THE MODULI OF 4-DIMENSIONAL SUBALGEBRAS OF THE FULL MATRIX RING OF DEGREE 3

KAZUNORI NAKAMOTO AND TAKESHI TORII

Abstract

We describe the moduli $\operatorname{Mold}_{3,4}$ of 4 -dimensional subalgebras of the full matrix ring of degree 3 . We show that $\operatorname{Mold}_{3,4}$ has three irreducible components, whose relative dimensions over \mathbb{Z} are $5,2,2$, respectively.

Key Words: moduli of subalgebras, full matrix ring. 2020 Mathematics Subject Classification: Primary 14D22; Secondary 16S80, 16S50.

1. Introduction

Let k be a field. We say that k-subalgebras A and B of $\mathrm{M}_{3}(k)$ are equivalent (or $A \sim B$) if $P^{-1} A P=B$ for some $P \in \mathrm{GL}_{3}(k)$. If k is an algebraically closed field, then there are 26 equivalence classes of k-subalgebras of $\mathrm{M}_{3}(k)$ over $k([4])$.

Definition 1 ([2, Definition 1.1], [3, Definition 3.1]). We say that a subsheaf \mathcal{A} of $\mathcal{O}_{X^{-}}$ algebras of $\mathrm{M}_{n}\left(\mathcal{O}_{X}\right)$ is a mold of degree n on a scheme X if $\mathrm{M}_{n}\left(\mathcal{O}_{X}\right) / \mathcal{A}$ is a locally free sheaf. We denote by $\operatorname{rank} \mathcal{A}$ the rank of \mathcal{A} as a locally free sheaf.
Proposition 2 ([2, Definition and Proposition 1.1], [3, Definition and Proposition 3.5]). The following contravariant functor is representable by a closed subscheme of the Grassmann scheme $\operatorname{Grass}\left(d, n^{2}\right)$:

$$
\begin{aligned}
\operatorname{Mold}_{n, d}:(\mathbf{S c h})^{o p} & \rightarrow(\mathbf{S e t s}) \\
X & \mapsto\{\mathcal{A} \mid \mathcal{A} \text { is a rank d mold of degree } n \text { on } X\} .
\end{aligned}
$$

We consider the moduli $\operatorname{Mold}_{3, d}$ of rank d molds of degree 3 over \mathbb{Z}. For $d=1,2,3,6,7,8,9$, we have the following theorem:

Theorem 3 ([4]). Let $n=3$. If $d \leq 3$ or $d \geq 6$, then

$$
\begin{aligned}
\operatorname{Mold}_{3,1}= & \operatorname{Spec} \mathbb{Z}, \\
\operatorname{Mold}_{3,2} \cong & \mathbb{P}_{\mathbb{Z}}^{2} \times \mathbb{P}_{\mathbb{Z}}^{2} \\
\operatorname{Mold}_{3,3}= & \overline{\operatorname{Mold}_{3,3}^{\mathrm{reg}}} \cup \overline{\operatorname{Mold}_{3,3}^{S_{2}}} \cup \overline{\operatorname{Mold}_{3,3}^{S_{3}}}, \text { where the relative dimensions of } \\
& \overline{\operatorname{Mold}_{3,3}^{\mathrm{reg}}} \overline{\operatorname{Mold}_{3,3}^{S_{2}}}, \text { and } \overline{\operatorname{Mold}_{3,3}^{\mathrm{S}_{3}}} \text { over } \mathbb{Z} \text { are } 6,4, \text { and } 4, \text { respectively, } \\
\operatorname{Mold}_{3,6} \cong & \operatorname{Flag}_{3}:=\operatorname{GL}_{3} /\left\{\left(a_{i j}\right) \in \mathrm{GL}_{3} \mid a_{i j}=0 \text { for } i>j\right\}, \\
\operatorname{Mold}_{3,7} \cong & \mathbb{P}_{\mathbb{Z}}^{2} \coprod \mathbb{P}_{\mathbb{Z}}^{2}, \\
\operatorname{Mold}_{3,8}= & \emptyset \\
\operatorname{Mold}_{3,9}= & \text { SpecZ } .
\end{aligned}
$$

The detailed version of this paper will be submitted for publication elsewhere.

The cases $d=4,5$ remain. In this paper, we describe the moduli $\operatorname{Mold}_{3,4}$ of rank 4 molds of degree 3 . We introduce several rank 4 molds of degree 3 on a commutative ring R.

Definition 4 ([4]). For a commutative ring R, we define

$$
\begin{align*}
& \text { (1) }\left(\mathrm{B}_{2} \times \mathrm{D}_{1}\right)(R)=\left\{\left(\begin{array}{ccc}
* & * & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right) \in \mathrm{M}_{3}(R)\right\}, \tag{1}\\
& \text { (2) } \mathrm{N}_{3}(R)=\left\{\left.\left(\begin{array}{lll}
a & b & c \\
0 & a & d \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b, c, d \in R\right\},
\end{align*}
$$

(3) $\mathrm{S}_{6}(R)=\left\{\left.\left(\begin{array}{ccc}a & c & d \\ 0 & a & 0 \\ 0 & 0 & b\end{array}\right) \right\rvert\, a, b, c, d \in R\right\}$,
(4) $\mathrm{S}_{7}(R)=\left\{\left.\left(\begin{array}{ccc}a & 0 & c \\ 0 & a & d \\ 0 & 0 & b\end{array}\right) \right\rvert\, a, b, c, d \in R\right\}$,
(5) $\mathrm{S}_{8}(R)=\left\{\left.\left(\begin{array}{ccc}a & c & d \\ 0 & b & 0 \\ 0 & 0 & b\end{array}\right) \right\rvert\, a, b, c, d \in R\right\}$,
(6) $\mathrm{S}_{9}(R)=\left\{\left.\left(\begin{array}{lll}a & 0 & c \\ 0 & b & d \\ 0 & 0 & b\end{array}\right) \right\rvert\, a, b, c, d \in R\right\}$.

There are 6 equivalence classes of 4-dimensional subalgebras of $\mathrm{M}_{3}(k)$ over an algebraically closed field $k:\left(\mathrm{B}_{2} \times \mathrm{D}_{1}\right)(k), \mathrm{N}_{3}(k), \mathrm{S}_{6}(k), \mathrm{S}_{7}(k), \mathrm{S}_{8}(k)$, and $\mathrm{S}_{9}(k)$.

The following theorem is our main result in this paper.
Theorem 5 (Theorem 19, [4]). When $d=4$, we have an irreducible decomposition

$$
\operatorname{Mold}_{3,4}=\overline{\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}}} \coprod \operatorname{Mold}_{3,4}^{\mathrm{S}_{7}} \coprod \operatorname{Mold}_{3,4}^{\mathrm{S}_{8}}
$$

such that irreducible components are all connected components. The relative dimensions of $\overline{\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}}}, \operatorname{Mold}_{3,4}^{\mathrm{S}_{7}}$, and $\operatorname{Mold}_{3,4}^{\mathrm{S}_{8}}$ over \mathbb{Z} are 5, 2, and 2, respectively. Moreover, both $\operatorname{Mold}_{3,4}^{\mathrm{S}_{7}}$ and $\operatorname{Mold}_{3,4}^{\mathrm{S}_{8}}$ are isomorphic to $\mathbb{P}_{\mathbb{Z}}^{2}$, and

$$
\overline{\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}}}=\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}} \cup \operatorname{Mold}_{3,4}^{\mathrm{S}_{6}} \cup \operatorname{Mold}_{3,4}^{\mathrm{S}_{9}} \cup \operatorname{Mold}_{3,4}^{\mathrm{N}_{3}}
$$

is isomorphic to $\mathrm{Flag}_{3} \times_{\mathbb{P}_{\mathbb{Z}}^{2}} \mathrm{Flag}_{3} \times_{\mathbb{P}_{\mathbb{Z}}^{2}} \mathrm{Flag}_{3}=\left\{\left(L_{1} \subset W_{2}, L_{1} \subset W_{1}, L_{2} \subset W_{1}\right) \in \mathrm{Flag}_{3} \times\right.$ $\left.\mathrm{Flag}_{3} \times \mathrm{Flag}_{3}\right\}$. In particular, $\mathrm{Mold}_{3,4}$ is smooth over \mathbb{Z}.
Remark 6 ([1]). We need to say the relation between $\operatorname{Mold}_{d, d}$ and the variety Alg_{d} of algebras defined by Gabriel in [1]. Let $V=k e_{1} \oplus k e_{2} \oplus \cdots \oplus k e_{d}$ be a d-dimensional vector space over a field k. For $\varphi \in \operatorname{Hom}_{k}\left(V \otimes_{k} V, V\right)$, put $\varphi\left(e_{i} \otimes e_{j}\right)=\sum_{l=1}^{n} c_{i j}^{l} e_{l}$. We say that φ determines an algebra structure on V with 1 if the multiplication $e_{i} \cdot e_{j}=c_{i j}^{l} e_{l}$ defines
an algebra V over k with 1 . Then we define the variety Alg_{d} of d-dimensional algebras in the sense of Gabriel by

$$
\operatorname{Alg}_{d}=\left\{\begin{array}{l|l}
\varphi \in \operatorname{Hom}_{k}\left(V \otimes_{k} V, V\right) & \begin{array}{c}
\varphi \text { determines an } \\
\text { algebra structure } \\
\text { on } V \text { with } 1
\end{array}
\end{array}\right\} \subset \mathbb{A}_{k}^{d^{3}}
$$

Then we can define a morphism $\Psi_{d}: \operatorname{Alg}_{d} \rightarrow \operatorname{Mold}_{d, d}$ by

$$
\varphi \mapsto\left\{\varphi(v \otimes-) \in \operatorname{End}_{k}(V) \cong \mathrm{M}_{d}(k) \mid v \in V\right\}
$$

If we could prove that $U_{d}=\left\{A \subset \mathrm{M}_{d}(k) \mid A\right.$ is a d-dimensional tame algebra $\}$ is open in $\operatorname{Mold}_{d, d}$ for any d, then $\Psi_{d}^{-1}\left(U_{d}\right)=\{A \mid d$-dimensional tame algebra $\}$ would also be open in Alg_{d}, which gives an affirmative answer to "Tame type is open conjecture". Hence, we believe that $\operatorname{Mold}_{n, d}$ is an important geometric object. This is one of our motivations to investigate $\operatorname{Mold}_{n, d}$.

2. Several Tools

In this section, we introduce several tools for describing $\operatorname{Mold}_{3,4}$. Let A be an associative algebra over a commutative ring R. Assume that A is projective over R. Let $A^{e}=A \otimes_{R} A^{o p}$ be the enveloping algebra of A. For an A-bimodule M over R, we can regard it as an A^{e} module. We define the i-th Hochschild cohomology group $\operatorname{HH}^{i}(A, M)$ of A with coefficients in M as $\operatorname{Ext}_{A^{e}}^{i}(A, M)$.

Let \mathcal{A} be the universal mold on $\operatorname{Mold}_{n, d}$. For $x \in \operatorname{Mold}_{n, d}$, denote by $\mathcal{A}(x)=\mathcal{A} \otimes_{\mathcal{O}_{\text {Mold }_{n, d}}}$ $k(x) \subset \mathrm{M}_{n}(k(x))$ the mold corresponding to x, where $k(x)$ is the residue field of x. As applications of Hochschild cohomology to the moduli $\operatorname{Mold}_{n, d}$, we have the following tools.
Theorem 7 ([3, Theorem 1.1]). For each point $x \in \operatorname{Mold}_{n, d}$,
$\operatorname{dim}_{k(x)} T_{\operatorname{Mold}_{n, d} / \mathbb{Z}, x}=\operatorname{dim}_{k(x)} \operatorname{HH}^{1}\left(\mathcal{A}(x), \mathrm{M}_{n}(k(x)) / \mathcal{A}(x)\right)+n^{2}-\operatorname{dim}_{k(x)} N(\mathcal{A}(x))$, where $N(\mathcal{A}(x))=\left\{b \in \mathrm{M}_{n}(k(x)) \mid[b, a]=b a-a b \in \mathcal{A}(x)\right.$ for any $\left.a \in \mathcal{A}(x)\right\}$.

Theorem 8 ([3, Theorem 1.2]). Let $x \in \operatorname{Mold}_{n, d}$. If $\operatorname{HH}^{2}\left(\mathcal{A}(x), \mathrm{M}_{n}(k(x)) / \mathcal{A}(x)\right)=0$, then the canonical morphism $\operatorname{Mold}_{n, d} \rightarrow \mathbb{Z}$ is smooth at x.

For a rank d mold A of degree n on a locally noetherian scheme S, we can consider a PGL $n_{n, S}$-orbit $\left\{P^{-1} A P \mid P \in \mathrm{PGL}_{n, S}\right\}$ in $\operatorname{Mold}_{n, d} \otimes_{\mathbb{Z}} S$, where $\mathrm{PGL}_{n, S}=\mathrm{PGL}_{n} \otimes_{\mathbb{Z}} S$. For $x \in S$, put $A(x)=A \otimes_{\mathcal{O}_{S}} k(x)$, where $k(x)$ is the residue field of x. By using $\mathrm{HH}^{1}\left(A(x), \mathrm{M}_{n}(k(x)) / A(x)\right)$, we have:
Theorem 9 ([3, Theorem 1.3]). Assume that $\operatorname{HH}^{1}\left(A(x), \mathrm{M}_{n}(k(x)) / A(x)\right)=0$ for each $x \in S$. Then the $\mathrm{PGL}_{n, S^{-}}$orbit $\left\{P^{-1} A P \mid P \in \mathrm{PGL}_{n, S}\right\}$ is open in $\mathrm{Mold}_{n, d} \otimes_{\mathbb{Z}} S$.

These tools are useful for investigating $\operatorname{Mold}_{3,4}$. For each rank 4 molds of $\mathrm{M}_{3}(R)$ over a commutative ring R, we obtained the following table:

Table 1. Hochschild cohomology $\operatorname{HH}^{*}\left(A, \mathrm{M}_{3}(R) / A\right)$ for R-subalgebras A of $\mathrm{M}_{3}(R)$ ($c f$. [3, Table 2])

A	$d=\operatorname{rank} A$	$H^{*}=\operatorname{HH}^{*}\left(A, \mathrm{M}_{3}(R) / A\right)$	${ }^{t} A$	$N(A)$	$\operatorname{dim} T_{\mathrm{Mold}_{3, d} / \mathbb{Z}, A}$
$\left(\mathrm{B}_{2} \times \mathrm{D}_{1}\right)(R)=\left\{\left(\begin{array}{ccc}* & * & 0 \\ 0 & * & 0 \\ 0 & 0 & *\end{array}\right)\right\}$	4	$H^{i}=0$ for $i \geq 0$	$\left(\mathrm{B}_{2} \times \mathrm{D}_{1}\right)(R)$	$\left(\mathrm{B}_{2} \times \mathrm{D}_{1}\right)(R)$	5
$\mathrm{N}_{3}(R)=\left\{\left(\begin{array}{lll}a & b & c \\ 0 & a & d \\ 0 & 0 & a\end{array}\right)\right\}$	4	$H^{i}=\left\{\begin{array}{cc}R^{2} & (i=0) \\ R^{i+1} & (i \geq 1)\end{array}\right.$	$\mathrm{N}_{3}(R)$	$\mathrm{B}_{3}(R)$	5
$\mathrm{S}_{6}(R)=\left\{\left(\begin{array}{lll}a & c & d \\ 0 & a & 0 \\ 0 & 0 & b\end{array}\right)\right\}$	4	$H^{i}=R$ for $i \geq 0$	$\mathrm{S}_{9}(R)$	$\mathrm{S}_{13}(R)$	5
$\mathrm{S}_{7}(R)=\left\{\left(\begin{array}{lll}a & 0 & c \\ 0 & a & d \\ 0 & 0 & b\end{array}\right)\right\}$	4	$H^{i}=\left\{\begin{array}{cc}R^{3} & (i=0) \\ 0 & (i \geq 1)\end{array}\right.$	$\mathrm{S}_{8}(R)$	$\mathrm{P}_{2,1}(R)$	2
$\mathrm{S}_{8}(R)=\left\{\left(\begin{array}{lll}a & c & d \\ 0 & b & 0 \\ 0 & 0 & b\end{array}\right)\right\}$	4	$H^{i}=\left\{\begin{array}{cc}R^{3} & (i=0) \\ 0 & (i \geq 1)\end{array}\right.$	$\mathrm{S}_{7}(R)$	$\mathrm{P}_{1,2}(R)$	2
$\mathrm{S}_{9}(R)=\left\{\left(\begin{array}{lll}a & 0 & c \\ 0 & b & d \\ 0 & 0 & b\end{array}\right)\right\}$	4	$H^{i}=R$ for $i \geq 0$	$\mathrm{S}_{6}(R)$	$\mathrm{S}_{14}(R)$	5

3. Description of Mold $_{3,4}$

In this section, we describe $\operatorname{Mold}_{3,4}$. Let V be a free module of rank 3 over \mathbb{Z}. Fix a canonical basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of V over \mathbb{Z}. We define schemes $\mathbb{P}^{*}(V), \mathbb{P}_{*}(V)$, and $\operatorname{Flag}(V)$ over \mathbb{Z} as contravariant functors from the category of schemes to the category of sets in the following way:

$$
\begin{aligned}
\mathbb{P}^{*}(V)(X) & =\left\{W \mid W \text { is a rank } 2 \text { subbundle of } \mathcal{O}_{X} \otimes_{\mathbb{Z}} V \text { on } X\right\}, \\
\mathbb{P}_{*}(V)(X) & =\left\{L \mid L \text { is a rank } 1 \text { subbundle of } \mathcal{O}_{X} \otimes_{\mathbb{Z}} V \text { on } X\right\} \\
\operatorname{Flag}(V)(X) & =\left\{(L, W) \in\left(\mathbb{P}_{*}(V) \times \mathbb{P}^{*}(V)\right)(X) \mid L \subset W\right\}
\end{aligned}
$$

for a scheme X.
Remark 10. If we consider the case over a field k, then $\mathbb{P}^{*}(V), \mathbb{P}_{*}(V)$, and Flag over k are regarded as

$$
\begin{aligned}
\mathbb{P}^{*}(V) & =\{W \subset V \mid W \text { is a 2-dimensional subspace of } V\}, \\
\mathbb{P}_{*}(V) & =\{L \subset V \mid L \text { is a 1-dimensional subspace of } V\}, \\
\operatorname{Flag}(V) & =\left\{(L, W) \in \mathbb{P}_{*}(V) \times \mathbb{P}^{*}(V) \mid 0 \subset L \subset W \subset V\right\},
\end{aligned}
$$

respectively.

Let us consider rank 4 molds

$$
\left(\mathrm{B}_{2} \times \mathrm{D}_{1}\right)(\mathbb{Z})=\left\{\left(\begin{array}{ccc}
* & * & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right) \in \mathrm{M}_{3}(\mathbb{Z})\right\}
$$

$$
\begin{aligned}
& \mathrm{S}_{7}(\mathbb{Z})=\left\{\left.\left(\begin{array}{ccc}
a & 0 & c \\
0 & a & d \\
0 & 0 & b
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}\right\}, \\
& \mathrm{S}_{8}(\mathbb{Z})=\left\{\left.\left(\begin{array}{lll}
a & c & d \\
0 & b & 0 \\
0 & 0 & b
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}\right\}
\end{aligned}
$$

over \mathbb{Z}. Let $A=\mathrm{B}_{2} \times \mathrm{D}_{1}, \mathrm{~S}_{7}$, or S_{8}. Then $\mathrm{HH}^{1}\left(A(k), \mathrm{M}_{3}(k) / A(k)\right)=0$ for any field k by Table 1. The image of the morphism $\phi_{A}: \mathrm{PGL}_{3} \rightarrow \operatorname{Mold}_{3,4}$ defined by $P \mapsto P^{-1} A(\mathbb{Z}) P$ is open by Theorem 9 .

Definition 11 ([4]). We define open subschemes of Mold $_{3,4}$ by

$$
\begin{aligned}
\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}} & =\operatorname{Im} \phi_{\mathrm{B}_{2} \times \mathrm{D}_{1}} \\
\operatorname{Mold}_{3,4}^{\mathrm{S}_{7}} & =\operatorname{Im} \phi_{\mathrm{S}_{7}} \\
\operatorname{Mold}_{3,4}^{\mathrm{S}_{8}} & =\operatorname{Im} \phi_{\mathrm{S}_{8}} .
\end{aligned}
$$

Remark 12. Let $A=\mathrm{B}_{2} \times \mathrm{D}_{1}, \mathrm{~S}_{7}$, or S_{8}. Then $\mathrm{HH}^{2}\left(A(k), \mathrm{M}_{3}(k) / A(k)\right)=0$ for any field k by Table 1. By [3], the canonical morphism $\operatorname{Mold}_{3,4}^{A} \rightarrow \mathbb{Z}$ is smooth.

Theorem 13 ([4]). The subschemes $\operatorname{Mold}_{3,4}^{S_{7}}$ and $\operatorname{Mold}_{3,4}^{S_{8}}$ are open and closed in $\operatorname{Mold}_{3,4}$. Moreover, $\operatorname{Mold}_{3,4}^{\mathrm{S}_{7}} \cong \mathbb{P}^{*}(V)$ and $\operatorname{Mold}_{3,4}^{\mathrm{S}_{8}} \cong \mathbb{P}_{*}(V)$.

Outline of proof. For simplicity, here we only consider the case over a field k. For $W \in \mathbb{P}^{*}(V)$, set

$$
A_{W}=\left\{f \in \operatorname{End}_{k}(V) \cong \mathrm{M}_{3}(k) \mid f(W) \subseteq W \text { and } f \mid W \text { is scalar }\right\} \subset \mathrm{M}_{3}(k) .
$$

Let us define a morphism

$$
\begin{aligned}
\psi_{\mathrm{S}_{7}}: \mathbb{P}^{*}(V) & \rightarrow \operatorname{Mold}_{3,4}^{\mathrm{S}_{7}} \\
W & \mapsto
\end{aligned} A_{W} .
$$

We can verify that $\psi_{\mathrm{S}_{7}}$ is an isomorphism.
For $L \in \mathbb{P}_{*}(V)$, set

$$
A_{L}=\left\{f \in \operatorname{End}_{k}(V) \cong \mathrm{M}_{3}(k) \mid f(L) \subseteq L \text { and } f: V / L \rightarrow V / L \text { is scalar }\right\}
$$

Let us define a morphism

$$
\begin{array}{rllc}
\psi_{\mathrm{S}_{8}}: \mathbb{P}_{*}(V) & \rightarrow & \operatorname{Mold}_{3,4}^{\mathrm{S}_{8}} \\
L & \mapsto & A_{L}
\end{array}
$$

We can verify that $\psi_{\mathrm{S}_{8}}$ is an isomorphism.

Definition 14. We define

$$
\begin{aligned}
\mathrm{Q}(V) & =\operatorname{Flag}(V) \times_{\mathbb{P}_{*}(V)} \operatorname{Flag}(V) \times_{\mathbb{P}^{*}(V)} \operatorname{Flag}(V) \\
& =\left\{\left(L_{1}, W_{2} ; L_{1}, W_{1} ; L_{2}, W_{1}\right) \mid \operatorname{dim}_{k} L_{i}=1, \operatorname{dim}_{k} W_{i}=2\right\} \\
& =\left\{\left(L_{1}, L_{2}, W_{1}, W_{2}\right) \mid L_{1} \subset W_{1}, L_{1} \subset W_{2}, L_{2} \subset W_{1}\right\}
\end{aligned}
$$

Let us define the projection $\pi: \mathrm{Q}(V) \rightarrow \operatorname{Flag}(V)$ by

$$
\left(L_{1}, L_{2}, W_{1}, W_{2}\right) \mapsto\left(L_{1}, W_{1}\right)
$$

We can verify that π is a fiber bundle with fiber $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
For $\left(L_{1}, L_{2}, W_{1}, W_{2}\right) \in \mathrm{Q}(V)$, set

Let us define a morphism

$$
\begin{array}{cccc}
\psi_{\mathrm{B}_{2} \times \mathrm{D}_{1}}: & \mathrm{Q}(V) & \rightarrow & \operatorname{Mold}_{3,4} \\
& \left(L_{1}, L_{2}, W_{1}, W_{2}\right) & \mapsto & A_{\left(L_{1}, L_{2}, W_{1}, W_{2}\right)} .
\end{array}
$$

Theorem 15 ([4]). The image of $\psi_{\mathrm{B}_{2} \times \mathrm{D}_{1}}$ is open and closed in $\mathrm{Mold}_{3,4}$. Moreover, $\psi_{\mathrm{B}_{2} \times \mathrm{D}_{1}}$ gives an isomorphism between $\mathrm{Q}(V)$ and the closure $\overline{\mathrm{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}}}$ of $\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}}$.

Outline of proof. It can be verified that $\psi_{\mathrm{B}_{2} \times \mathrm{D}_{1}}$ is a monomorphism. By a long discussion, we can also prove that $\psi_{\mathrm{B}_{2} \times \mathrm{D}_{1}}$ is formally étale. Hence, $\psi_{\mathrm{B}_{2} \times \mathrm{D}_{1}}$ gives an isomorphism between $\mathrm{Q}(V)$ and an open subscheme of $\operatorname{Mold}_{3,4}$ which coincides with $\overline{\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}}}$.

Definition 16 ([4]). Let $A=\mathrm{N}_{3}, \mathrm{~S}_{6}$, or S_{9}. We define

$$
\operatorname{Mold}_{3,4}^{A}=\left\{x \in \operatorname{Mold}_{3,4} \mid \mathcal{A}(x) \otimes_{k(x)} \overline{k(x)} \sim A(\overline{k(x)})\right\}
$$

where $\overline{k(x)}$ is an algebraic closure of $k(x)$.
We can also prove the following theorems.
Theorem 17 ([4]). For the closure $\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}}$ of $\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}}$, we obtain

$$
\overline{\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}}}=\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}} \coprod \operatorname{Mold}_{3,4}^{\mathrm{S}_{6}} \coprod \operatorname{Mold}_{3,4}^{\mathrm{S}_{9}} \coprod \operatorname{Mold}_{3,4}^{\mathrm{N}_{3}} .
$$

Theorem 18 ([4]). By the isomorphism $\overline{\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}}} \cong \mathrm{Q}(V)$, we have

$$
\begin{aligned}
\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}} & =\left\{\left(L_{1}, L_{2}, W_{1}, W_{2}\right) \in \mathrm{Q}(V) \mid L_{1} \neq L_{2}, W_{1} \neq W_{2}\right\} \\
\operatorname{Mold}_{3,4}^{\mathrm{S}_{6}} & =\left\{\left(L_{1}, L_{2}, W_{1}, W_{2}\right) \in \mathrm{Q}(V) \mid L_{1}=L_{2}, W_{1} \neq W_{2}\right\} \\
\operatorname{Mold}_{3,4}^{\mathrm{S}_{9}} & =\left\{\left(L_{1}, L_{2}, W_{1}, W_{2}\right) \in \mathrm{Q}(V) \mid L_{1} \neq L_{2}, W_{1}=W_{2}\right\} \\
\operatorname{Mold}_{3,4}^{\mathrm{N}_{3}} & =\left\{\left(L_{1}, L_{2}, W_{1}, W_{2}\right) \in \mathrm{Q}(V) \mid L_{1}=L_{2}, W_{1}=W_{2}\right\}
\end{aligned}
$$

By using Theorem 18, let us describe a deformation of 4-dimensional subalgebras of M_{3}. We define a 2-dimensional closed subscheme $\mathrm{Q}^{s t}(V)$ of $\mathrm{Q}(V) \cong \overline{\operatorname{Mold}_{3,4}^{\mathrm{B} 2 \times \mathrm{D}_{1}}}$.

For simplicity, let us consider the case over a field k. Set $L_{1}^{s t}=k e_{1}$ and $W_{1}^{s t}=k e_{1} \oplus k e_{2}$. Put $*=\left(L_{1}^{s t}, W_{1}^{s t}\right) \in \operatorname{Flag}(V)$. Then we have the following fiber product:

Note that $\mathrm{Q}^{s t}(V) \cong \mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}$.
Let $L_{2}\left(s_{1}\right)=\left\langle\left[\begin{array}{c}1 \\ -s_{1} \\ 0\end{array}\right]\right\rangle$ and $W_{2}\left(s_{2}\right)=\left\langle\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ s_{2}\end{array}\right]\right\rangle$. Then

$$
\left\{\left(s_{1}, s_{2}\right) \in \mathbb{A}_{k}^{2}\right\} \cong\left(\mathbb{P}_{k}^{1} \backslash\{\infty\}\right) \times\left(\mathbb{P}_{k}^{1} \backslash\{\infty\}\right)
$$

gives an affine open subscheme of $\mathrm{Q}^{s t}(V)$ by considering $\left(L_{1}^{s t}, L_{2}\left(s_{1}\right), W_{1}^{s t}, W_{2}\left(s_{2}\right)\right)$. We write

$$
A\left(s_{1}, s_{2}\right)=\left\{\left.\left[\begin{array}{ccc}
a+s_{1} b & b & c \\
0 & a & d \\
0 & 0 & a+s_{2} d
\end{array}\right] \right\rvert\, a, b, c, d \in k\right\}
$$

for $\psi_{\mathrm{B}_{2} \times \mathrm{D}_{1}}\left(s_{1}, s_{2}\right) \in \overline{\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}}}$.
Note that

$$
\begin{array}{rcl}
A\left(s_{1}, s_{2}\right): & \mathrm{B}_{2} \times \mathrm{D}_{1} \text { type } & \text { if } s_{1} \neq 0, s_{2} \neq 0, \\
A\left(0, s_{2}\right): & \mathrm{S}_{6} \text { type } & \text { if } s_{2} \neq 0, \\
A\left(s_{1}, 0\right): & \mathrm{S}_{9} \text { type } & \text { if } s_{1} \neq 0, \\
A(0,0): & \mathrm{N}_{3} \text { type. } &
\end{array}
$$

Summarizing the discussions above, we obtain the main theorem.
Theorem 19 ([4]). We have an irreducible decomposition

$$
\operatorname{Mold}_{3,4}=\overline{\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}}} \coprod \operatorname{Mold}_{3,4}^{\mathrm{S}_{7}} \coprod \operatorname{Mold}_{3,4}^{\mathrm{S}_{8}},
$$

whose irreducible components are all connected components. Moreover, $\overline{\operatorname{Mold}_{3,4}^{\mathrm{B}_{2} \times \mathrm{D}_{1}}} \cong$ $\mathrm{Q}(V), \operatorname{Mold}_{3,4}^{\mathrm{S}_{7}} \cong \mathbb{P}_{\mathbb{Z}}^{2}$, and $\operatorname{Mold}_{3,4}^{\mathrm{S}_{8}} \cong \mathbb{P}_{\mathbb{Z}}^{2}$ over \mathbb{Z}.

By considering the PGL_{3}-orbits in Mold $_{3,4}$ over a field k, we have:
Corollary 20 ([4]). Let k be an arbitrary field. Then there exist 6 equivalence classes of 4-dimensional subalgebras of $\mathrm{M}_{3}(k)$ over $k:\left(\mathrm{B}_{2} \times \mathrm{D}_{1}\right)(k), \mathrm{N}_{3}(k), \mathrm{S}_{6}(k), \mathrm{S}_{7}(k), \mathrm{S}_{8}(k)$, and $\mathrm{S}_{9}(k)$.

Remark 21. Let S be a 4-dimensional subalgebra of $\mathrm{M}_{3}(k)$ over a field k. Let A be one of $\left(\mathrm{B}_{2} \times \mathrm{D}_{1}\right)(k), \mathrm{N}_{3}(k), \mathrm{S}_{6}(k), \mathrm{S}_{7}(k), \mathrm{S}_{8}(k)$, or $\mathrm{S}_{9}(k)$. If $S \otimes_{k} K$ is equivalent to $A \otimes_{k} K$ for an extension field K of k, then S is equivalent to A over k by Corollary 20.

References

[1] P. Gabriel, Finite representation type is open, Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Paper No. 10, 23 pp. Carleton Math. Lecture Notes, No. 9, Carleton Univ., Ottawa, Ont., 1974.
[2] K. Nakamoto, The moduli of representations with Borel mold, Internat. J. Math. 25 (2014), no.7, 1450067, 31 pp.
[3] K. Nakamoto and T. Torii, Applications of Hochschild cohomology to the moduli of subalgebras of the full matrix ring, J. Pure Appl. Algebra 227 (2023), no.11, Paper No. 107426, 59 pp.
[4] _ On the classification of subalgebras of the full matrix ring of degree 3, in preparation.

Center for Medical Education and Sciences
Faculty of Medicine
University of Yamanashi
1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
Email address: nakamoto@yamanashi.ac.jp

Department of Mathematics
Okayama University
Okayama 700-8530 JAPAN
Email address: torii@math.okayama-u.ac.jp

