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Abstract. We modify the axiom of the Waldhausen structure so that it matches better
with extriangulated categories. It enables us to define an abelian group K0(C) of a weak
Waldhausen category C which generalizes that of an extriangulated category. As one
might expect, it behaves nicely in the context of Quillen’s localization and resolution
theorems. We obtain two applications: the first one generalizes exact sequences of the
Grothendieck groups associated with the Serre/Verdier localization to some types of
“one-sided” exact localizations; the second one reveals close relations between Quillen’s
theorems and Palu’s index.

1. Introduction

The higher algebraic K-theory for an exact category C was introduced by Quillen,
which is now called Quillen’s Q-construction [18]. Such a construction makes C to be the
simplicial category BC by inverting certain morphisms and the K-theory is defined via its
geometric realization |BC|. The first foundational result in [18] is the localization theorem
which extracts a long exact sequence of K-groups from the Serre quotient. The second
one is the resolution theorem which shows that if we can identify a suitable subcategory X

of an exact category C, then K(C) ∼= K(X). However, not all K-groups can be recovered
as those of some abelian/exact categories. It turned out that Quillen’s K-theory for
exact categories does not possess satisfactory generality that K-theorists had in mind,
where triangulated categories come in. To tackle this problem, Waldhausen introduced a
generalization of exact categories, now called the Waldhausen category, in whichK-theory
still exists [21]. As applications of his abstract localization theorem, Thomason-Trobaugh
established a K-theory of the derived categories [20] and Schlichting generalized it to any
algebraic triangulated category [19].

On one hand, the notion of extriangulated category was introduced by Nakaoka-Palu
[13] as a simultaneous generalization of exact categories and triangulated categories. A
localization theory of them was also developed in [12] which contains many quotient pro-
cesses in algebraic contexts as well as the Serre/Verdier quotient. In this article, focusing
only on the Grothendieck groups, we generalize a part of the Waldhausen theory on exact
categories to the extriangulated case, more specifically, we define the weak Waldhausen
extriangulated category (C,C,W) together with its Grothendieck group K0(C,C,W).
First, as a benefit of introducing the weak Waldhausen structure, we obtain an exact se-

quence of Grothendieck groups associated with some localizations such as the Serre/Vedier
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quotient (Theorem 12), which contains an extriangulated counter part of Quillen’s local-
ization theorem. The above assertion for the Serre/Verdier quotient goes back to Heller
and Grothendieck, respectively. Furthermore, it can apply to abelian localizations of tri-
angulated categories which can be traced back to hearts of t-structures in the sense of [2].
Since then, abelian localizations have been found using cluster tilting subcategories [10].
These constructions were unified in [1] and placed in an extriangulated context in [11].
A generalization from cluster tilting to rigid subcategories was initiated in [3, 4], and has
been further developed in the literature.

Our second aim is to reveal a close relation between the resolution theorem and abelian
localization. To this end, we establish the extriangulated version (Theorem 14) and it
provides a slight generalization and a better understanding for Palu’s index which was
introduced in connection with the Caldero-Chapoton map [16]. Let triangulated category
C and a 2-cluster tilting subcategory X ⊆ C be given. For each object C ∈ C, Palu’s index
indX(C) of C with respect to X is defined as an element of the split Grothendieck group
Ksp

0 (X). Recently, it is interpreted and generalized via a certain relative extriangulated
structure of C naturally defined by a given subcategory X [17, 9]. We prove that such
results indeed come from the resolution theorem.

Notation and convention. All categories and functors in this article are always assumed
to be additive, and subcategories will always be full. For a category C, we denote the
class of all morphisms in C by MorC, and modC is the category of finitely presented
contravariant functors from C to the abelian category Ab of abelian groups.

2. Localization of extriangulated categories

This section is devoted to recall the localization theory of extriangulated category
by a suitable thick subcategory, which was introduced in the pursuit of unifying the
Serre/Verdier quotient [12]. We also recall a specific case, namely, a localization of trian-
gulated category by an extension-closed subcategory [14].

Nakaoka-Palu’s extriangulated category is defined to be an additive category C equipped
with

• a biadditive functor E : Cop×C → Ab, where Ab is the category of abelian groups,
and

• a correspondence s that associates an equivalence class s(δ) = [A
f−→ B

g−→ C]

of a sequence A
f−→ B

g−→ C in C to each element δ ∈ E(C,A) for any A,C ∈ C,

where the triplet (C,E, s) satisfies some axioms. We refer the reader to [13] for an in-
depth treatment, see also [15, §2,3]. It turns out that an extriangulated category (C,E, s)
is equipped with the class of sequences of the form A

f−→ B
g−→ C which is called an

s-conflation. The pair of an s-conflation and the corresponding element δ ∈ E(C,A)
is called an s-triangle and denoted by A

f−→ B
g−→ C

δ
99K. In contrast to triangu-

lated/exact categories, if we state the axiom for extriangulated category, the realization
s is indispensable.

Let us introduce an exact sequence of extriangulated categories as a generalization of
the Serre/Verdier quotient. We denote by ET the category of extriangulated categories
and exact functors.



Definition 1. A sequence (N,E′, s′)
(F,ϕ)−→ (C,E, s) (Q,µ)−→ (D,F, t) in ET is called an exact

sequence of extriangulated categories, if the following conditions are fulfilled.

(1) F is fully faithful.
(2) ImF = KerQ holds.
(3) For any map (G,ψ) : (C,E, s) → (D′,F′, t′) in ET with G ◦ F = 0, there uniquely

exists an exact functor (G′, ψ′) : (D,F, t) → (D′,F′, t′) such that (G,ψ) = (G′, ψ′)◦
(Q, µ).

Let us remind a construction of the Verdier quotient: given a triangulated category C

and a thick subcategory N ⊆ C, we associate the class SN of morphisms in C to N, namely,
SN := {s ∈ MorC | ∃A

s−→ B → N → A[1] with N ∈ N}. Then the Verdier quotient C/N is
defined to be the Gabriel-Zisman localization C[S−1

N ] and it gives rise to an exact sequence
N → C → C/N in the category of triangulated categories and exact functors.

Similarly to the case of the Verdier quotient, we associate the class SN to the pair (C,N)
of an extriangulated category C and a thick subcategory N ⊆ C. The following is a basic
machinery to establish an exact sequence in ET, see [12, Thm. 3.5] for a detailed setup.

Theorem 2. Let (C,E, s) be an extriangulated category with a thick subcategory N. Sup-
pose SN satisfies conditions (MR1)–(MR4) in [12, Thm. 3.5]. Then there is an extriangu-

lated category (C/N, Ẽ, s̃) together with an exact functor (Q, µ) : (C,E, s) → (C/N, Ẽ, s̃).
Furthermore, the following natural sequence forms an exact sequence in ET.

(2.1) (N,E|N, s|N) (C,E, s) (C/N, Ẽ, s̃)inc //
(Q,µ)

//

Unfortunately, it is not easy to check the conditions (MR1)–(MR4). Except for the
Verdier/Serre quotient, just a few examples of subcategories which yields (2.1) are know,
e.g. biresolving subcategories [12, §§4.3] and percolating subcategories [12, §§4.4].
We now specialize to the case when (C,E, s) corresponds to a triangulated category and

recall the localization theory from [14] that we need.

Setup 3. We fix a triangulated category C (with suspension [1]) and an extension-closed
subcategory N ⊆ C that is closed under direct summands. We denote by (C,E, s) the
extriangulated category corresponding to the triangulated category C.

As an application of the relative theory for extriangulated categories [8], we know any
extension-closed subcategory N determines relative structures on C. As pointed out in [5,
Prop. A.4], these relative structures are natural from the viewpoint of constructing exact
substructures of an exact category.

Proposition 4. [14, Prop. 2.1] For A,C ∈ C, define subsets of E(C,A) = C(C,A[1]) as
follows.

EL
N(C,A) := {h : C → A[1] | ∀x : N → C with N ∈ N, we have hx ∈ [N[1] ]}

ER
N(C,A) := {h : C → A[1] | ∀y : A→ N with N ∈ N, we have y ◦ h[−1] ∈ [N[−1] ]}

Then both EL
N and ER

N give rise to closed subfunctors of E. In particular, putting EN :=
EL

N ∩ ER
N, we obtain extriangulated structures

CL
N := (C,EL

N, s
L
N), CR

N := (C,ER
N, s

R
N), CN := (C,EN, sN),



all relative to the triangulated structure (C,E, s).
With respect to the relative structure CN, the pair (C,N) yields a class SN of morphisms

in C satisfying the needed conditions to obtain an exact sequence in ET.

Theorem 5. [14, Thm. A, Lem. 2.4, Cor. 2.11] We have an exact sequence (N,E, s) inc−→
(C,EN, sN)

(Q,µ)−→ (C/N, ẼN, s̃N) in ET. Furthermore, if Cone(N,N) = C holds in the trian-
gulated category (C,E, s), the following are true.

(1) The quotient category C/N := (C/N, ẼN, s̃N) is abelian.
(2) The quotient functor (Q, µ) induces a right exact functor Q : (C,ER

N, s
R
N) → C/N

and a left exact functor Q : (C,EL
N, s

L
N) → C/N. In addition, it induces a cohomo-

logical functor Q : (C,E, s) → C/N.

We call the case Cone(N,N) = C in which we have the resulting abelian category C/N the
abelian localization of C by N.

We can think of hearts of t-structures in the sense of [2] as a prototypical example of
the abelian localization. Since then, it has been found and generalized via cluster tilting
subcategories [10], rigid subcategories [4, 3] and cotorsion pairs [1]. In turn, Theorem 5
can apply to these phenomenon. To clarify our point of focus, we record the following
immediate result.

Example 6. Let (C,E, s) be a triangulated category and X ⊆ C be a contravariantly
finite rigid subcategory. We consider an extension closed subcategory N := X⊥0 = {C ∈
C | (X, C) = 0}. Since Cone(N,N) = C is true, Theorem 5 provides a right exact functor
Q : CR

N → C/N. Furthermore, we can verify that there exists a natural exact equivalence
C/N ∼= modX. Thus we have a right exact functor Q ∼= (X,−) with the kernel N as
below.

(2.2) (N,E|N, s|N) (C,ER
N, s

R
N) modX

inc // Q //

Note that this sequence does not sit in ET any more.

3. Weak Waldhausen categories

We introduce the notion of weak Waldhausen category. This is a simultaneous gener-
alization of the (classical) Waldhausen category and extriangulated category. Also, we
define its Grothendieck group.

Definition 7. Let C be an additive category equipped with a class Seq of distinguished
sequences of the form

(3.1) A B C
f // g //

in C, and a class W of morphisms in C. Denote by C (resp. F) the class of morphisms f
(resp. g) appearing in a distinguished sequence (3.1). The morphisms in C (resp. F) are
called cofibrations (resp. fibrations) and denoted by ↣ (resp. ↠). The morphisms in W
are called weak equivalences and are denoted by

∼−→.

(1) The triplet (C, Seq,W) is called a weak Waldhausen (additive) category if the
following axioms are satisfied.



(WC0) The class C is closed under composition and contains all isomorphisms.
(WC1) Seq contains all split exact sequences and is closed under isomorphism. Any

distinguished sequence (3.1) is a weak cokernel sequence.

(WC2) Any pair (f, c) of a cofibration A
f
↣ B and a morphism A

c−→ C yields

a cofibration A

(
f
−c

)
−−−→ B ⊕ C. Furthermore, the associated distinguished

sequences of the form A

(
f
−c

)
−−−→ B ⊕ C

( c′ f ′ )−−−−→ D satisfy that f ′ belongs to C.
(WW0) The class W is closed under composition and contains all isomorphisms.
(WW1) (Gluing axiom) Consider a commutative diagram of the form

(3.2) C A B

C ′ A′ B′

coo // f //

c′oo // f
′
//

∼
��

∼
��

∼
��

in which all vertical arrows are weak equivalences and the feathered arrows
are cofibrations. Then from a distinguished weak cokernel of

(
f
−c

)
to a distin-

guished weak cokernel of
(

f ′

−c′

)
, there is an induced morphism that is also a

weak equivalence.
(2) The triplet (C, Seq,W) is called a weak coWaldhausen category if the triplet (Cop, Seqop,Wop)

is a weak Waldhausen additive category.
(3) The triplet (C, Seq,W) is called a weak biWaldhausen category if (C, Seq,W) is

both weak Waldhausen and weak coWaldhausen.

Example 8. Let (C,E, s) be an extriangulated category. Define Seqs to be the class of
all s-conflations, and Ws to be the class of all isomorphisms in C. Then (C, Seqs,Ws) is a
weak biWaldhausen category.

We introduce some concepts for weak Waldhausen categories by analogy to the classical
theory.

Definition 9. Let (C, Seq,W) and (C′, Seq′,W′) be weak Waldhausen categories.

(1) An additive functor F : C → C′ is called an exact functor if it preserves distin-
guished sequences and weak equivalences, namely, F (Seq) ⊆ Seq′ and F (W) ⊆ W′

hold.
(2) Suppose (C, Seq,V) is a weak Waldhausen category with V ⊆ W. Then the identity

functor idC : (C, Seq,V) → (C, Seq,W) is exact. An object C ∈ C is W-acyclic if
the zero map 0 ↣ C belongs to W. We denote by NW the full subcategory of all
W-acyclic objects in (C, Seq,V). In this case, the subcategory admits a natural
weak Waldhausen structure (NW, Seq′,V′) which is a restriction of (C, Seq,V).

We denote by wWald the category of weak Waldhausen categories and exact functors.
Analogously to the case of extriangulated category, we introduce their exact sequence.

Definition 10. The natural sequence

(3.3) (NW, Seq′,V′)
inc−→ (C, Seq,V)

id−→ (C, Seq,W)



in Definition 9(2) is called a localization sequence. Moreover it is called an exact sequence

in wWald if the functor (C, Seq,V)
idC−→ (C, Seq,W) is universal among exact functors

F : (C, Seq,V) → (D, Seq′,W′) with F |NW = 0, where (D, Seq′,W′) is a weak Waldhausen
category satisfying the saturation and extension axioms (see [21, p. 327]).

The Grothendieck group for weak Waldhausen categories is defined as follows.

Definition 11. Assume that (C,C,W) is a weak Waldhausen category. The Grothendieck
group K0(C) := K0(C,C,W) is defined to be the abelian group freely generated by the set
of isomorphism classes [C] of each object C ∈ C, modulo to the relations:

• [C] = [C ′] for each weak equivalence C
∼−→ C ′; and

• [B] = [A] + [C] for each distinguished sequence A↣ B ↠ C.

To state our abstract localization theorem we define subclasses of MorC:

• Lac := C∩W; Rac := F∩W; and
• Rac

ret := {g ∈ MorC|g is a retraction and Ker g ∈ N}.
The first result can be regarded as a version of Shclichting’s theorem [19, Thm. 11].

Theorem 12 (Localization Theorem). Consider a localization sequence of weak Wald-
hausen categories as (3.3). If we assume that

(1) W consists of finite compositions of morphisms from Lac ∪Rac
ret ∪ V; or

(2) W consists of finite compositions of morphisms from Lac∪Rac∪V and C is a weak
biWaldhausen,

then it becomes an exact sequence in wWald which induces a right exact sequence in Ab
as follows.

(3.4) K0(N
W, Seq′,V′) K0(C, Seq,V) K0(C, Seq,W) 0

K0(inc) //
K0(id) // //

The second one is an extriangulated version of Quillen’s resolution theorem at the level
of K0, see [15, Thm. 4.5] for more details.

Definition 13. Let (C,E, s) be an extriangulated category, let X ⊆ C be a subcategory
and fix an object C ∈ C. A finite X-resolution (in C) of C is defined to be a complex

(3.5) Xn
fn−1−→ · · · g2f1−→ X1

g1f0−→ X0
g0−→ C,

where Xi ∈ X for each 0 ≤ i ≤ n, and Ci+1
fi−→ Xi

gi−→ Ci is an s-conflation for each
0 ≤ i ≤ n − 1 with (C0, Cn) := (C,Xn). In this case, we say that the X-resolution is of
length n.

Theorem 14 (Resolution Theorem). Let (C,E, s) be an extriangulated category. Suppose
X is an extension-closed subcategory of (C,E, s), such that X is closed under taking cocones
of s-deflations in (C,E, s). If any object C ∈ C admits a finite X-resolution, then we have
an isomorphism

K0(C,E, s)
∼=−→ K0(X,E|X, s|X)

[C] 7−→
n∑

i=0

(−1)i[Xi]



where we consider an X-resolution (3.5) of C ∈ C.

4. Applications

Lastly we demonstrate some usages of our localization and resolution theorem. As
expected, an exact sequence in ET induces an exact sequence in wWald. In such a case,
we may apply the localization theorem to get a right exact sequence of the Grothendieck
groups in Ab, recovering Enomoto-Saito’s extriangulated localization theorem [6, Cor.
4.32]. A benefit of weak Waldhausen structures sits in the fact that such a construc-
tion still holds for the abelian localization in the sense of Theorem 5. Exact sequences
appearing in this article are related to each other as summarized below.

Verdier quotient Serre quotient

Exact sequence of
extriangulated categories

Abelian localization of
triangulated categories

Exact sequence of
Waldhausen categories

Exact sequence of
weak Waldhausen categories

Right exact sequence of
Grothendieck groups

[12] [12]

Thm. 12

Thus, although the “right exact” sequence (2.2) does not exsist in ET, it induces a

natural exact sequences (NW, Seq′,V′)
inc−→ (C, Seq,V)

id−→ (C, Seq,W) in wWald to which
Theorem 12 can apply. Thus, like the case of Enomoto-Saito’s theorem, it also induces a
right exact sequence in Ab as below.

K0(N,E|N, s|N) K0(C,ER
N, s

R
N) K0(C, Seq,W) 0

K0(inc) //
K0(id) // //

Furthermore, thanks to the assumption Cone(N,N) = C in Theorem 5, (the dual of) the
resolution theorem applies to the inclusion N ⊆ (C,ER

N, s
R
N). It shows the leftmost arrow

is an isomorphism K0(N,E|N, s|N)
∼=−→ K0(C,ER

N, s
R
N). This isomorphism has been already

appeared in the literature, which we now describe.

Example 15. (cf. Example 6) Let (C,E, s) be a triangulated category and X ⊆ C a 2-
cluster tilting subcategory. Put N := X[1] = X⊥0 . Then the aforementioned isomorphism
can be described as follows,

K0(C,ER
N, s

R
N)

∼=−→ Ksp
0 (X)

[C] 7−→ [X0]− [X1]

where we consider a triangle X1 → X0 → C → X1[1] comming from the defining cotorsion
pair (X,X). This isomorphism is known as the index isomorphism [17]. In the case of
X = X[1], by a closer look at this isomorphism, Fedele interpreted the Grothendieck group
K0(C) of the triangulated category as that of the 4-angulated category X [7, Thm. C].



Due to the very generality of our abstract theorems, we expand their results to wider
setup containing the n-cluster tilting subcategory case.
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