The spectrum of the category of maximal Cohen–Macaulay modules

Naoya Hiramatsu

National Institute of Technology, Kure College

The 55th Symposium on Ring Theory and Representation Theory

References i

- HERZOG, I: The Ziegler spectrum of a locally coherent Grothendieck category. Proc. London Math. Soc. (3) 74 (1997), no. 3, 503–558.
- [2] KRAUSE, H: The spectrum of a locally coherent category. J. Pure Appl. Algebra 114 (1997), no. 3, 259–271.
- PUNINSKI, G.: The Ziegler Spectrum and Ringel's Quilt of the A-infinity Plane Curve Singularity, Algebr Represent Theor 21, 419–446 (2018).
- [4] LOS, I and PUNINSKI, G.: The Ziegler spectrum of the D-infinity plane singularity. Colloq. Math. 157 (2019), no. 1, 35–63.
- [5] NAKAMURA, T.: Indecomposable pure-injective objects in stable categories of Gorenstein-projective modules over Gorenstein orders. arXiv:2209.15630.

- [6] HIRAMATSU, N.: Krull–Gabriel dimension of Cohen–Macaulay modules over hypersurfaces of countable Cohen–Macaulay representation type. arXiv:2112.13504.
- [7] KOBAYASHI, T., LYLE, J. and TAKAHASHI, R.: Maximal Cohen–Macaulay modules that are not locally free on the punctured spectrum, J. Pure Appl. Algebra 224, (2020).
- [8] YOSHINO, Y.: Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Mathematical Society, Lecture Note Series, 146, Cambridge University Press, Cambridge, 1990.
- YOSHINO, Y.: A functorial approach to modules of G-dimension zero, Illinois J. Math. 49 (2) 345–367, Summer 2005.

Setting i

In this talk, **R** is a commutative complete Cohen-Macauly local ring with algebraic residue field \mathbf{k} .

- All modules are "finitely generated" R-modules.
- C is the category of maximal Cohen-Macaulay (MCM) modules.

$$\mathcal{C} = \{ \mathsf{M} \mid \operatorname{Ext}^i_\mathsf{R}(\mathsf{k},\mathsf{M}) = 0 \text{ for } \mathsf{i} < \mathsf{dim}\,\mathsf{R} \}$$

Remark 1

 \bullet Since R is complete, ${\cal C}$ is a Krull-Schmidt category.

We consider the categories:

• $\operatorname{mod}(\mathcal{C}) := \{F : \mathcal{C} \to Ab| \begin{array}{l} \mbox{finitely presented} \\ \mbox{contravariant additive functors} \end{array} \}.$ • $\underline{\operatorname{mod}}(\mathcal{C}) := \{F \in \operatorname{mod}(\mathcal{C}) | F(R) = 0 \}.$ For $\forall F \in \operatorname{mod}(\underline{\mathcal{C}}), \exists 0 \to L \to M \to N \to 0$ such that $0 \to \operatorname{Hom}_{R}(\ , L) \to \operatorname{Hom}_{R}(\ , M) \to \operatorname{Hom}_{R}(\ , N) \to F \to 0$

is exact in $mod(\mathcal{C})$.

Auslander '86. mod(C) and mod(C) are abelian categories.

We denote by \underline{C} the stable category of C. The objects of \underline{C} are the same as those of C, and the morphisms

 $\underline{\operatorname{Hom}}_R(\mathsf{M},\mathsf{N}):=\operatorname{Hom}_R(\mathsf{M},\mathsf{N})/\{\mathsf{M}\to\mathsf{P}\to\mathsf{N}\text{ with }\mathsf{P}\text{ free}\}.$

• The category $\underline{\mathrm{mod}}(\mathcal{C})$ is equivalent to $\mathrm{mod}(\underline{\mathcal{C}})$.

 $\operatorname{mod}(\underline{\mathcal{C}}) \to \operatorname{\underline{mod}}(\mathcal{C}); \quad \mathsf{F} \mapsto \mathsf{F} \circ \iota,$

where $\iota : \mathcal{C} \to \underline{\mathcal{C}}$.

• For $\forall F \in \underline{mod}(\mathcal{C})$ with $\operatorname{Hom}_{R}(\ ,M) \to \operatorname{Hom}_{R}(\ ,L) \to F \to 0$, we have an exact sequence $\underline{\operatorname{Hom}}_{R}(\ ,M) \to \underline{\operatorname{Hom}}_{R}(\ ,L) \to F \to 0$.

In the rest of this slide, we denote $\operatorname{mod}(\underline{\mathcal{C}})$ instead of $\operatorname{\underline{mod}}(\mathcal{C})$.

We denote by Sp(C) the set of isomorphism classes of the indecomposable MCM R-modules except R and 0.

 $Sp(C) := \{$ the indecomp. MCM R-modules except R and $0\}/\cong$

Definition 1 (Krause '97)

The assignments

 $\Sigma: \mathfrak{P}(\mathsf{Sp}(\mathcal{C})) o \operatorname{mod}(\underline{\mathcal{C}}), \quad \gamma: \operatorname{mod}(\underline{\mathcal{C}}) o \mathfrak{P}(\mathsf{Sp}(\mathcal{C}))$

are defined by

$$\begin{split} \boldsymbol{\Sigma}(\mathcal{X}) &:= \{\mathsf{F} \in \operatorname{mod}(\underline{\mathcal{C}}) \mid \mathsf{F}(\mathsf{X}) = \mathbf{0} \text{ for } \forall \mathsf{X} \in \mathcal{X} \} \\ \gamma(\mathcal{F}) &:= \{\mathsf{M} \in \mathsf{Sp}(\mathcal{C}) \mid \mathsf{F}(\mathsf{M}) = \mathbf{0} \text{ for } \forall \mathsf{F} \in \mathcal{F} \}. \end{split}$$

In this talk, we consider only **finitely generated** (pure-injective) modules. Therefore C is not closed under arbitrary coproducts. In other words, C (\underline{C}) is not compactly generated. The studies in [1, 2, 3, 4, 5] have considered categories that are compactly generated. In fact, they consider **infinitely generated** modules.

Lemma 2

For the assignments Σ and γ , the following statements hold.

•
$$\mathcal{F} \subseteq \mathbf{\Sigma} \circ \gamma(\mathcal{F})$$
. Moreover $\gamma(\mathcal{F}) = \gamma \circ \mathbf{\Sigma} \circ \gamma(\mathcal{F})$.

• $\forall \mathcal{X}, \Sigma(\mathcal{X}) \text{ is a Serre subcategory in } \operatorname{mod}(\underline{\mathcal{C}}).$

Proof.

(5) $ev_X : mod(\underline{\mathcal{C}}) \to AB; F \mapsto F(X)$ is exact.

Theorem A

Suppose that **R** is <u>Gorenstein</u>. The assignment $\mathcal{X} \mapsto \gamma \circ \Sigma(\mathcal{X})$ is a Kuratowski closure operator. That is,

$$\mathbf{0} \quad \mathcal{X} \subseteq \gamma \circ \mathbf{\Sigma}(\mathcal{X}),$$

hold for $\forall \mathcal{X}, \mathcal{Y} \in \mathfrak{P}(\mathsf{Sp}(\mathcal{C})).$

The assertions (i), (ii), and (iv) follow from the definition and the lemma above. We give (the sketch of) the proof (iii):

Let R be a Gorenstein local ring. Then $\underline{\operatorname{Hom}}_{\mathsf{R}}(-,\mathsf{M}) \in \operatorname{mod}(\underline{\mathcal{C}})$ for $\forall \mathsf{M} \in \mathcal{C}$.

$$\begin{split} \boldsymbol{\Sigma}(\mathcal{X}) &:= \{\mathsf{F} \in \operatorname{mod}(\underline{\mathcal{C}}) \mid \mathsf{F}(\mathsf{X}) = \mathbf{0} \text{ for } \forall \mathsf{X} \in \mathcal{X}\} \\ \gamma(\mathcal{F}) &:= \{\mathsf{M} \in \mathsf{Sp}(\mathcal{C}) \mid \mathsf{F}(\mathsf{M}) = \mathbf{0} \text{ for } \forall \mathsf{F} \in \mathcal{F}\}. \end{split}$$

(Proof of (iii) $\gamma \circ \Sigma(\mathcal{X} \cup \mathcal{Y}) = \gamma \circ \Sigma(\mathcal{X}) \cup \gamma \circ \Sigma(\mathcal{Y})$) The inclusion \supseteq follows from $\Sigma(\mathcal{X} \cup \mathcal{Y}) = \Sigma(\mathcal{X}) \cap \Sigma(\mathcal{Y})$. To show \subset ,

- take $M \in \gamma \circ \Sigma(\mathcal{X} \cup \mathcal{Y})$. Note that M is indecomposable.
- Assume that $M \not\in \gamma \circ \Sigma(\mathcal{X}) \cup \gamma \circ \Sigma(\mathcal{Y})$. Then $\exists F \in \Sigma(\mathcal{X}), G \in \Sigma(\mathcal{Y})$ such that $F(M) \neq 0$, $G(M) \neq 0$.

We construct the functor $H \in \Sigma(\mathcal{X} \cup \mathcal{Y})$ such that $H(M) \neq 0$ using F and G.

 $\Sigma(\mathcal{X}) := \{\mathsf{F} \in \operatorname{mod}(\underline{\mathcal{C}}) \mid \mathsf{F}(\mathsf{X}) = 0 \text{ for } \forall \mathsf{X} \in \mathcal{X}\}$

Construct $H \in \Sigma(\mathcal{X} \cup \mathcal{Y})$ s.t. $H(M) \neq 0$

• By Yoneda's Lemma,

 $\exists f: \underline{\operatorname{Hom}}_R(-,\mathsf{M}) \to \mathsf{F}, \quad \exists g: \underline{\operatorname{Hom}}_R(-,\mathsf{M}) \to \mathsf{G}.$

• Taking pushout diagram in mod(<u>C</u>):

- Since $\mathrm{Im} f \in \Sigma(\mathcal{X})$, $\mathrm{Im} g \in \Sigma(\mathcal{Y})$, $\mathsf{H} \in \Sigma(\mathcal{X} \cup \mathcal{Y})$.
- The exact sequence

 $\operatorname{\underline{Hom}}_{\mathsf{R}}(-,\mathsf{M}) \to \operatorname{Im} \mathsf{f} \oplus \operatorname{Im} \mathsf{g} \to \mathsf{H} \to \mathsf{0}$ shows $\mathsf{H}(\mathsf{M}) \neq \mathsf{0}$.

Corollary 3

Let **R** be Gorenstein. The assignment $\mathcal{X} \mapsto \gamma \circ \Sigma(\mathcal{X})$ defines a topology on $Sp(\mathcal{C})$: a subset \mathcal{X} of $Sp(\mathcal{C})$ is closed if and only if $\gamma \circ \Sigma(\mathcal{X}) = \mathcal{X}$.

Remark 5

For a locally coherent category \mathscr{G} , A bijective correspondence between **closed subsets** in **Sp**(\mathscr{G}) and **Serre subcategories** in **mod**(\mathscr{G}) is given in [1, 2]:

$$\mathcal{X}\mapsto \mathbf{\Sigma}(\mathcal{X}), \qquad \mathcal{F}\mapsto \gamma(\mathcal{F}).$$

In our setting, for a Serre subcategory $\mathcal{F} \in \operatorname{mod}(\underline{\mathcal{C}})$, $\mathcal{F} \neq \Sigma \circ \gamma(\mathcal{F})$ in general.

Example 4

Let $\mathbf{R} = \mathbf{k}[[\mathbf{x}, \mathbf{y}]]/(\mathbf{x}^2)$. The indecomposable MCM **R**-modules are

R, I = (x)R and $I_n = (x, y^n)R$ for n > 0.

Since $\gamma(\underline{\operatorname{Hom}}_{\mathsf{R}}(-,\mathsf{I}_{\mathsf{n}})) = \emptyset$,

 $\boldsymbol{\Sigma} \circ \gamma(\underline{\operatorname{Hom}}_{\mathsf{R}}(-,\mathsf{I}_{\mathsf{n}})) = \boldsymbol{\Sigma}(\emptyset) = \operatorname{mod}(\underline{\mathcal{C}}).$

However $\mathcal{S}(\underline{\operatorname{Hom}}_{\mathsf{R}}(-,\mathsf{I}_{\mathsf{n}})) \neq \operatorname{mod}(\underline{\mathcal{C}}).$

- Since KGdim $\underline{\text{Hom}}_{R}(-, I_n) = 1$, KGdim $\mathcal{S}(\underline{\text{Hom}}_{R}(-, I_n)) = 1$.
- Note that KGdim $\underline{\operatorname{Hom}}_{R}(-, I) = 2$.
- Hence $\underline{\operatorname{Hom}}_{R}(-, I) \not\in \mathcal{S}(\underline{\operatorname{Hom}}_{R}(-, I_{n}))$, so that $\mathcal{S}(\underline{\operatorname{Hom}}_{R}(-, I_{n})) \neq \operatorname{mod}(\underline{\mathcal{C}})$.

By using the lemma below, one can show that

$$\gamma \circ \mathbf{\Sigma}(\mathbf{X}) = \{\mathbf{X}\}$$

for $\forall X \in Sp(\mathcal{C})$. Hence $Sp(\mathcal{C})$ is T_1 -space.

Lemma 5

Let $X, Y \in Sp(\mathcal{C})$ with $X \ncong Y$. Suppose that $\underline{Hom}_{R}(X, Y) \neq 0$. Then $Y \notin \gamma \circ \Sigma(X)$.

Proposition 7

Let $\mathbf{M} \in \mathbf{Sp}(\mathcal{C})$. \mathbf{M} is an isolated point, that is $\{\mathbf{M}\}$ is open, iff there exists an Auslander-Reiten (AR) sequence ending in \mathbf{M} .

Proof.

- (\Leftarrow) Take the functor S_M obtain from the AR-sequence. Then $\gamma(S_M) = Sp(\mathcal{C}) \setminus \{M\}$, which is closed.
- (⇒) It follows from the fact that X which appears in $\operatorname{Hom}_{\mathsf{R}}(-, \mathsf{X}) \to \mathsf{F} \to 0$ is finitely generated.

Corollary 6

Let **R** be an isolated singularity. Then the topology of Sp(C) is discrete.

Definition 7 (Cantor-Bendixson rank)

- ${\mathcal T}$ is a topological space.
 - If $x \in \mathcal{T}$ is an isolated point, then CB(x) = 0.
 - Put *T*' ⊂ *T* is a set of the <u>non</u>-isolated point. Define the induced topology on *T*'. Set

$$\mathcal{T}^{(0)} = \mathcal{T}, \mathcal{T}^{(1)} = \mathcal{T}^{(0)'}, \cdots, \mathcal{T}^{(n+1)} = \mathcal{T}^{(n)'}.$$

We define $\operatorname{CB}(x)=n$ if $x\in \mathcal{T}^{(n)}\backslash \mathcal{T}^{(n+1)}$

- If $\exists n$ such that $\mathcal{T}^{(n+1)} = \emptyset$ and $\mathcal{T}^{(n)} \neq \emptyset$, then $CB(\mathcal{T}) = n$.
- If $\mathcal{T}^{\infty} := \bigcap \mathcal{T}^{(n)} \neq \emptyset$, then $CB(\mathcal{T}) = \infty$.

Example 8

Let R be a DVR (e,g. R = k[[x]]). Then CB(SpecR) = 1concerning the Zariski topology. Note that $SpecR = \{(0), \mathfrak{m}\}$. (0) is an isolated point since $D(f) = \{(0)\}$ for some $f \in R \setminus \{0\}$. Thus $SpecR' = \{\mathfrak{m}\} = SpecR^{(1)}$, and \mathfrak{m} is isolated in the induced topology.

Corollary 9

Let **R** be an isolated singularity. Then $CB(Sp(\mathcal{C})) = 0$.

Proof. Sp(C) is a discrete topology,

Definition 10 (CM_+ -finite [Kobayashi, et al. 2020])

We say that a Cohen–Macaulay local ring \mathbf{R} is \mathbf{CM}_+ -finite if there exist only finitely many isomorphism classes of indecomposable MCM modules that are <u>not</u> locally free on the punctured spectrum.

Example 11

The following rings are \mathbf{CM}_+ -finite.

- A ring which is an isolated singularity. (Thus a ring which is of finite CM-representation type.)
- A hypersurface ring which is of countable CM-representation type.

Here we say that \mathbf{R} is of finite (countable) CM-representation type if there exists only finitely (countably) many isomorphism classes of indecomposable MCM modules.

Theorem B

If **R** is CM_+ -finite then $CB(Sp(\mathcal{C})) \leq 1$.

(Proof)

We denote by C_0 the subset of Sp(C) consisting of modules that are locally free on the punctured spectrum and put $C_+ := Sp(C) \setminus C_0$.

- For ∀M ∈ C₀, M is an isolated point since M admits an AR-sequence. Thus CB(C₀) = 0.
- On the other hand, for $\forall M \in \mathcal{C}_+$, M is not isolated.

CB-rank of $\mathrm{CM}_{+}\text{-finite}$ representation type $% \mathcal{M}_{+}$ ii

• Since R is CM₊-finite, C_+ is a finite set. Hence, for $\forall M \in C_+$,

$$\begin{array}{rl} \mathsf{V}_{\mathsf{M}} := & \bigcup_{\substack{\mathsf{M} \ \neq \mathsf{M} \\ \mathsf{X} \neq \mathsf{M} \\ \mathsf{X} \in \mathcal{C}_{+} \end{array}}^{\mathsf{finite}} \gamma \circ \mathsf{\Sigma}(\mathsf{X}) \end{array}$$

is closed in Sp(C).

• Thus

```
[\mathcal{C}_+] \bigcap [\mathsf{Sp}(\mathcal{C}) \backslash \mathsf{V}_\mathsf{M}] = \{\mathsf{M}\}
```

is open in $\mathcal{C}_+ \cap \mathbf{Sp}(\mathcal{C})$.

• Therefore $CB(Sp(\mathcal{C})) \leq 1$.

Thank you for your attention.