The spectrum of the category of maximal Cohen–Macaulay modules

Naoya Hiramatsu

National Institute of Technology, Kure College

The 55th Symposium on Ring Theory and Representation Theory

References i

- [1] Herzog, I: *The Ziegler spectrum of a locally coherent Grothendieck category*. Proc. London Math. Soc. (3) **74** (1997), no. 3, 503–558.
- [2] Krause, H: *The spectrum of a locally coherent category*. J. Pure Appl. Algebra **114** (1997), no. 3, 259–271.
- [3] Puninski, G.: *The Ziegler Spectrum and Ringel's Quilt of the A-infinity Plane Curve Singularity*, Algebr Represent Theor **21**, 419–446 (2018).
- [4] Los, I and Puninski, G.: *The Ziegler spectrum of the D-infinity plane singularity*. Colloq. Math. **157** (2019), no. 1, 35–63.
- [5] NAKAMURA, T.: *Indecomposable pure-injective objects in stable categories of Gorenstein-projective modules over Gorenstein orders*. arXiv:2209.15630.
- [6] Hiramatsu, N.: *Krull–Gabriel dimension of Cohen–Macaulay modules over hypersurfaces of countable Cohen–Macaulay representation type*. arXiv:2112.13504.
- [7] Kobayashi, T., Lyle, J. and Takahashi, R.: *Maximal Cohen–Macaulay modules that are not locally free on the punctured spectrum*, J. Pure Appl. Algebra 224, (2020).
- [8] Yoshino, Y.: *Cohen–Macaulay Modules over Cohen–Macaulay Rings, London Mathematical Society*, Lecture Note Series, **146**, Cambridge University Press, Cambridge, 1990.
- [9] Yoshino, Y.: *A functorial approach to modules of G-dimension zero*, Illinois J. Math. **49** (2) 345–367, Summer 2005.

Setting i

In this talk, **R** is a commutative complete Cohen-Macauly local ring with algebraic residue field **k**.

- All modules are **"finitely generated" R**-modules.
- *C* is the category of maximal Cohen-Macaulay (MCM) modules.

$$
\mathcal{C} = \{M \mid \operatorname{Ext}_R^i(k,M) = 0 \text{ for } i < \dim R\}
$$

Remark 1

• Since **R** is complete, C is a Krull-Schmidt category.

We consider the categories:

 \bullet $mod(C) := \{F : C \rightarrow Ab\}$ finitely presented contravariant additive functors *}*. \bullet $\text{mod}(\mathcal{C}) := \{ \mathsf{F} \in \text{mod}(\mathcal{C}) | \mathsf{F}(\mathsf{R}) = 0 \}.$ For \forall **F** \in $\text{mod}(C)$, $\exists 0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ such that $0 \rightarrow \text{Hom}_{R}(\cdot, L) \rightarrow \text{Hom}_{R}(\cdot, M) \rightarrow \text{Hom}_{R}(\cdot, N) \rightarrow F \rightarrow 0$

is exact in $mod(\mathcal{C})$.

Auslander '86. $\text{mod}(\mathcal{C})$ and $\text{mod}(\mathcal{C})$ are abelian categories.

We denote by *C* the stable category of *C*. The objects of *C* are the same as those of *C*, and the morphisms $\text{Hom}_{\mathbf{P}}(\mathsf{M}, \mathsf{N}) := \text{Hom}_{\mathsf{R}}(\mathsf{M}, \mathsf{N}) / \{ \mathsf{M} \to \mathsf{P} \to \mathsf{N} \text{ with } \mathsf{P} \text{ free } \}.$

 \bullet The category $mod(\mathcal{C})$ is equivalent to $mod(\mathcal{C})$.

 $\text{mod}(\mathcal{C}) \rightarrow \text{mod}(\mathcal{C}); \quad \mathsf{F} \mapsto \mathsf{F} \circ \iota,$

where $\iota : \mathcal{C} \to \mathcal{C}$.

For *∀***F** *∈* **mod(***C***)** with $\text{Hom}_{R}(\cdot, M) \rightarrow \text{Hom}_{R}(\cdot, L) \rightarrow F \rightarrow 0$, we have an exact $\text{sequence Hom}_{\mathbf{P}}(\cdot, \mathbf{M}) \rightarrow \text{Hom}_{\mathbf{P}}(\cdot, \mathbf{L}) \rightarrow \mathbf{F} \rightarrow 0.$

In the rest of this slide, we denote $mod(C)$ instead of $mod(C)$.

We denote by **Sp(***C***)** the set of isomorphism classes of the indecomposable MCM **R**-modules except **R** and **0**.

Sp(*C***) := {the indecomp. MCM R**-modules except **R** and 0 *}* / \cong

Definition 1 (Krause '97)

The assignments

 $\Sigma : \mathfrak{P}(\mathsf{Sp}(\mathcal{C})) \to \mathrm{mod}(\mathcal{C}), \quad \gamma : \mathrm{mod}(\mathcal{C}) \to \mathfrak{P}(\mathsf{Sp}(\mathcal{C}))$

are defined by

 $\Sigma(\mathcal{X}) := \{ \mathbf{F} \in \text{mod}(\mathcal{C}) \mid \mathbf{F}(\mathbf{X}) = \mathbf{0} \text{ for } \forall \mathbf{X} \in \mathcal{X} \}$ $\gamma(\mathcal{F}) := \{ \mathsf{M} \in \mathsf{Sp}(\mathcal{C}) \mid \mathsf{F}(\mathsf{M}) = 0 \text{ for } \forall \mathsf{F} \in \mathcal{F} \}.$

In this talk, we consider only **finitely generated** (pure-injective) modules. Therefore *C* is not closed under arbitrary coproducts. In other words, C (C) is not compactly generated. The studies in [1, 2, 3, 4, 5] have considered categories that are compactly generated. In fact, they consider **infinitely generated** modules.

Lemma 2

For the assignments **Σ** *and γ, the following statements hold.*

- Ω $\mathcal{X} \subset \mathcal{Y} \Rightarrow \Sigma(\mathcal{X}) \supset \Sigma(\mathcal{Y})$. $Q \mathcal{F} \subseteq \mathcal{G} \Rightarrow \gamma(\mathcal{F}) \supseteq \gamma(\mathcal{G})$. Ω $\mathcal{X} \subseteq \gamma \circ \Sigma(\mathcal{X})$ *.* $\mathbf{0} \mathcal{F} \subseteq \Sigma \circ \gamma(\mathcal{F})$ *. Moreover* $\gamma(\mathcal{F}) = \gamma \circ \Sigma \circ \gamma(\mathcal{F})$ *.*
- ⁵ *∀X ,* **Σ(***X* **)** *is a Serre subcategory in* **mod(***C***)***.*

Proof.

 (5) **evx** : **mod** $(\underline{C}) \rightarrow AB$; **F** \mapsto **F(X)** is exact.

 \Box

Theorem A

Suppose that **R** is **Gorenstein**. The assignment $\mathcal{X} \mapsto \gamma \circ \Sigma(\mathcal{X})$ is a Kuratowski closure operator. That is,

$$
\bullet \quad \gamma \circ \Sigma(\emptyset) = \emptyset,
$$

$$
\bullet \quad \mathcal{X} \subseteq \gamma \circ \Sigma(\mathcal{X}),
$$

iii *γ ◦* **Σ(***X ∪ Y***) =** *γ ◦* **Σ(***X* **)** *∪ γ ◦* **Σ(***Y***)**,

$$
\textcolor{blue}{\bullet} \hspace{0.2cm} \gamma \circ \Sigma(\gamma \circ \Sigma(\mathcal{X})) = \gamma \circ \Sigma(\mathcal{X})
$$

 $\text{hold for } ∀\mathcal{X}, \mathcal{Y} \in \mathfrak{P}(\mathsf{Sp}(\mathcal{C}))$.

The assertions (i), (ii), and (iv) follow from the definition and the lemma above. We give (the sketch of) the proof (iii):

 $\text{Let } R \text{ be a Gorenstein local ring. Then } \text{Hom}_R(-, M) \in \text{mod}(\mathcal{C})$ for $\forall M \in \mathcal{C}$.

 $\Sigma(\mathcal{X}) := \{ \mathbf{F} \in \text{mod}(\underline{\mathcal{C}}) \mid \mathbf{F}(\mathbf{X}) = 0 \text{ for } \forall \mathbf{X} \in \mathcal{X} \}$ $\gamma(\mathcal{F}) := \{ \mathsf{M} \in \mathsf{Sp}(\mathcal{C}) \mid \mathsf{F}(\mathsf{M}) = 0 \text{ for } \forall \mathsf{F} \in \mathcal{F} \}.$

(Proof of (iii) $\gamma \circ \Sigma(\mathcal{X} \cup \mathcal{Y}) = \gamma \circ \Sigma(\mathcal{X}) \cup \gamma \circ \Sigma(\mathcal{Y})$) The inclusion *⊇* follows from **Σ(***X ∪ Y***) = Σ(***X* **)** *∩* **Σ(***Y***)**.

To show *⊆*,

- **•** take $M \in \gamma \circ Σ(X \cup Y)$. Note that M is **indecomposable**.
- Assume that **M** *6∈ γ ◦* **Σ(***X* **)** *∪ γ ◦* **Σ(***Y***)**. Then \exists **F** \in $\Sigma(\mathcal{X})$, $\mathbf{G} \in \Sigma(\mathcal{Y})$ such that $\mathbf{F}(\mathbf{M}) \neq 0$, $\mathbf{G}(\mathbf{M}) \neq 0$.

We construct the functor $H \in \Sigma(\mathcal{X} \cup \mathcal{Y})$ such that $H(M) \neq 0$ using **F** and **G**.

 $\Sigma(\mathcal{X}) := \{ \mathsf{F} \in \text{mod}(\underline{\mathcal{C}}) \mid \mathsf{F}(\mathsf{X}) = 0 \text{ for } \forall \mathsf{X} \in \mathcal{X} \}$

Construct H $\in \Sigma(\mathcal{X} \cup \mathcal{Y})$ s.t. H(M) $\neq 0$

By Yoneda's Lemma,

 \exists **f** : $\text{Hom}_{R}(-, M) \rightarrow$ **F**, \exists **g** : $\text{Hom}_{R}(-, M) \rightarrow$ **G**.

Taking pushout diagram in **mod(***C***)**:

- \bullet Since Im $f \in \Sigma(\mathcal{X})$, Im $g \in \Sigma(\mathcal{Y})$, H $\in \Sigma(\mathcal{X} \cup \mathcal{Y})$.
- The exact sequence

 $\underline{\text{Hom}}_{R}(-, M) \rightarrow \text{Im } f \oplus \text{Im } g \rightarrow H \rightarrow 0$ shows $H(M) \neq 0$.

Corollary 3

Let **R** *be* Gorenstein. The assignment $X \mapsto \gamma \circ \Sigma(X)$ defines a *topology on* **Sp(***C***)***: a subset X of* **Sp(***C***)** *is closed if and only if* $γ ∘ Σ(X) = X$.

Remark 5

For a locally coherent category \mathscr{G} , A bijective correspondence between **closed subsets** in **Sp(***G* **)** and **Serre subcategories** in $mod(\mathscr{G})$ is given in [1, 2]:

 $\mathcal{X} \mapsto \Sigma(\mathcal{X}), \quad \mathcal{F} \mapsto \gamma(\mathcal{F}).$

In our setting, for a Serre subcategory *F ∈* **mod(***C***)**, $\mathcal{F} \neq \Sigma \circ \gamma(\mathcal{F})$ in general.

Example 4

Let $R = k[[x, y]]/(x^2)$. The indecomposable MCM R -modules are

R, **I** = $(x)R$ and **I**_n = $(x, y^n)R$ for $n > 0$.

 $\text{Since } \gamma(\text{Hom}_{\mathbf{R}}(-, \mathbf{I}_{\mathbf{n}})) = \emptyset$,

 $\Sigma \circ \gamma(\text{Hom}_{R}(-, I_{n})) = \Sigma(\emptyset) = \text{mod}(\mathcal{C}).$

 $\text{However } \mathcal{S}(\text{Hom}_{R}(-, I_{n})) \neq \text{mod}(\mathcal{C}).$

- \bullet Since **KGdim** $\text{Hom}_{R}(-, I_{n}) = 1$, $KGdim \mathcal{S}(\text{Hom}_{R}(-, I_{n})) = 1.$
- Note that **KGdim HomR(***−,* **I) = 2**.
- \bullet Hence $\text{Hom}_{R}(-, I) \notin \mathcal{S}(\text{Hom}_{R}(-, I_{n}))$, so that $\mathcal{S}(\text{Hom}_{R}(-, I_{n})) \neq \text{mod}(\mathcal{C}).$

By using the lemma below, one can show that

$$
\gamma\circ\Sigma(\mathsf{X})=\{\mathsf{X}\}
$$

for $\forall X \in Sp(\mathcal{C})$. Hence $Sp(\mathcal{C})$ is T_1 -space.

Lemma 5

Let $X, Y \in Sp(\mathcal{C})$ *with* $X \not\cong Y$ *. Suppose that* $\text{Hom}_{R}(X, Y) \neq 0$ *. Then* $Y \not\in \gamma \circ \Sigma(X)$ *.*

Proposition 7

Let M ∈ $Sp(C)$ *.* M *is an isolated point, that is* ${M}$ *is open, iff there exists an Auslander-Reiten (AR) sequence ending in* **M***.*

Proof.

- **(***⇐***)** Take the functor **S^M** obtain from the AR-sequence. Then $\gamma(S_M) = Sp(\mathcal{C}) \setminus \{M\}$, which is closed.
- **(***⇒***)** It follows from the fact that **X** which appears in $\text{Hom}_{R}(-, X) \rightarrow F \rightarrow 0$ is finitely generated.

Corollary 6

Let **R** *be an isolated singularity. Then the topology of* **Sp(***C***)** *is discrete.*

Definition 7 (Cantor-Bendixson rank)

- *T* is a topological space.
	- \bullet If **x** ∈ \mathcal{T} is an isolated point, then $CB(x) = 0$.
	- Put *T ′ ⊂ T* is a set of the **non**-isolated point. Define the induced topology on *T ′* . Set

$$
\mathcal{T}^{(0)} = \mathcal{T}, \mathcal{T}^{(1)} = \mathcal{T}^{(0)'}, \cdots, \mathcal{T}^{(n+1)} = \mathcal{T}^{(n)'}.
$$

We define $CB(x) = n$ if $x \in T^{(n)} \setminus T^{(n+1)}$

- If ∃**n** such that $\mathcal{T}^{(n+1)} = \emptyset$ and $\mathcal{T}^{(n)} \neq \emptyset$, then $CB(\mathcal{T}) = n$.
- If $\mathcal{T}^{\infty} := \bigcap \mathcal{T}^{(n)} \neq \emptyset$, then $\text{CB}(\mathcal{T}) = \infty$.

Example 8

Let **R** be a DVR (e,g. $R = k[[x]]$). Then $CB(SpecR) = 1$ concerning the Zariski topology. Note that $Spec R = \{ (0), m \}$. **(0)** is an isolated point since $D(f) = \{(0)\}$ for some $f \in \mathbb{R} \setminus \{0\}$. $\textsf{Thus } \textsf{SpecR}' = \{ \mathfrak{m} \} = \textsf{SpecR}^{(1)},$ and \mathfrak{m} is isolated in the induced topology.

Corollary 9

Let **R** *be an isolated singularity. Then* $CB(Sp(C)) = 0$ *.*

Proof. Sp(*C***)** is a discrete topology, **Definition 10 (CM+-finite [Kobayashi, et al. 2020])**

We say that a Cohen–Macaulay local ring \bf{R} is \rm{CM}_{+} -finite if there exist only finitely many isomorphism classes of indecomposable MCM modules that are **not** locally free on the punctured spectrum.

Example 11

The following rings are CM_{+} -finite.

- A ring which is an isolated singularity. (Thus a ring which is of finite **CM**-representation type.)
- ² A hypersurface ring which is of countable **CM**-representation type.

Here we say that **R** is of finite (countable) **CM**-representation type if there exists only finitely (countably) many isomorphism classes of indecomposable MCM modules.

Theorem B

If R is CM_+ -finite then $CB(Sp(\mathcal{C})) < 1$.

(Proof)

We denote by C_0 the subset of $Sp(C)$ consisting of modules that are locally free on the punctured spectrum and put $C_+ := Sp(C) \backslash C_0$.

- For *∀***M** *∈ C***0**, **M** is an isolated point since **M** admits an AR-sequence. Thus $CB(\mathcal{C}_0) = 0$.
- On the other hand, for *∀***M** *∈ C***+**, **M** is not isolated.

CB-rank of CM+-finite representation type ii

Since **R** is **CM+**-finite, *C***⁺** is a finite set. Hence, for *∀***M** *∈ C***+**,

$$
V_M := \bigcup_{\begin{array}{c}\text{finite} \\ X \neq M \\ X \in C_+\end{array}}^{finite} \gamma \circ \Sigma(X)
$$

is closed in **Sp(***C***)**.

• Thus

```
[\mathcal{C}_+] \bigcap [\mathsf{Sp}(\mathcal{C}) \setminus \mathsf{V}_M] = \{ \mathsf{M} \}
```
П

is open in $C_+ \cap Sp(\mathcal{C})$.

• Therefore $CB(Sp(\mathcal{C})) \leq 1$.

Thank you for your attention.