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Abstract. Dimitrov, Haiden, Katzarkov and Kontsevich have introduced the notion
of complexities for arbitrary triangulated categories. This paper deals with complexities
for singularity categories.

1. Preliminaries

In this section, we work on a general triangulated category.

Setup 1. Throughout this section, let T be a triangulated category. All subcategories of
T are assumed to be strictly full. We may omit a subscript if it is clear from the context.

We introduce the operation ⋆ for subcategories of T , which plays a central role through-
out the paper.

Definition 2. Let X and Y be subcategories of T .

(1) We denote by X ⋆Y the subcategory of T consisting of objects T ∈ T such that there
exists an exact triangle X → T → Y ⇝ in T such that X ∈ X and Y ∈ Y .

(2) When X ,Y consist of single objects X,Y respectively, we simply write X⋆Y to denote
X ⋆ Y .

In the following lemma, we make a list of several fundamental properties of the operation
⋆. The first assertion says that the operation ⋆ satisfies associativity. The second and
third assertions state that the operation ⋆ is compatible with taking finite direct sums
and shifts. The proof is standard.

Lemma 3. (1) For subcategories X ,Y ,Z of T one has (X ⋆Y)⋆Z = X ⋆ (Y ⋆Z). Hence,
there is no ambiguity in writing ⋆n

i=1Xi = X1 ⋆ · · · ⋆ Xn for subcategories X1, . . . ,Xn

of T or X ⋆n = X ⋆ · · · ⋆ X︸ ︷︷ ︸
n

.

(2) Let {Xij}1⩽i⩽m, 1⩽j⩽n and {Mi}1⩽i⩽m be families of objects of T . Suppose that Mi ∈
⋆n

j=1Xij for each 1 ⩽ i ⩽ m. Then it holds that
⊕m

i=1 Mi ∈⋆n
j=1(

⊕m
i=1 Xij).

(3) Let X1, . . . , Xn ∈ T . Then the following statements hold true.
(a) If M ∈ ⋆n

i=1Xi, then M [s] ∈ ⋆n
i=1Xi[s] for all integers s, M⊕m ∈ ⋆n

i=1X
⊕m
i

for all positive integers m, and M ⊕ (
⊕n

i=1 Yi) ∈ ⋆n
i=1(Xi ⊕ Yi) for all objects

Y1, . . . , Yn ∈ T .
(b) One has the containment

⊕n
i=1 Xi ∈⋆n

i=1Xi.

Here we recall the definition of split generators, which are used to define complexities
and entropies.

The detailed version [10] of this paper has been submitted for publication elsewhere.



Definition 4. (1) A thick subcategory of T is by definition a triangulated subcategory
of T closed under direct summands, i.e., a subcategory closed under shifts, mapping
cones and direct summands.

(2) For an object X ∈ T we denote by thickT X the thick closure of T , that is to say, the
smallest thick subcategory of T to which X belongs.

(3) A split generator of T , which is also called a thick generator of T , is defined to be an
object of T whose thick closure coincides with T .

Now we can state the definitions of complexities and entropies introduced in [5].

Definition 5 (Dimitrov–Haiden–Katzarkov–Kontsevich).

(1) Let X,Y ∈ T and t ∈ R. We denote by δt(X,Y ) the infimum of the sums
∑r

i=1 e
nit,

where r runs through the nonnegative integers and ni run through the integers such
that there exist a sequence

0 Y0
/ / Y1

//
uukkkk

kk · · · // Yr−1
// Yr

uukkkk
kk Y ⊕ Y ′

X[n1]

ii i) i) i)
· · · X[nr]

jj j* j* j*

of exact triangles {Yi−1 → Yi → X[ni]⇝}ri=1 in T . The function R 3 t 7→ δt(X,Y ) ∈
R⩾0 ∪ {∞} is called the complexity of Y relative to X. When Y = 0, one can take
r = 0, and hence δt(X,Y ) = 0.

(2) Let F : T → T be an exact functor and t ∈ R. The entropy ht(F ) of F is defined by

ht(F ) = limn→∞
1
n
log δt(G,F n(G)),

where G is a split generator of T . This is independent of the choice of G; see [5,
Lemma 2.6].

The following proposition gives an equivalent definition of a complexity.

Proposition 6. Let X,Y ∈ T and t ∈ R. One then has the equality

δt(X,Y ) = inf{
∑r

i=1 e
nit | Y ⊕ Y ′ ∈⋆r

i=1X[ni] for some Y ′ ∈ T }.

We give a couple of statements concerning complexities. Recall that T is said to be
periodic if there exists an integer n > 0 such that the nth shift functor [n] is isomorphic
to the identity functor idT of T .

Proposition 7. Let X and Y be objects of T . Then the following statements hold.

(1) Let t ∈ R. Then δt(X,Y ) < ∞ if and only if Y ∈ thickT X.
(2) There is an equality δ0(X,Y ) = inf{r ∈ Z⩾0 | Y ⊕Y ′ ∈⋆r

i=1X[ni] for some Y ′ ∈ T }.
(3) Let t ∈ R. Suppose that T is periodic and δt(X,Y ) < ∞. Then δt(X,Y ) = 0 unless

t = 0.

Remark 8. The equality in Proposition 7(2) may remind the reader of the notion of a
level introduced by Avramov, Buchweitz, Iyengar and Miller [2]. Namely, δ0(X,Y ) looks
closely related to the X-level levelXT (Y ) of Y . The difference is that an X-level ignores
finite direct sums of copies of X. This is similar to the difference between the lengths of a
composition series and a Loewy series of a module over a ring. The complexity δt(X,Y )
can also be regarded as a weighted version of δ0(X,Y ) with respect to shifts.



The following lemma comes from [5, Proposition 2.2]. In this proposition, neither
δt(X,Y ) nor δt(Y, Z) is assumed to be finite, but in its proof both δt(X,Y ) and δt(Y, Z)
seem to be assumed to be finite. In fact, without this assumption, we would need to
clarify what 0 · ∞ and ∞ · 0 mean.

Lemma 9. Let t be a real number. Let X, Y and Z be objects of T . Suppose that both
δt(X,Y ) and δt(Y, Z) are finite. Then there is an inequality δt(X,Z) ⩽ δt(X,Y ) ·δt(Y, Z).

2. Main results

In this section, we shall investigate complexities and entropies for the singularity cate-
gory of a commutative noetherian local ring, which is a triangulated category.

Setup 10. Throughout this section, let R be a commutative noetherian local ring with
maximal ideal m and residue field k. The triangulated category considered in this section
is the singularity category Dsg(R) of R, which is by definition the Verdier quotient of
the bounded derived category of finitely generated R-modules by perfect complexes (i.e.,
bounded complexes of finitely generated projective R-modules).

We recall several fundamental notions from commutative algebra, whose details can be
found in [1, 3].

Definition 11. (1) We say that R is a singular local ring if it is not a regular local ring.
Note that R is singular if and only if the category Dsg(R) is nonzero.

(2) The codimension and the codepth of R are defined by codimR = edimR− dimR and
codepthR = edimR − depthR. Here, edimR and depthR stand for the embedding
dimension of R and the depth of R, respectively. Note that codimR = codepthR if
(and only if) R is Cohen–Macaulay.

(3) The local ring R is said to be a hypersurface provided the inequality codepthR ⩽ 1
holds. According to Cohen’s structure theorem, this condition is equivalent to saying

that the m-adic completion R̂ of R is isomorphic to the residue ring S/(f) of some
regular local ring S by some principal ideal (f).

(4) The local ring R is called a complete intersection if the m-adic completion R̂ of R is
isomorphic to the residue ring S/(f) of a regular local ring (S, n) by the ideal (f)
generated by a regular sequence f = f1, . . . , fc. One can choose f = f1, . . . , fc so that
c = codimR, and in this case, fi ∈ n2 for all i.

(5) The Koszul complex KR of R is defined to be the Koszul complex K(x, R) on R of a
minimal system of generators x = x1, . . . , xn of m. This complex is uniquely deter-
mined up to isomorphism; see [3, the part following Remark 1.6.20]. Each homology
Hi(K

R) is a finite-dimensional k-vector space.
(6) We say that R has an isolated singularity if Rp is a regular local ring for all p ∈

SpecR \ {m}.
(7) Let e(R) and r(R) be the (Hilbert–Samuel) multiplicity and type of R, respectively.

One has R is singular if and only if e(R) > 1, and R is Gorenstein if and only if R is
Cohen–Macaulay and r(R) = 1.

(8) Let M be a finitely generated R-module. Let n be a nonnegative integer. Then we
denote by Ωn

RM the nth syzygy of M over R, that is, the image of the nth differential



map in a minimal free resolution of the R-module M . Note that the module Ωn
RM is

uniquely determined up to isomorphism. We denote by βR
n (M) the nth Betti number

of M , namely, the minimal number of generators of Ωn
RM .

(9) For an R-module M , we denote by ℓ(M) the length of (a composition series of) M .

What we want to consider in this section is the following conjecture.

Conjecture 12. Let G be a split generator of Dsg(R). Then one has the equality
δt(G,X) = 0 for all objects X of Dsg(R) and for all nonzero real numbers t.

In the case where R is a hypersurface, it is easy to see that Conjecture 12 holds true.

Example 13. IfR is a hypersurface, then δt(G,X) = 0 for all split generators G of Dsg(R),
for all X ∈ Dsg(R) and for all 0 6= t ∈ R. Indeed, in this case, there exists an isomorphism

R̂ ∼= S/(f), where S is a regular local ring and f ∈ S. The singularity category Dsg(R̂)

of the completion R̂ is equivalent as a triangulated category to the homotopy category of
matrix factorizations of f over S, which is periodic of periodicity two; we refer the reader
to [4, 6, 7, 8, 11] for the details. It is easy to see that Dsg(R) is also periodic of periodicity
two, and the assertion follows from (1) and (3) of Proposition 7.

We introduce a condition on an object of the singularity category, which is essential in
our theorems.

Definition 14. We say that an object X of Dsg(R) is locally zero on the punctured
spectrum of R if for each nonmaximal prime ideal p of R the localized complex Xp is
isomorphic to 0 in the singularity category Dsg(Rp) of the local ring Rp. This condition is
equivalent to saying that Xp is isomorphic to a perfect complex over Rp in the bounded
derived category of finitely generated Rp-modules.

Remark 15. Suppose that R has an isolated singularity. Then every object of Dsg(R) is
locally zero on the punctured spectrum of R, since Dsg(Rp) = 0 for all nonmaximal prime
ideals p of R.

We establish a lemma, whose proof is done by [9, Corollary 4.3(3)], Proposition 7(1)
and Lemma 9.

Lemma 16. Let t ∈ R. Let X be an object of Dsg(R) such that k belongs to thickDsg(R) X.
Let Y be an object of Dsg(R) which is locally zero on the punctured spectrum of R. If
δt(k, k) = 0, then δt(X,Y ) = 0.

Now we shall state three theorems, all of which support Conjecture 12. The proofs use
Lemma 3, Lemma 16, [1, Theorem 8.1.2], and fundamental properties of Koszul complexes
and multiplicities stated in [3]. For the details of the proofs of the theorems, we refer the
reader to [10].

Theorem 17. Let R be a complete intersection. Let X ∈ Dsg(R) be such that k belongs
to thickDsg(R) X. Let Y ∈ Dsg(R) be locally zero on the punctured spectrum of R. Then
δt(X,Y ) = 0 for all t 6= 0.

Theorem 18. Let R be singular and Cohen–Macaulay. Assume that the residue field
k is infinite. Let X be an object of Dsg(R) such that k ∈ thickDsg(R) X. Let Y be an



object of Dsg(R) which is locally zero on the punctured spectrum of R. Put u = e(R) and
r = r(R). Then δt(X,Y ) = 0 for all t < − log(u−1) and for all t > log(u−r). Therefore,
δt(X,Y ) = 0 for all |t| > log(u− 1) provided that R is Gorenstein.

Theorem 19. Suppose R is singular. Set c = codepthR and m = max1⩽i⩽c{dimk Hi(K
R)}.

Let X be an object of Dsg(R) such that k belongs to thickDsg(R) X, and let Y be an object
of Dsg(R) which is locally zero on the punctured spectrum of R. Then δt(X,Y ) = 0 for all

|t| > log c+logm
2

.

Remark 20. (1) Put n = edimR. Cohen’s structure theorem shows that there exist an
n-dimensional regular local ring (S, n, k) and an ideal I of S such that the m-adic

completion R̂ of R is isomorphic to the residue ring S/I. Choose a minimal system
of generators x = x1, . . . , xn of n. It holds that

Hi(K
R) = Hi(x, R) ∼= Hi(x, R)⊗R R̂ ∼= Hi(x, R̂) ∼= Hi(K(x, S)⊗S R̂) ∼= TorSi (k, R̂)

for each integer i, where the first isomorphism holds since the R-module Hi(x, R)
has finite length, while the last isomorphism follows from the fact that the Koszul
complex K(x, S) is a free resolution of k over S. Hence, the number dimk Hi(K

R) is

equal to the ith Betti number βS
i (R̂) of R̂ over S.

(2) Let R be a singular hypersurface. Let G be a split generator of Dsg(R), and let X
be an object of Dsg(R) which is locally zero on the punctured spectrum of R. The
following two statements hold.
(a) As R is a complete intersection, Theorem 17 implies that δt(G,X) = 0 for all

0 6= t ∈ R.
(b) Put c = codepthR and m = max1⩽i⩽c{dimk Hi(K

R)}. Then c = 1. We have

R̂ ∼= S/(f) for some regular local ring (S, n) and some element f ∈ n2. The

sequence 0 → S
f−→ S → R̂ → 0 gives a minimal free resolution of the S-module

R̂, and the equalities dimk H1(K
R) = βS

1 (R̂) = 1 hold by (1). Hence m = 1. We
get log c+logm

2
= 0, and δt(G,X) = 0 for all t 6= 0 by Theorem 19.

Thus, each of Theorems 17 and 19 recovers Example 13 in the case where X is locally
zero on the punctured spectrum of R (e.g., in the case where R has an isolated
singularity by Remark 15).

Combining the above three theorems with Remark 15, we obtain the corollary below
on entropies.

Corollary 21. Let R be singular with an isolated singularity. Let F be an exact endo-
functor of Dsg(R).

(1) Put c = codepthR and m = max1⩽i⩽c{dimk Hi(K
R)}. Then δt(G,X) = 0 for all split

generators G ∈ Dsg(R), all X ∈ Dsg(R) and all |t| > log c+logm
2

. Thus ht(F ) is not

defined if |t| > log c+logm
2

.
(2) Assume that R is Gorenstein and k is infinite. Then δt(G,X) = 0 for all split

generators G ∈ Dsg(R), all X ∈ Dsg(R) and all |t| > log(e(R) − 1). Thus ht(F )
is not defined for |t| > log(e(R)− 1).



(3) Suppose that R is a complete intersection. Then δt(G,X) = 0 for all split generators
G ∈ Dsg(R), all X ∈ Dsg(R) and all nonzero real numbers t. Therefore, the entropy
ht(F ) is defined only for t = 0.

We close this section by mentioning that examples are constructed in [10], which say
that the bounds log c+logm

2
and log(e(R)− 1) for the real numbers t given in Theorems 18,

19 and Corollary 21(1)(2) are not necessarily best possible.

References

[1] L. L. Avramov, Infinite free resolutions, Six lectures on commutative algebra, 1–118, Mod. Birkhäuser
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