}^{i}(M, R)$ and the torsionfreeness of the syzygy $\Omega^{i}M$. This result has been playing an important role in studies on *n*-torsionfree modules. As an application of a result stated in Section 2, we give a higher version of Auslander and

The detailed version [5] of this article has been submitted for publication elsewhere.

Bridger's theorem in Section 3. It gives a common generalization of [1, Propositions 2.26, 2.28 and Corollary 2.32].

2. The condition (T_n)

We begin with introducing the new condition (T_n) for *R*-homomorphisms. It is a natural extension of the condition (2) in Theorem 1.

Definition 2. Let $n \ge 1$ be an integer. We say that a homomorphism $f : X \to Y$ of R-modules satisfies (T_n) if the map $\operatorname{Ext}_{R^{\operatorname{op}}}^i(\operatorname{Tr} f, R)$ is bijective for all $1 \le i \le n-1$ and $\operatorname{Ext}_{R^{\operatorname{op}}}^n(\operatorname{Tr} f, R)$ is injective. In addition, we provide that every R-homomorphism satisfies (T_0) .

In order to describe several properties related to the condition (T_n) , we use the following terminology.

Definition 3. [3, Definition and Lemma 2.11] Let $f : X \to Y$ be a homomorphism of R-modules. Let $s : P \to Y$ be an epimorphism with P projective. The module Kerf is defined as Ker $((f, s) : X \oplus P \to Y)$. The module Kerf is uniquely determined by f up to projective summands.

For an *R*-homomorphism f, we denote by $\operatorname{Cok} f$ the cokernel of f. The kernel and the cokernel of the homomorphim f are related to the module $\operatorname{Ker} f$ as follows.

Lemma 4. [3, Lemma 2.17, Theorem 4.12] Let $f : X \to Y$ be a homomorphism of *R*-modules. Let $t : Q \to Y$ be an epimorphism with Q projective. Then there exists an exact sequence

$$0 \to \operatorname{Ker} f \to \underline{\operatorname{Ker}} f \to Q \to \operatorname{Cok} f \to 0.$$

Let M be an R-module. The grade of M, which is denoted by $\operatorname{grade}_R M$, is defined to be the infimum of integers i such that $\operatorname{Ext}_R^i(M, R) = 0$. The relationship between the grades of Ext modules and the torsionfreeness of modules has been actively studied; the works of Auslander and Bridger [1] and Auslander and Reiten [2] are among the most celebrated studies. The following theorem is the first main theorem of this article, which interprets the condition (T_n) in terms of grades and torsionfreeness.

Theorem 5. Let $n \ge 1$ be an integer. Consider the following conditions for an *R*-homomorphism $f: X \to Y$.

- (a_n) The homomorphism f satisfies the condition (T_n) .
- (b_n) The *R*-module <u>Kerf</u> is *n*-torsionfree.
- (c_n) There is an inequality grade_{*R*^{op}} Ker Ext¹_{*R*} $(f, R) \ge n$.

Then the following implications hold.

$$(a_n) \land (b_{n+1}) \Longrightarrow (c_n), \qquad (b_n) \land (c_n) \Longrightarrow (a_n), \qquad (a_n) \land (c_{n-1}) \Longrightarrow (b_n)$$

Let us consider an application of the above theorem. The following corollary is none other than [3, Theorem 4.2], which gives a simple characterization of the morphisms represented by monomorphisms when R is commutative and generically Gorenstein (e.g., when R is an integral domain). We can deduce it from Theorem 5.

Corollary 6 (Kato). Suppose that R is commutative and the total ring Q(R) of fractions of R is Gorenstein. Let $f : X \to Y$ be a homomorphism of R-modules. Then f is represented by monomorphisms if and only if Ker f is torsionless.

Proof. Since Q(R) is Gorenstein, the torsionless property is closed under extensions; see [4, Theorem 2.3] for instance. Hence, by Lemma 4, Ker f is torsionless if and only if so is <u>Ker f</u>. Suppose that <u>Ker f</u> is torsionless. By [1, Proposition 4.21], we have grade Ker Ext¹ $(f, R) \geq$ 1. It follows from Theorem 5 that f is represented by monomorphisms.

3. Grade inequalities of Ext modules

In this section, as an application of Theorem 5, we consider the grades of Ext modules. Let M be an R-module and $n \ge 1$ an integer. Auslander and Bridger [1] state and prove a criterion for $\Omega^i M$ to be *i*-torsionfree for $1 \le i \le n$. By using Theorem 5, we can recover [1, Proposition 2.26], which is the most fundamental theorem in studies on n-torsionfree modules.

Corollary 7 (Auslander-Bridger). Let $n \ge 1$ be an integer and M an R-module. The following are equivalent.

- (1) The inequality grade_{Rop} $\operatorname{Ext}_{R}^{i}(M, R) \geq i 1$ holds for all $1 \leq i \leq n$.
- (2) The syzygy $\Omega^i M$ is i-torsionfree for all $1 \leq i \leq n$.

Proof. We use induction on n. The assertion is trivial for n = 1. Let n > 1. Assume that (1) or (2) holds. Then $\Omega^i M$ is *i*-torsionfree for all $1 \le i \le n-1$ by the induction hypothesis. Let $f: P \to \Omega^{n-1}M$ be an epimorphism with P projective. Then f satisfies (T_n) . It follows from Theorem 5 that grade Ker $\operatorname{Ext}^1(f, R) \ge n-1$ if and only if $\operatorname{Ker} f$ is n-torsionfree. As Ker $\operatorname{Ext}^1(f, R) \cong \operatorname{Ext}^1(\Omega^{n-1}M, R) \cong \operatorname{Ext}^n(M, R)$ and $\operatorname{Ker} f \cong \Omega^n M$, we have the desired result.

The results [1, Proposition 2.26 and Corollary 2.32] describe the relationship between the grades of Ext modules and the torsionfreeness of syzygy modules, and the relationship of them with the natural map ψ_M^i : Tr Ω^i Tr $\Omega^i M \to M$ being represented by monomorphisms. The main result of this section is the following theorem, which gives a common generalization of [1, Propositions 2.26, 2.28 and Corollary 2.32].

Theorem 8. Let $n \ge 1$ and $j \ge 0$ be integers and M an R-module. The following are equivalent.

- (1) The inequality grade_{Rop} $\operatorname{Ext}_{R}^{i}(M, R) \geq i + j 1$ holds for all $1 \leq i \leq n$.
- (2) The syzygy $\Omega^i M$ is i-torsionfree and the natural map ψ^i_M : $\operatorname{Tr} \Omega^i \operatorname{Tr} \Omega^i M \to M$ satisfies the condition (T_i) for all $1 \leq i \leq n$.

References

- [1] M. AUSLANDER; M. BRIDGER, Stable module theory, Memoirs of the American Mathematical Society 94, American Mathematical Society, Providence, R.I., 1969.
- [2] M. AUSLANDER; I. REITEN, Syzygy modules for Noetherian rings, J. Algebra 183 (1996), no. 1, 167–185.
- [3] K. KATO, Morphisms represented by monomorphisms, J. Pure Appl. Algebra 208 (2007), no. 1, 261–283.

- [4] H. MATSUI; R. TAKAHASHI; Y. TSUCHIYA, When are n-syzygy modules n-torsionfree?, Arch. Math. (Basel) 108 (2017), no. 4, 351–355.
- [5] Y. OTAKE, Morphisms represented by monomorphisms with *n*-torsionfree cokernel, preprint (2022), arXiv:2203.04436.

GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY FUROCHO, CHIKUSAKU, NAGOYA 464-8602, JAPAN *Email address*: m21012v@math.nagoya-u.ac.jp