

A classification of *t*-structures by a lattice of torsion classes

Arashi Sakai

Nagoya University mail: m20019b@math.nagoya-u.ac.jp

The 55th Symposium on Ring Theory and Representation Theory, 5 September, 2023

Let Λ be a finite dimensional K-algebra.

Convention

- K: a field.
- Λ : a finite dimensional K-algebra.
- mod $\Lambda\colon$ the category of finitely generated right $\Lambda\text{-module}.$
- $D^b(\operatorname{mod} \Lambda)$: the bounded derived category of mod Λ .
- All subcategories are full and additive.

Table of contents

• Aisles and ICE sequences

A lattice of torsion classes

8 Example

Table of contents

• Aisles and ICE sequences

A lattice of torsion classes

SExample

A pair of subcategory $(\mathcal{U}, \mathcal{V})$ of $D^b \pmod{\Lambda}$ is a *t*-structure on $D^b \pmod{\Lambda}$ if it satisfies $\operatorname{Hom}(\mathcal{U}, \mathcal{V}) = 0$, $\mathcal{U} * \mathcal{V} = D^b \pmod{\Lambda}$, $\mathcal{U}[1] \subseteq \mathcal{U}$.

- We call \mathcal{U} the aisle of $(\mathcal{U}, \mathcal{V})$.
- $\mathcal{V} = \mathcal{U}^{\perp} := \{ X \in D^b(\mathsf{mod}\,\Lambda) \mid \operatorname{Hom}(\mathcal{U}, X) = 0 \}$ holds.
- A *t*-structure is determined by its aisle.

A subcategory \mathcal{U} of $D^b(\text{mod }\Lambda)$ is a preaisle of $D^b(\text{mod }\Lambda)$ if it is closed under extensions and positive shifts.

Aisles and thick subcategories are preaisles.

Proposition

TFAE for a subcategory \mathcal{U} of $D^b (\text{mod } \Lambda)$.

- \mathcal{U} is an aisle of a *t*-structure on $D^b(\text{mod }\Lambda)$.
- **2** \mathcal{U} is a preaisle and the inclusion $\mathcal{U} \hookrightarrow D^b(\text{mod }\Lambda)$ has a right adjoint functor.

$H^k\colon D^b(\operatorname{mod}\Lambda)\to\operatorname{mod}\Lambda\colon$ the k-th cohomology functor $(k\in\mathbb{Z})$

$\mathcal{U}: \text{ a preaisle of } D^b (\text{mod } \Lambda)$ $\rightsquigarrow H^k \mathcal{U} = \{ H^k U \mid U \in \mathcal{U} \}: \text{ a subcategory of mod } \Lambda$

 \rightsquigarrow We consider a sequence $\{H^k \mathcal{U}\}_{k \in \mathbb{Z}}$ of subcategories of mod Λ .

 $H^k\colon D^b(\operatorname{mod}\Lambda)\to\operatorname{mod}\Lambda\colon$ the k-th cohomology functor $(k\in\mathbb{Z})$

- $\mathcal{U}: \text{ a preaisle of } D^b (\text{mod } \Lambda)$ $\rightsquigarrow H^k \mathcal{U} = \{ H^k U \mid U \in \mathcal{U} \}: \text{ a subcategory of mod } \Lambda$
- \rightsquigarrow We consider a sequence $\{H^k \mathcal{U}\}_{k \in \mathbb{Z}}$ of subcategories of mod Λ .

Let \mathcal{C} be a subcategory of mod Λ .

- \blacksquare ${\cal C}$ is a torsion class if ${\cal C}$ is closed under taking extensions and quotients.
- ${\rm \it o}~{\cal C}$ is a wide subcategory if ${\cal C}$ is closed under taking extensions, kernels and cokernels.

A subcategory C of mod Λ is an ICE-closed subcategory if it is closed under Images, Cokernels and Extensions.

Torsion classes and wide subcategories are ICE-closed subcategories.

Proposition (Ingalls-Thomas, Enomoto)

Let C be an ICE-closed subcategory of mod Λ . Then

$$\alpha \mathcal{C} = \{ X \in \mathcal{C} \mid {}^{\forall} (f \colon Y \to X) \in \mathcal{C} \; \operatorname{Ker} f \in \mathcal{C} \}$$

is a wide subcategory of $mod \Lambda$.

A sequence of subcategory $\{C(k)\}_{k\in\mathbb{Z}}$ of mod Λ is an ICE sequnce if for any $k\in\mathbb{Z}$, it satisfies

 $\bullet \ \mathcal{C}(k) \text{ is an ICE-closed subcategory of mod } \Lambda,$

2 $\mathcal{C}(k+1)$ is a torsion class in $\alpha(\mathcal{C}(k))$.

.

$$\cdots \subseteq \mathcal{C}(1) \subseteq \mathcal{C}(0) \subseteq \mathcal{C}(-1) \subseteq \cdots$$

This coincides with a narrow sequence introduced by Stanley and van-Roosmalen. They consider narrow sequences in hereditary abelian categories.

Theorem (S)

There is a bijective correspondence between

• the set of homology-determined preaisles of $D^b(\text{mod }\Lambda)$,

2 the set of ICE sequences in $mod \Lambda$.

 Λ : hereditary \Rightarrow Every aisle is homology-determined.

Theorem (S)

Let Λ be a $\tau\text{-tilting finite algebra. Then there is a bijective correspondences between$

- the set of bounded t-structures on $D^b(\text{mod }\Lambda)$ whose aisles are homology-determined,
- **2** the set of full ICE sequences in $mod \Lambda$.
- An algebra Λ is τ -tilting finite if there are only finitely many torsion classes in mod Λ .
- An ICE sequence $\{C(k)\}_{k\in\mathbb{Z}}$ is full if there exist $m \leq n$ such that C(n) = 0 and $C(m) = \mod \Lambda$.

Table of contents

• Aisles and ICE sequences

A lattice of torsion classes

SExample

tors Λ : the set of torsion classes in mod Λ , a poset by inclusion. Moreover tors Λ forms a lattice.

Hasse(tors Λ): the Hasse quiver of tors Λ .

We give a description of full ICE sequences using the lattice tors $\Lambda.$

Proposition (Asai-Pfeifer, Enomoto-S)

Let \mathcal{T} be a torsion class in mod Λ . Set $\mathcal{T}^- := \mathcal{T} \cap \bigcap \{ \mathcal{U} \mid \mathcal{T} \to \mathcal{U} \text{ in Hasse}(\operatorname{tors} \Lambda) \}$. Then () $\alpha \mathcal{T} = \mathcal{T} \cap (\mathcal{T}^-)^{\perp}$ () $[\mathcal{T}^-, \mathcal{T}] := \{ \mathcal{U} \mid \mathcal{T}^- \leq \mathcal{U} \leq \mathcal{T} \}$ is isomorphic to $\operatorname{tors}(\alpha \mathcal{T})$.

$$0 = \mathcal{C}(n) \subseteq \mathcal{C}(n-1) \subseteq \cdots \subseteq \mathcal{C}(1) \subseteq \mathcal{C}(0) = \operatorname{mod} \Lambda$$

: an ICE sequence in mod Λ .

$$\begin{array}{c} \mathcal{T}_{1} \\ \hline \\ \mathcal{T}_{2} \\ \vdots \\ \mathcal{T}_{2}^{-} \end{array} \\ \alpha \mathcal{T}_{2} \\ \mathcal{T}_{2}^{-} \end{array} \\ \alpha \mathcal{T}_{1} \\ \alpha \mathcal{T}_{1}$$

Theorem

Let Λ be a $\tau\text{-tilting finite algebra. Then there are bijective correspondences between$

- the set of (n + 1)-intermediate t-structures on $D^b (\text{mod } \Lambda)$ whose aisles are homology-determined,
- **2** the set of ICE sequences in $\operatorname{mod} \Lambda$ of length n + 1,

8 the set of decreasing sequences of maximal meet intervals in tors Λ of length n.

Every bounded *t*-structure on $D^b \pmod{\Lambda}$ is (n+1)-intermediate for some $n \in \mathbb{Z}_{\geq 0}$, up to shifts.

Table of contents

• Aisles and ICE sequences

A lattice of torsion classes

8 Example

$$\Lambda = K[1 \leftarrow 2 \leftarrow 3]$$

:a decreasing sequence of maximal meet interval of length 2.

:an ICE sequence in mod Λ of length 3.

: an aisle of a 3-intermediate t-structure on $D^b(\text{mod }\Lambda)$

References I

- [AP] S. Asai, C. Pfeifer, Wide subcategories and lattices of torsion classes, Algebr. Represent. Theory 25 (2022), no. 6, 1611–1629.
- [Eno] H. Enomoto, *Rigid modules and ICE-closed subcategories* over path algebras, J. Algebra 594 (2022), 364–388.
- [ES] H. Enomoto, A. Sakai, *ICE-closed subcategories and wide* τ -tilting modules, Math. Z. 300 (2022), no. 1, 541–577.

References II

- [IT] C. Ingalls, H. Thomas, Noncrossing partitions and representations of quivers, Compos. Math. 145 (2009), no. 6, 1533–1562.
- [Sak] A. Sakai, *Classifying t-structures via ICE-closed subcategories* and a lattice of torsion classes, arXiv:2307.11347.
- [SR] D. Stanley, A.-C. van Roosmalen, *t-structures on hereditary categories*, Math. Z. 293 (2019), no. 1–2, 731–766.