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Abstract. For an eventually periodic module, we obtain the degree n and the period p
of its first periodic syzygy. In this note, in order to study the degree n, we introduce the
notion of the periodic dimension of a module and report results on periodic dimensions
obtained so far.

1. Introduction

Throughout this note, let k be a field, and we assume that all rings are left Noetherian
semiperfect rings (that are associative and unital). By a module, we mean a finitely
generated left module.

Homological algebra [7] has been playing an important role in the representation theory
of rings, and one of the fundamental tools is a projective resolution of a module. So it is
natural to study the behavior of projective resolutions. In this note, we are concerned with
eventually periodic modules (i.e., modules whose minimal projective resolutions become
periodic in sufficiently large degrees) and study when their minimal projective resolutions
become periodic. For this, we will introduce the notion of the periodic dimension of a
module. From the definition, a module M is of finite periodic dimension if and only if
M is eventually periodic. In this case, the value of the periodic dimension equals the
degree of the first periodic syzygy of M . We first provide some of the basic properties of
periodic dimensions and then investigate the relationship between Gorenstein and periodic
dimensions. Moreover, motivated by a recent result of Dotsenko-Gélinas-Tamaroff [9], we
determine the bimodule periodic dimension of a finite dimensional eventually periodic
Gorenstein algebra.

2. Eventually periodic modules

This section recalls the definition of eventually periodic modules and some related
results. Let R be a ring. For an R-module M and an integer i ≥ 0, we denote by Ωi

R(M)
the i-th syzygy of the R-module M . It is understood that Ω0

R(M) = M .

Definition 1. An R-module M is called periodic if there exists an integer p > 0 such that
Ωp

R(M) ∼= M as R-modules. The smallest p > 0 with this property is called the period
of M . We call M eventually periodic if there exists an integer n ≥ 0 such that Ωn

R(M) is
periodic.

We say that an R-module M is (n, p)-eventually periodic if M is eventually periodic
over R and satisfies that its n-th syzygy is the first periodic syzygy of period p. We call
a (0, p)-eventually periodic module a p-periodic module.
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Modules of finite projective dimension n are (n+1, 1)-eventually periodic. The following
example exhibits (n, p)-eventually periodic modules (with infinite projective dimension).

Example 2. Fix two integers n ≥ 0 and p > 0, and consider the finite dimensional radical
square zero algebra Λ = kQ/R2

Q, where Q is the following quiver:

n // n− 1 // · · · // 1 // 0 // −1 // · · · // −p+ 1
ww

and RQ is the arrow ideal of the path algebra kQ. We denote by Si the simple Λ-module
associated with the vertex i. A direct calculation shows that Si is (i, p)-eventually periodic
if 1 ≤ i ≤ n and is p-periodic if −p + 1 ≤ i ≤ 0. In particular, Sn is (n, p)-eventually
periodic.

The integers n and p associated with an (n, p)-eventually periodic module are studied
in the literature, for example [3, 6, 8, 10, 11]. We recall the following result of Avramov
[3].

Theorem 3 ([3, Theorem 7.3.1]). Let R be a commutative local ring, and let M be an
R-module of finite complete intersection dimension. Then the following conditions are
equivalent.

(1) M is (n, p)-eventually periodic with n ≤ depthR− depthRM + 1 and p = 1 or 2.

(2) M has bounded Betti numbers.

Using [2, Lemma 1.2.6], one can check that any (n, p)-eventually periodic module M
over a commutative local ring R satisfies that depthR − depthRM ≤ n. Thus, for any
(n, p)-eventually periodic R-modules satisfying the assumption of Theorem 3, we obtain
the following formula

depthR− depthRM ≤ n ≤ depthR− depthRM + 1.(2.1)

3. Periodic dimensions

In this section, we will introduce the notion of the periodic dimension of a module and
provide our main results. Throughout this section, let R denote a ring.

Observe that if M is a periodic module, then all its syzygies are periodic and have the
same period as M . Thus it is natural to introduce the following notion.

Definition 4. Let M be an R-module. Then we define the periodic dimension of M by

per.dimRM := inf {n ≥ 0 | Ωn
R(M) is periodic } .

By definition, M is eventually periodic if and only if per.dimRM < ∞. In this case,
per.dimRM equals the degree n of the first periodic syzygy Ωn

R(M) of M . For instance,
if M has finite projective dimension, then per.dimRM = proj.dimRM + 1. Also, if M is
of finite periodic dimension n, then we have

per.dimRΩ
i
R(M) =

{
n− i if 0 ≤ i ≤ n,

0 if i > n .



Recall from [1, 4] that an R-module X, where R is an arbitrary ring, is called totally
reflexive if X ∼= X∗∗ and ExtiR(X,R) = 0 = ExtiRop(X∗, R) for all i > 0, where we set
(−)∗ := HomR(−, R). The Gorenstein dimension G-dimRM of an R-module M is defined
to be the infimum of the length n of an exact sequence of R-modules

0 → Xn → · · · → X1 → X0 → M → 0

with each Xi totally reflexive. The following proposition states the property of periodic
dimensions with respect to direct sums.

Proposition 5. For any finite family {RMi}i∈I of R-modules, we have

per.dimR

⊕
i∈I Mi ≤ sup{ per.dimRMi | i ∈ I }

The equality holds if R is left artin, and G-dimRMi < ∞ for all i ∈ I.

The following is our first main result.

Theorem 6. Let M be an (n, p)-eventually periodic R-module of finite Gorenstein dimen-
sion r. Then we have r ≤ n ≤ r + 1. If, furthermore, R is left artin, then the following
assertions hold.

(1) n = r if and only if Ωr
R(M) has no non-zero projective direct summand.

(2) If Ωn−1
R (M) = X ⊕ Q for some R-module X without non-zero projective direct

summand and some projective R-module Q, then r = n − 1 if and only if X ∼=
Ωn+p−1

R (M) as R-modules.

Remark 7. (1) Let M be an (n, p)-eventually periodic R-module of finite complete
intersection dimension, where R is a commutative local ring. Then, since we know
from [3, Theorems 8.7 and 8.8] that depthR−depthRM = G-dimRM , the obtained
bounds r ≤ n ≤ r + 1 in this case are noting but (2.1).

(2) If R is a CM-finite Gorenstein artin algebra, then any R-modules satisfy the as-
sumption of the theorem. Here, CM-finite [5] means that there are only finitely
many pairwise non-isomorphic indecomposable totally reflexive R-modules, and
Gorenstein [4] means that the injective dimension of R is finite as a left and as a
right R-module.

In what follows, let Λ be a finite dimensional algebra over the filed k. We say that
Λ is eventually periodic if Ωn

Λ⊗kΛop(Λ) is eventually periodic as a Λ ⊗k Λop-module for
some n ≥ 0. In case n = 0, we call Λ a periodic algebra. The following is a result of
Dotsenko-Gélinas-Tamaroff [9].

Theorem 8 ([9, the proof of Theorem 6.3]). Let Λ be a monomial Gorenstein algebra.
Then per.dimΛ⊗kΛopΛ is finite and at most inj.dimΛΛ+1, where inj.dimΛΛ stands for the
injective dimension of the regular Λ-module Λ.

Motivated by the theorem, we first obtain the following observation.

Proposition 9. The following statements hold for a finite dimensional algebra Λ.

(1) If Λ is eventually periodic, then G-dimΛ⊗kΛopΛ < ∞ if and only if Λ is Gorenstein.
(2) If Λ is Gorenstein, then G-dimΛ⊗kΛopΛ = inj.dimΛΛ.



As a consequence of Theorem 6, we then have the following second main result of this
note.

Theorem 10. Let Λ be a finite dimensional eventually periodic Gorenstein algebra. Then
we have

inj.dimΛΛ ≤ per.dimΛ⊗kΛopΛ ≤ inj.dimΛΛ + 1.

Moreover, per.dimΛ⊗kΛopΛ = inj.dimΛΛ if and only if Ω
inj.dimΛΛ
Λ⊗kΛop (Λ) has no non-zero pro-

jective direct summand.

We end this section by explaining that the bounds given in the theorem are the best
possible.

Proposition 11 ([12, Proposition 4.3]). Let Λ and Γ be finite dimensional algebras.
Assume that Λ is periodic and Γ has finite global dimension d. Then the tensor product
A = Λ⊗k Γ is a Gorenstein algebra with per.dimA⊗kAopA = inj.dimAA.

Example 12. Let Λ be the finite dimensional monomial algebra given by the following
quiver with relations:

dβ 99
αd // d− 1

αd−1 // · · · // 1
α1 // 0 β2, αi−1αi for 2 ≤ i ≤ d.

A direct calculation shows that Λ is a Gorenstein algebra with per.dimΛ⊗kΛopΛ = inj.dimΛΛ+
1.
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