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Quantum polynomial algebras

k : an algebraically closed field with char k = 0,

A: a connected graded k-algebra fin. gen. in degree 1.

Definition 1.1 (Artin-Schelter, 1987)

A right noetherian graded algebra A is called a d-dimensional quantum
polynomial algebra (d-dim qpa) if

i gldimA = d < ∞,

ii ExtiA(k ,A)
∼=

{
k if i = d ,

0 if i ̸= d ,
(Gorenstein condition)

iii HA(t) :=
∑∞

i=0(dimk Ai )t
i = (1− t)−d (Hilbert series).

A right noetherian graded algebra A is called a d-dimensional
AS-regular algebra if the above conditions (i) and (ii) hold.

A: 3-dim qpa⇐⇒ A: 3-dim. quadratic AS-regular alg.
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Quantum projective spaces (quantum Pd−1)
A: a right noeth. graded algebra.

grmodA: the cat. of finitely generated graded right A-modules,

torsA: the full subcat. of grmodA consisting of fin. dim. modules
over k .

Definition 1.2 (Artin-Zhang, 1994)

1 The noncommutative projective scheme associated to A is defined by
ProjncA= (tailsA, πA) where

▶ tailsA := grmodA/torsA is the quot. cat.,
▶ π : grmodA → tailsA is the quot. func., A ∈ grmodA is regular.

2 A: d-dim qpa =⇒ProjncA is called a quantum Pd−1.
▶ d = 3 =⇒ ProjncA is called a quantum projective plane.

Remark 1.3

A: commutative =⇒ Projnc A
∼= (modX ,OX ), X = ProjA.

A: 2-dim qpa=⇒ Projnc A
∼= (cohP1,OP1).
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Characterization when 3-dim qpa is finite over its center
A geometric pair (E , σ): E ⊂ Pn−1 and σ ∈ AutkE .

Theorem 2.1 (ATV, 1991)

A = A(E , σ): 3-dim qpa. Then

|σ| < ∞ ⇐⇒ A is finite over its center.

To prove Theorem 2.1, “fat points of a quantum projective plane
Projnc A ” plays an essential role.
By [Artin, 1992], if A is finite over its center and E ̸= P2, then
Projnc A has a fat point, however, the converse is not true.

Definition 2.2

Let A be a graded algebra.
1 A point of ProjncA is an isom. class of a simple obj. of the form

πM ∈ tailsA where M ∈ grmodA such that lim
i→∞

dimk Mi < ∞.
2 A point πM is called fat if lim

i→∞
dimk Mi > 1 (in this case, M is called

a fat point module over A).
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Norm ∥σ∥
To check the existence of a fat point, the following was introduced.

Definition 2.3 (Mori, 2015)

For a geometric pair (E , σ) where E ⊂ Pn−1 and σ ∈ AutkE ,

Autk(Pn−1,E ) := {ϕ|E ∈ AutkE | ϕ ∈ AutkPn−1},

and ∥σ∥ := inf{i ∈ N+ | σi ∈ Autk(Pn−1,E )}, which is called the norm of
σ.

For a geometric pair (E , σ), ∥σ∥ ≤ |σ| holds.

Lemma 2.4 (Mori, 2015), (Artin, 1992)

Let A = A(E , σ) be a 3-dim qpa. Then the following hold:

1 ∥σ∥ = 1 ⇐⇒ E = P2.

2 1 < ∥σ∥ < ∞ ⇐⇒ ProjncA has a fat point.
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Properties of |σ| and ∥σ∥
For a d-dim qpa, the following hold in general:

Lemma 2.5 (Mori-Ueyama, 2013), (Mori, 2015)

Let A and A′ be d-dim qpa “satisfying the condition (G1), where
P(A) = (E , σ) and P(A′) = (E ′, σ′)”, respectively. Then the following
hold:

1 A ∼= A′ =⇒ E ∼= E ′, |σ| = |σ′|.
2 grmodA ∼= grmodA′ =⇒ E ∼= E ′, ∥σ∥ = ∥σ′∥.

▶ In particular, when d = 3,

ProjncA
∼= ProjncA

′ =⇒ E ∼= E ′, ∥σ∥ = ∥σ′∥.

([Abdelgadir-Okawa-Ueda, 2014]) Let A and A′ be 3-dim qpa. Then
grmodA ∼= grmodA′ ⇐⇒ ProjncA

∼= ProjncA
′.

Remark

Lemma 2.5 (2) tells us that, for a 3-dim qpa A = A(E , σ), the norm ∥σ∥
of σ is a categorical invariant in ProjncA.
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ProjncA is finite over its center

Definition 2.6 ((Mori, 2015), (I.-Mori, 2023))

Let A be a d-dim qpa. We say that ProjncA is finite over its center if
there exists a d-dim qpa A′ finite over its center such that

GrModA ∼= GrModA′ (ProjncA
∼= ProjncA

′).

Theorem 2.7 (Mori, 2015)

A = A(E , σ): a 3-dim qpa where E is a triangle in P2, σ ∈ AutkE.
(A is called a Type S algebra.) Then

∥σ∥ < ∞ ⇐⇒ ProjncA is finite over its center.
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Characterization when ProjncA is finite over its center.

Theorem 2.8 (I.-Mori, 2023)

If A = A(E , σ) is a 3-dim Calabi-Yau quantum polynomial algebra, then
||σ|| = |σ3|, so the following are equivalent:

1 |σ| < ∞.
2 ||σ|| < ∞.
3 A is finite over its center.
4 ProjncA is finite over its center.

Theorem 2.9 (I.-Mori, 2023)

Let A = A(E , σ) be a 3-dim qpa such that E ̸= P2, and ν ∈ AutA the
Nakayama auto. of A. Then the following are equivalent:

1 |ν∗σ3| < ∞.

2 ∥σ∥ < ∞.

3 ProjncA is finite over its center.

4 ProjncA has a fat piont.
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Example 1 (Type S, E = triangle in P2)

A = A(E , σ) = k⟨x , y , z⟩/(yz − αzy , zx − βxz , xy − γyx) : 3-dim qpa,
where α, β, γ ∈ k\{0}, E = V(x) ∪ V(y) ∪ V(z) ⊂ P2,

σ(0, b, c) = (0, b, αc),
σ(a, 0, c) = (βa, 0, c),
σ(a, b, 0) = (a, γb, 0),

ν∗ =

γ/β 0 0
0 α/γ 0
0 0 β/α

,
ν∗σ3(0, b, c) = (0, b, αβγc),
ν∗σ3(a, 0, c) = (αβγa, 0, c),
ν∗σ3(a, b, 0) = (a, αβγb, 0).

1 |σ| = lcm(|α|, |β|, |γ|) < ∞ Thm2.1 byATV⇐⇒ A is finite over
its center.

2 ∥σ∥ = |ν∗σ3| = |αβγ| < ∞ Thm2.9 by I.-Mori⇐⇒ ProjncA is finite
over its center

Thm2.9 by I.-Mori⇐⇒ ProjncA has a fat
piont.
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Beilinson algebras and Minamoto-Mori correspondence
In [Minamoto-Mori, 2011], for a d-dim qpa A, the Beilinson algebra∇A of
A is defined by

∇A :=


A0 A1 · · · Ad−1

0 A0 · · · Ad−2
...

. . .
...

...
0 0 · · · A0

 .

Theorem 2.10 (Minamoto-Mori, 2011)

If A is a d-dim qpa A and the Beilinson algebra ∇A. Then

∇A is extremely Fano of global dimension of d − 1, and

there exists an equivalence of tri. cat.

Db(tailsA) ∼= Db(mod∇A).

The Beilinson algebra is a typical example of (d − 1)-representation
infinite algebra in the sense of [Herschend-Iyama-Oppermann, 2014]
([Minamoto-Mori, 2011]).
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Remark

Remark

(1) If A is a 2-dimensional quantum polynomial algebra, then

∇A ∼=
(
k k2

0 k

)
∼= k( • //

// • ),

(∇A is isomorphic to a 2-Kronecker algebra) so ∇A is a finite dimensional
hereditary algebra of tame representation type. It is known that the
isomorphism classes of simple regular modules over ∇A are parameterized
by P1 (cf. [Mori, 2015]).

(2) For a 3-dim qpa A, ∇A is a finite-dimensional algebra.

∇A ∼= k
(
•

//
//
//
•

//
//
//
•
)/

(the same relations of A).
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Applications

We apply our results to Representation theory of finite dimensional
algebras.

Corollary 2.11 (I.-Mori, 2023)

Let A = A(E , σ) be a 3-dim qpa with the Nakayama auto. ν ∈ AutA.
Then the following are equivalent:

1 |ν∗σ3|(= ∥σ∥) = 1 or ∞.

2 ProjncA has no fat point.

3 The isomorphism classes of simple 2-regular modules over ∇A are
parameterized by the set of closed points of E ⊂ P2.

In particular, if A is of Type P (E = P2), T (E= ), T’ (E= ), CC

(E= ), TL (E= ) or WL (E= ), then A satisfies all of the

above conditions.
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Example 2 (Type CC, E = )

A = A(E , σ) = k⟨x , y , z⟩/(f1, f2, f3): 3-dim qpa,
f1 = yz − zy + y2 + 3x2

f2 = zx − xz + yx + xy − yz − zy
f3 = xy − yx − y2

σ(a, b, c) = (a− b, b,−3a2

b + 3a− b + c) , ν∗ =

1 0 0
0 1 0
0 0 1

,

∀i ≥ 1，σi (a, b, c) = (a− ib, b,−3i a
2

b + 3i2a− i3b + c), σi ̸∈ Aut(P2,E ).
||σ|| = ∞ = |σ3|.

1 By |σ| = ∞ and Theorem 2.1 (by ATV), A is not finite over its
center．

2 By ∥σ∥ = |ν∗σ3|(= |σ3|) = ∞ and Corollary 2.11 (by I.-Mori),
ProjncA has not a fat piont, and the isomorphism classes of simple
2-regular modules over ∇A are parameterized by the set of closed
points of E ⊂ P2.
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A = A(E , σ): 3-dim qpa, |ν∗σ3|(= ∥σ∥) < ∞ (??).

(Type S (E= ), S’ (E= ), NC (E= ), EC (E= ))

Conjecture 2.12 (I.-Mori, 2023)

For a 3-dimensional quantum polynomial algebra A, we expect that the
following are equivalent:

1 ProjncA is finite over its center.

2 ∇A is 2-representation tame in the sense of
[Herschend-Iyama-Oppermann, 2014].

3 The isomorphism classes of simple 2-regular modules over ∇A are
parameterized by P2.

Note that these equivalences are shown for Type S in [Mori 2015].

(Type S: E is a triangle in P2.)

Do these equivalences in Conjecture 2.12 hold for Type S’ in

particular? (Type S’ : E is in P2.)
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Centers of Calabi-Yau Type S’ algebras

Proposition 1 (I., 2023)

Let A = A(E , σ) = k⟨x , y , z⟩/(g1, g2, g3) be a 3-dimansional Calabi-Yau
quantum polynomial algebra of Type S’, where

g1 = yz − αzy + x2,
g2 = zx − αxz ,
g3 = xy − αyx (α3 ̸= 0, 1).

Then g := xyz + (1− α3)−1x3 ∈ Z (A)3.

1 If A is finite over its center Z (A) (that is, |α| < ∞ ), then
Z (A) = k[x |α|, y |α|, z |α|, g ].

2 If A is not finite over its center Z (A) (that is, |α| = ∞ ), then
Z (A) = k[g ].

([I.-Matsuno, 2022]) ∀ 3-dim qpa A, ∃ 3-dim Calabi-Yau qpa A′ such
that grmodA ∼= grmodA′ so that Projnc A

∼= Projnc A
′.
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Result for Type S’

Theorem 3.1 (Mori, 2015)

Let A = A(E , σ) be a 3-dimensional quantum polynomial algebra.
If the Beilinson algebra ∇A of A is not 2-representation tame, then the
isomorphism classes of simple 2-regular modules over ∇A are parametrized
by the set of points of E ⊊ P2.

Theorem 1 (I., 2023)

Let A = A(E , σ) be a 3-dimensional quantum polynomial algebra of Type
S’.
If the Beilinson algebra ∇A of A is 2-representation tame, then the
isomorphism classes of simple 2-regular modules over ∇A are parametrized
by the set of points of P2.
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Conjecture 2.12 holds for Type S’

Theorem 2 (I., 2023)

For a 3-dimensional quantum polynomial algebra A of Type S’, the
following are equivalent:

1 ProjncA is finite over its center.

2 ∇A of A is 2-representation tame in the sense of
[Herschend-Iyama-Oppermann, 2014].

3 The isomorphism classes of simple 2-regular modules over ∇A are
parameterized by P2.
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Thank you for your attention!
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