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Setting i

In this talk, R is a commutative complete Cohen-Macauly local

ring with algebraic residue field k.

All modules are ”finitely generated” R-modules.

C is the category of maximal Cohen-Macaulay (MCM)

modules.

C = {M | ExtiR(k,M) = 0 for i < dimR}

Remark 1

Since R is complete, C is a Krull-Schmidt category.



Setting ii

We consider the categories:

mod(C) := {F : C → Ab| finitely presented

contravariant additive functors
}.

mod(C) := {F ∈ mod(C)|F(R) = 0}.

For ∀F ∈ mod(C), ∃0 → L → M → N → 0 such that

0 → HomR( , L) → HomR( ,M) → HomR( ,N) → F → 0

is exact in mod(C).

Auslander ’86.

mod(C) and mod(C) are abelian categories.



Remark 2

We denote by C the stable category of C. The objects of C are the

same as those of C, and the morphisms

HomR(M,N) := HomR(M,N)/{M → P → N with P free}.
The category mod(C) is equivalent to mod(C).

mod(C) → mod(C); F 7→ F ◦ ι,

where ι : C → C.
For ∀F ∈ mod(C) with

HomR( ,M) → HomR( , L) → F → 0, we have an exact

sequence HomR( ,M) → HomR( , L) → F → 0.

In the rest of this slide, we denote mod(C) instead of mod(C).



We denote by Sp(C) the set of isomorphism classes of the

indecomposable MCM R-modules except R and 0.

Sp(C) := {the indecomp. MCM R-modules except R and 0}/ ∼=

Definition 1 (Krause ’97)

The assignments

Σ : P(Sp(C)) → mod(C), γ : mod(C) → P(Sp(C))

are defined by

Σ(X ) := {F ∈ mod(C) | F(X) = 0 for ∀X ∈ X}
γ(F) := {M ∈ Sp(C) | F(M) = 0 for ∀F ∈ F}.



Remark 3

In this talk, we consider only finitely generated (pure-injective)

modules. Therefore C is not closed under arbitrary coproducts. In

other words, C (C) is not compactly generated. The studies in

[1, 2, 3, 4, 5] have considered categories that are compactly

generated. In fact, they consider infinitely generated modules.

Lemma 2

For the assignments Σ and γ, the following statements hold.

1 X ⊆ Y ⇒ Σ(X ) ⊇ Σ(Y).

2 F ⊆ G ⇒ γ(F) ⊇ γ(G).
3 X ⊆ γ ◦ Σ(X ).

4 F ⊆ Σ ◦ γ(F). Moreover γ(F) = γ ◦ Σ ◦ γ(F).

5 ∀X , Σ(X ) is a Serre subcategory in mod(C).

Proof.

(5) evX : mod(C) → AB; F 7→ F(X) is exact.



Main Theorem

Theorem A

Suppose that R is Gorenstein. The assignment X 7→ γ ◦ Σ(X )

is a Kuratowski closure operator. That is,

i γ ◦ Σ(∅) = ∅,
ii X ⊆ γ ◦ Σ(X ),

iii γ ◦ Σ(X ∪ Y) = γ ◦ Σ(X ) ∪ γ ◦ Σ(Y),

iv γ ◦ Σ(γ ◦ Σ(X )) = γ ◦ Σ(X )

hold for ∀X ,Y ∈ P(Sp(C)).

The assertions (i), (ii), and (iv) follow from the definition and the

lemma above. We give (the sketch of) the proof (iii):



Remark 4

Let R be a Gorenstein local ring. Then HomR(−,M) ∈ mod(C)
for ∀M ∈ C.

Σ(X ) := {F ∈ mod(C) | F(X) = 0 for ∀X ∈ X}
γ(F) := {M ∈ Sp(C) | F(M) = 0 for ∀F ∈ F}.

(Proof of (iii) γ ◦ Σ(X ∪ Y) = γ ◦ Σ(X ) ∪ γ ◦ Σ(Y))

The inclusion ⊇ follows from Σ(X ∪ Y) = Σ(X ) ∩ Σ(Y).

To show ⊆,

take M ∈ γ ◦ Σ(X ∪ Y). Note that M is indecomposable.

Assume that M 6∈ γ ◦ Σ(X ) ∪ γ ◦ Σ(Y). Then

∃F ∈ Σ(X ),G ∈ Σ(Y) such that F(M) 6= 0, G(M) 6= 0.

We construct the functor H ∈ Σ(X ∪ Y) such that H(M) 6= 0

using F and G.



Σ(X ) := {F ∈ mod(C) | F(X) = 0 for ∀X ∈ X}

Construct H ∈ Σ(X ∪ Y) s.t. H(M) 6= 0

By Yoneda’s Lemma,

∃f : HomR(−,M) → F, ∃g : HomR(−,M) → G.

Taking pushout diagram in mod(C):

HomR(−,M)

��

// Im f

��

// 0

Im g //

��

H //

��

0

0 0.

Since Im f ∈ Σ(X ), Im g ∈ Σ(Y), H ∈ Σ(X ∪ Y).

The exact sequence

HomR(−,M) → Im f ⊕ Im g → H → 0 shows H(M) 6= 0.



Corollary 3

Let R be Gorenstein. The assignment X 7→ γ ◦ Σ(X ) defines a

topology on Sp(C): a subset X of Sp(C) is closed if and only if

γ ◦ Σ(X ) = X .

Remark 5

For a locally coherent category G , A bijective correspondence

between closed subsets in Sp(G ) and Serre subcategories in

mod(G ) is given in [1, 2]:

X 7→ Σ(X ), F 7→ γ(F).

In our setting, for a Serre subcategory F ∈ mod(C),
F 6= Σ ◦ γ(F) in general.



Example 4

Let R = k[[x, y]]/(x2). The indecomposable MCM R-modules are

R, I = (x)R and In = (x, yn)R for n > 0.

Since γ(HomR(−, In)) = ∅,

Σ ◦ γ(HomR(−, In)) = Σ(∅) = mod(C).

However S(HomR(−, In)) 6= mod(C).
Since KGdim HomR(−, In) = 1,

KGdim S(HomR(−, In)) = 1.

Note that KGdim HomR(−, I) = 2.

Hence HomR(−, I) 6∈ S(HomR(−, In)), so that

S(HomR(−, In)) 6= mod(C).



Remark 6

By using the lemma below, one can show that

γ ◦ Σ(X) = {X}

for ∀X ∈ Sp(C). Hence Sp(C) is T1-space.

Lemma 5

Let X,Y ∈ Sp(C) with X 6∼= Y. Suppose that HomR(X,Y) 6= 0.

Then Y 6∈ γ ◦ Σ(X).



Proposition 7

Let M ∈ Sp(C). M is an isolated point, that is {M} is open, iff

there exists an Auslander-Reiten (AR) sequence ending in M.

Proof.

(⇐) Take the functor SM obtain from the AR-sequence. Then

γ(SM) = Sp(C)\{M}, which is closed.

(⇒) It follows from the fact that X which appears in

HomR(−,X) → F → 0 is finitely generated.

Corollary 6

Let R be an isolated singularity. Then the topology of Sp(C) is

discrete.



Cantor-Bendixson rank

Definition 7 (Cantor-Bendixson rank)

T is a topological space.

If x ∈ T is an isolated point, then CB(x) = 0.

Put T ′ ⊂ T is a set of the non-isolated point. Define the

induced topology on T ′. Set

T (0) = T ,T (1) = T (0)′, · · · ,T (n+1) = T (n)′.

We define CB(x) = n if x ∈ T (n)\T (n+1)

If ∃n such that T (n+1) = ∅ and T (n) 6= ∅, then CB(T ) = n.

If T ∞ :=
∩

T (n) 6= ∅, then CB(T ) = ∞.



Example 8

Let R be a DVR (e,g. R = k[[x]]). Then CB(SpecR) = 1

concerning the Zariski topology. Note that SpecR = {(0),m}.
(0) is an isolated point since D(f) = {(0)} for some f ∈ R\{0}.
Thus SpecR′ = {m} = SpecR(1), and m is isolated in the

induced topology.

Corollary 9

Let R be an isolated singularity. Then CB(Sp(C)) = 0.

Proof.

Sp(C) is a discrete topology,



Definition 10 (CM+-finite [Kobayashi, et al. 2020])

We say that a Cohen–Macaulay local ring R is CM+-finite if there

exist only finitely many isomorphism classes of indecomposable

MCM modules that are not locally free on the punctured spectrum.

Example 11

The following rings are CM+-finite.

1 A ring which is an isolated singularity. (Thus a ring which is

of finite CM-representation type.)

2 A hypersurface ring which is of countable CM-representation

type.

Here we say that R is of finite (countable) CM-representation type

if there exists only finitely (countably) many isomorphism classes

of indecomposable MCM modules.



CB-rank of CM+-finite representation type i

Theorem B

If R is CM+-finite then CB(Sp(C)) ≤ 1.

(Proof)

We denote by C0 the subset of Sp(C) consisting of modules that

are locally free on the punctured spectrum and put

C+ := Sp(C)\C0.

For ∀M ∈ C0, M is an isolated point since M admits an

AR-sequence. Thus CB(C0) = 0.

On the other hand, for ∀M ∈ C+, M is not isolated.



CB-rank of CM+-finite representation type ii

Since R is CM+-finite, C+ is a finite set. Hence, for

∀M ∈ C+,

VM :=
finite∪

X 6= M

X ∈ C+

γ ◦ Σ(X)

is closed in Sp(C).

Thus

[C+]
∩

[Sp(C)\VM] = {M}

is open in C+ ∩ Sp(C).

Therefore CB(Sp(C)) ≤ 1.



Thank you for your attention.


