FACES OF INTERVAL NEIGHBORHOODS OF SILTING CONES

SOTA ASAI AND OSAMU IYAMA

ABSTRACT. In the study of silting complexes for a finite dimensional algebra over a field, silting cones in the real Grothendieck group play an important role. The first named author defined the interval neighborhood of each silting cone so that it is compatible with τ -tilting reduction of Jasso. The closure of the interval neighborhood is a rational polyhedral cone in the real Grothendieck group. We have obtained many important properties of the faces of this rational polyhedral cone, and explain some of them in this proceeding.

1. INTRODUCTION

The representation theory of a finite dimensional algebra A over a field K studies the categories mod A and proj A of finitely generated (projective) A-modules, and its derived categories $\mathsf{D}^{\mathsf{b}}(\mathsf{mod } A)$ and $\mathsf{K}^{\mathsf{b}}(\mathsf{proj } A)$.

Derived equivalences of algebras are characterized by the existence of *tilting complexes* in the category $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,A)$ introduced by Rickard [20]. Keller-Vossieck [17] generalized tilting complexes to *silting complexes*, and silting complexes are equipped with the operation called *mutation* exchanging one indecomposable direct summand of a silting complex to obtain another one [3].

Among silting complexes, 2-term silting complexes are strongly related to functorially finite torsion pairs [1, 5, 11], which is known as part of τ -tilting theory. It is natural to also consider direct summands of 2-term silting complexes, which are called 2-term presilting complexes.

In the study of (pre)silting complexes, the *Grothendieck group* $K_0(\text{proj } A)$ is important. Actually, $K_0(\text{proj } A)$ is nothing but the free abelian group $\bigoplus_{i=1}^n \mathbb{Z}[P_i]$ whose canonical basis is given by the isoclasses of indecomposable projective modules P_1, P_2, \ldots, P_n .

Aihara-Iyama [3] proved that the indecomposable direct summands S_1, S_2, \ldots, S_n of each basic silting complex $S = \bigoplus_{i=1}^n S_i$ give another free basis $[S_1], [S_2], \ldots, [S_n]$ of $K_0(\operatorname{proj} A)$. Then, for each basic 2-term presilting complex $U = \bigoplus_{i=1}^m U_i$ with U_i indecomposable, we have a *silting cone*

$$C^{\circ}(U) := \sum_{i=1}^{m} \mathbb{R}_{>0}[U_i],$$

in the real Grothendieck group $K_0(\operatorname{proj} A)_{\mathbb{R}}$. The silting cone $C^{\circ}(U)$ is m-dimensional.

By [12], silting cones give a fan in $K_0(\operatorname{proj} A)_{\mathbb{R}}$ so that the intersection $C(U) \cap C(U')$ of the silting cones of basic 2-term presilting complexes U and U' coincides with the silting cone C(U'') of the maximum common direct summand U'' of U and U'.

The detailed version of this paper will be submitted for publication elsewhere.

In general, this fan is not necessarily complete. In other words, there can be a region in $K_0(\operatorname{proj} A)_{\mathbb{R}}$ where no silting cones exist. To understand such a region more, it is helpful to consider *semistable subcategories* \mathcal{W}_{θ} of King [18] and *semistable torsion pairs* $(\overline{\mathcal{T}}_{\theta}, \mathcal{F}_{\theta}), (\mathcal{T}_{\theta}, \overline{\mathcal{F}}_{\theta})$ of Baumann-Kamnitzer-Tingley [9] in mod A, given by certain linear conditions on subfactors of modules in mod A for elements θ in $K_0(\operatorname{proj} A)_{\mathbb{R}}$.

By using semistable subcategories, Brüstle-Smith-Treffinger [10] introduced the wallchamber structure in $K_0(\operatorname{proj} A)_{\mathbb{R}}$ whose walls are $\Theta_M := \{\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}} \mid M \in \mathcal{W}_{\theta}\}$ for all nonzero modules $M \in \operatorname{mod} A \setminus \{0\}$. Similarly, by semistable torsion pairs, the first named author [6] defined an equivalence relation called *TF* equivalence so that θ and η are TF equivalent if $(\overline{\mathcal{T}}_{\theta}, \mathcal{F}_{\theta}) = (\overline{\mathcal{T}}_{\eta}, \mathcal{F}_{\eta})$ and $(\mathcal{T}_{\theta}, \overline{\mathcal{F}}_{\theta}) = (\mathcal{T}_{\eta}, \overline{\mathcal{F}}_{\eta})$.

Based on results of Brüstle-Smith-Treffinger [10] and Yurikusa [21], the first named author [6] proved that the silting cone $C^{\circ}(U)$ for each basic 2-term presilting complex Uis a TF equivalence class. The semistable torsion pairs for $\theta \in C^{\circ}(U)$ are the functorially finite torsion pairs for U which have already been considered in [1, 8].

Sometimes, it is difficult to deal with all 2-term (pre)silting complexes at once. Then, one of the useful methods is τ -tilting reduction introduced by Jasso [16]. For a fixed basic 2-term presilting complex U, Jasso constructed a finite dimensional algebra $B = B_U$, and obtained that the basic 2-term (pre)silting complexes which have U as direct summands in K^b(proj A) are in bijections with the basic 2-term (pre)silting complexes in K^b(proj B). Moreover, Jasso also proved that \mathcal{W}_{θ} for $\theta \in C^{\circ}(U)$ is equivalent to the module category mod B.

The first named author introduced a subset N_U of $K_0(\operatorname{proj} A)_{\mathbb{R}}$ which connects the wallchamber structure, TF equivalence and the τ -tilting reduction at U in [6]. The set N_U is an open neighborhood of the silting cone $C^{\circ}(U)$, so we decided to call N_U the *interval neighborhood* of $C^{\circ}(U)$.

By the construction, the closure $\overline{N_U}$ is a rational polyhedral cone in $K_0(\operatorname{proj} A)_{\mathbb{R}}$, so we are currently studying the faces of $\overline{N_U}$. We will state some of our results on the faces of $\overline{N_U}$ in this proceeding.

1.1. Notation. In this proceeding, K is a field, and A is a finite dimensional K-algebra. The symbol proj A denotes the category of finitely generated projective A-modules, and mod A denotes the category of finitely generated A-modules.

As usual, $K_0(\mathcal{C})$ is the *Grothendieck group* of an exact category \mathcal{C} . The *real Grothendieck group* means the \mathbb{R} -vector space $K_0(\mathcal{C})_{\mathbb{R}} := K_0(\mathcal{C}) \otimes_{\mathbb{Z}} \mathbb{R}$.

The Grothendieck group $K_0(\operatorname{proj} A)$ is nothing but $\bigoplus_{i=1}^n \mathbb{Z}[P_i]$, where P_1, P_2, \ldots, P_n are the pairwise nonisomorphic indecomposable projective modules. Thus, $K_0(\operatorname{proj} A)_{\mathbb{R}}$ is the Euclidean space $\bigoplus_{i=1}^n \mathbb{R}[P_i]$. Similarly, $K_0(\operatorname{mod} A) = \bigoplus_{i=1}^n \mathbb{Z}[L_i]$ and $K_0(\operatorname{mod} A)_{\mathbb{R}} = \bigoplus_{i=1}^n \mathbb{R}[L_i]$ hold, where L_i is the simple top of P_i .

With respect to the *Euler form*, $K_0(\operatorname{proj} A)_{\mathbb{R}}$ can be seen as the dual \mathbb{R} -vector space of $K_0(\operatorname{mod} A)_{\mathbb{R}}$ up to scalar multiples. Namely, each $\theta = \sum_{i=1}^n a_i [P_i] \in K_0(\operatorname{proj} A)_{\mathbb{R}}$ gives the \mathbb{R} -linear map $K_0(\operatorname{mod} A)_{\mathbb{R}} \to \mathbb{R}$ such that

$$\theta\left(\sum_{i=1}^n b_i[L_i]\right) = \sum_{i=1}^n a_i b_i \dim_K \operatorname{End}_A(L_i).$$

2. SILTING CONES AND TF EQUIVALENCE

We first recall some terminology on silting cones and TF equivalence.

Let U be a complex in the homotopy category $\mathsf{K}^{\mathsf{b}}(\mathsf{proj} A)$ of bounded complexes in $\mathsf{proj} A$. Since $\mathsf{K}^{\mathsf{b}}(\mathsf{proj} A)$ is Krull-Schmidt, U is isomorphic to a direct sum of the form $\bigoplus_{i=1}^{m} U_i^{\oplus s_i}$ with U_1, U_2, \ldots, U_m indecomposable and pairwise nonisomorphic and all $s_i \geq 1$. In this case, we set |U| := m, and say that U is *basic* if all $s_i = 1$.

Then, we can define (pre)silting complexes as follows.

Definition 1. [17, 5.1][3, Theorem 2.27] Let $U \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj} A)$.

(1) We say that U is presilting if $\operatorname{Hom}_{\mathsf{K}^{\mathsf{b}}(\operatorname{proj} A)}(U, U[>0]) = 0.$

(2) We say that U is silting if U is presilting and |U| = |A|.

Aihara [2, Proposition 2.16] proved that any presilting complex U is a direct summand of some silting complex S. By this and [3, Theorem 2.27], if $U = \bigoplus_{i=1}^{m} U_i$ with each U_i indecomposable is presilting, then $[U_1], [U_2], \ldots, [U_m] \in K_0(\operatorname{proj} A)_{\mathbb{R}}$ are linearly independent.

We say that $U \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj} A)$ is 2-term if the terms of U except the -1st and the 0th ones are zero. The result [2, Proposition 2.16] also says that any 2-term presilting complex U is a direct summand of some 2-term silting complex S.

We set 2-silt A (resp. 2-psilt A) as the set of basic 2-term (pre)silting complexes in $K^{b}(\text{proj } A)$. Thus, it is natural to consider the following notions.

Definition 2. Let $U = \bigoplus_{i=1}^{m} U_i \in 2$ -psilt A with U_i indecomposable. Then, we set the silting cones $C^{\circ}(U), C(U) \subset K_0(\operatorname{proj} A)_{\mathbb{R}}$ as

$$C^{\circ}(U) = \sum_{i=1}^{m} \mathbb{R}_{>0}[U_i], \quad C(U) = \sum_{i=1}^{m} \mathbb{R}_{\geq 0}[U_i].$$

We will characterize the silting cone $C^{\circ}(U)$ by semistable torsion pairs, which are defined as follows.

Definition 3. Let $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$.

(1) [9, Subsection 3.1] We set the semistable torsion pairs $(\overline{\mathcal{T}}_{\theta}, \mathcal{F}_{\theta}), (\mathcal{T}_{\theta}, \overline{\mathcal{F}}_{\theta})$ in mod A by

 $\overline{\mathcal{T}}_{\theta} := \{ M \in \mathsf{mod} \ A \mid \theta(N) \ge 0 \text{ for any factor module } N \text{ of } M \},\$ $\mathcal{F}_{\theta} := \{ M \in \mathsf{mod} \ A \mid \theta(L) < 0 \text{ for any submodule } L \ne 0 \text{ of } M \},\$ $\mathcal{T}_{\theta} := \{ M \in \mathsf{mod} \ A \mid \theta(N) > 0 \text{ for any factor module } N \ne 0 \text{ of } M \},\$ $\overline{\mathcal{F}}_{\theta} := \{ M \in \mathsf{mod} \ A \mid \theta(L) \le 0 \text{ for any submodule } L \text{ of } M \}.$

(2) [18, Definition 1.1] We set $\mathcal{W}_{\theta} := \overline{\mathcal{T}}_{\theta} \cap \overline{\mathcal{F}}_{\theta}$, and call it the *semistable subcategory*.

The semistable subcategory \mathcal{W}_{θ} is a *wide subcategory* of mod A; that is, closed under taking kernels, cokernels, and extensions in mod A. Therefore, the interval $[\mathcal{T}_{\theta}, \overline{\mathcal{T}}_{\theta}]$ in the poset tors A of torsion classes is a *wide interval* in [7]. Moreover, \mathcal{W}_{θ} is an abelian length category, and hence has the Jordan-Hölder property [14, Theorem 6.2].

Then, we can define TF equivalence.

Definition 4. [6, Definition 2.13] Let $\theta, \eta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$. We say that θ and η are TF equivalent if $(\overline{\mathcal{T}}_{\theta}, \mathcal{F}_{\theta}) = (\overline{\mathcal{T}}_{\eta}, \mathcal{F}_{\eta})$ and $(\mathcal{T}_{\theta}, \overline{\mathcal{F}}_{\theta}) = (\mathcal{T}_{\eta}, \overline{\mathcal{F}}_{\eta})$.

The following result based on [10, Proposition 3.27] and [21, Proposition 3.3] is fundamental in our study.

Proposition 5. [6, Proposition 3.11] Let $U \in 2$ -psilt A. Then, $C^{\circ}(U)$ is a TF equivalence class. For any $\theta \in C^{\circ}(U)$, we have

$$(\overline{\mathcal{T}}_{\theta}, \mathcal{F}_{\theta}) = ({}^{\perp}H^{-1}(\nu U), \mathsf{Sub}\,H^{-1}(\nu U)), \quad (\mathcal{T}_{\theta}, \overline{\mathcal{F}}_{\theta}) = (\mathsf{Fac}\,H^{0}(U), H^{0}(U)^{\perp}).$$

The torsion pairs in the right-hand sides are classical functorially finite ones which were in [8, Theorem 5.10]. In the terminology of [1], the module $H^{-1}(\nu U)$ is τ^{-1} -rigid, and the module $H^0(U)$ is τ -rigid. See [1, 8] for details including the definitions of the symbols.

Definition 6. Let $U \in 2$ -psilt A. Then, we set

$$(\overline{\mathcal{T}}_U, \mathcal{F}_U) := ({}^{\perp}H^{-1}(\nu U), \operatorname{Sub} H^{-1}(\nu U)), \quad (\mathcal{T}_U, \overline{\mathcal{F}}_U) := (\operatorname{Fac} H^0(U), H^0(U)^{\perp}),$$
$$\mathcal{W}_U := \overline{\mathcal{T}}_U \cap \overline{\mathcal{F}}_U.$$

Thus, $\mathcal{W}_U = \mathcal{W}_\theta$ for $\theta \in C^{\circ}(U)$ holds, so \mathcal{W}_U is a wide subcategory of mod A. This was shown by [16, Theorem 3.8] without using semistable torsion pairs. See also [13, Theorem 4.12].

3. Interval neighborhoods of silting cones

For each $U \in 2$ -psilt A, we set

$$2\operatorname{-psilt}_{U} A := \{ V \in 2\operatorname{-psilt} A \mid U \in \operatorname{add} V \}.$$

This is the subset of 2-psilt A consisting all $V \in 2$ -psilt A which have U as direct summands.

To study 2-psilt_U A, the first named author introduced the following set.

Definition 7. [6, Subsection 4.1] Let $U \in 2\text{-silt } A$. Then, we define the *interval neighborhood* N_U of $C^{\circ}(U)$ by

$$N_U := \{ \theta \in K_0(\operatorname{proj} A)_{\mathbb{R}} \mid H^0(U) \subset \mathcal{T}_{\theta}, \ H^{-1}(\nu U) \subset \mathcal{F}_{\theta} \}$$
$$= \{ \theta \in K_0(\operatorname{proj} A)_{\mathbb{R}} \mid \mathcal{T}_U \subset \mathcal{T}_{\theta}, \ \mathcal{F}_U \subset \mathcal{F}_{\theta} \}.$$

We first observe the following properties.

Lemma 8. Let $U, V \in 2$ -psilt A.

- (1) [6, Lemma 4.3] The set N_U is an open neighborhood of $C^{\circ}(U)$.
- (2) The set N_U is given by finitely many linear strict inequalities.
- (3) [6, Lemma 3.13] The following conditions are equivalent:
 - (a) $V \in 2\text{-psilt}_U A$;
 - (b) $\mathcal{T}_V \supset \mathcal{T}_U$ and $\mathcal{F}_V \supset \mathcal{F}_U$;
 - (c) $C^{\circ}(V) \subset N_U;$
 - (d) $N_V \subset N_U$.

Moreover, N_U satisfies the following minimality.

Lemma 9. Let $U \in 2$ -psilt A. Then, N_U is the smallest set satisfying both the following conditions:

- (a) N_U is a neighborhood of $C^{\circ}(U)$;
- (b) N_U is a union of TF equivalence classes.

We also focus on the closure $\overline{N_U} \subset K_0(\operatorname{proj} A)_{\mathbb{R}}$.

Lemma 10. Let $U, V \in 2$ -psilt A.

- (1) We have $\overline{N_U} = \{\theta \in K_0(\text{proj } A)_{\mathbb{R}} \mid H^0(U) \subset \overline{\mathcal{T}}_{\theta}, \ H^{-1}(\nu U) \subset \overline{\mathcal{F}}_{\theta}\}$. In particular, $\overline{N_U}$ is a union of TF equivalence classes.
- (2) We have $\overline{N_U} \supset C(U)$.
- (3) The set $\overline{N_U}$ is a rational polyhedral cone in $K_0(\text{proj } A)_{\mathbb{R}}$.
- (4) The following conditions are equivalent:
 - (a) $U \oplus V$ is (not necessarily basic) presilting;
 - (b) $N_U \cap N_V \neq \emptyset$;
 - (c) $C(V) \subset \overline{N_U}$.

In this case, $N_{U\oplus V} = N_U \cap N_V$ holds.

4. Faces of interval neighborhoods

Let $U \in 2$ -psilt A. Since $\overline{N_U}$ is a rational polyhedral cone, we study the set Face $\overline{N_U}$ of its faces. If $U = \bigoplus_{i=1}^m U_i$ with U_i indecomposable, we set $U_I := \bigoplus_{i \in I} U_i$ for each subset $I \subset \{1, 2, \ldots, m\}$. We have obtained the following properties in our study.

Definition-Proposition 11. Let $U \in 2$ -psilt A and $F \in Face \overline{N_U}$. Set $I_F := \{i \in \{1, 2, ..., m\} \mid [U_i] \notin F\}$.

- (1) We have $F \cap C(U) = C(U/U_{I_F})$.
- (2) If $\dim_{\mathbb{R}} F = n 1$, then $\#I_F = 1$.
- (3) For any $I \subset \{1, 2, \ldots, m\}$, we define

$$\mathsf{Face}_{I} \overline{N_{U}} := \{ F \in \mathsf{Face} \overline{N_{U}} \mid I_{F} = I \}.$$

Then, we have a (not necessarily convex) subset

$$\partial_I := \bigcup_{F \in \mathsf{Face}_I \ \overline{N_U}} F = \overline{N_U} \setminus \bigcup_{i \in I} N_{U_i} \subset \overline{N_U}.$$

To explain our main results, we need to recall some results in τ -tilting reduction.

Fix $U \in 2$ -psilt A. Then, we take the unique $S \in 2$ -silt A such that $\overline{\mathcal{T}}_S = \overline{\mathcal{T}}_U$. This S is called the *Bongartz completion* of U. We define a finite dimensional algebra $B = B_U$ by $B := \operatorname{End}_{\mathsf{K}^{\mathsf{b}}(\operatorname{proj} A)}(S)/\langle e \rangle$, where e is the idempotent $S \to U \to S$.

Jasso [16] proved the following results. See also [13, Theorem 4.12] and [4, Theorem 4.9].

Proposition 12. Let $U \in 2$ -psilt A.

(1) [16, Theorem 3.8] There exists a category equivalence

$$\Phi := \operatorname{Hom}_{\mathsf{D}^{\mathsf{b}}(\mathsf{mod}\,A)}(S,?) \colon \mathcal{W}_U \to \mathsf{mod}\,B.$$

(2) [16, Theorems 3.16, 4.12] There uniquely exist bijections

$$p: 2-\operatorname{silt}_U A \to 2-\operatorname{silt} B, \quad p: 2-\operatorname{psilt}_U A \to 2-\operatorname{psilt} B$$

such that

$$(\Phi(\overline{\mathcal{T}}_U \cap \mathcal{W}_U), \Phi(\mathcal{F}_U \cap \mathcal{W}_U)) = (\overline{\mathcal{T}}_{p(U)}, \mathcal{F}_{p(U)}), (\Phi(\mathcal{T}_U \cap \mathcal{W}_U), \Phi(\overline{\mathcal{F}}_U \cap \mathcal{W}_U)) = (\mathcal{T}_{p(U)}, \overline{\mathcal{F}}_{p(U)}).$$

In particular, p(S) = B.

The first named author found the corresponding results in $K_0(\text{proj } A)_{\mathbb{R}}$.

Definition-Proposition 13. [6, Lemma 4.4, Theorem 4.5] Let $U \in 2$ -psilt A. Then, there exists an \mathbb{R} -linear surjective map $\pi \colon K_0(\operatorname{proj} A)_{\mathbb{R}} \to K_0(\operatorname{proj} B)_{\mathbb{R}}$ satisfying the following conditions.

- (a) The kernel Ker π is the \mathbb{R} -vector subspace $\mathbb{R}C(U)$ generated by C(U).
- (b) The restriction $\pi|_{N_U}: N_U \to K_0(\operatorname{proj} B)_{\mathbb{R}}$ is still surjective.
- (c) For any $\theta \in N_U$, we have $\Phi(\mathcal{T}_{\theta} \cap \mathcal{W}_U) = \mathcal{T}_{\pi(\theta)}$ and $\Phi(\mathcal{F}_{\theta} \cap \mathcal{W}_U) = \mathcal{F}_{\pi(\theta)}$. In particular, π induces a bijection

{TF equivalence classes in N_U } \rightarrow {TF equivalence classes in $K_0(\text{proj }B)_{\mathbb{R}}$ }.

(d) For any $V \in 2$ -psilt_U A, we have $\pi(C^{\circ}(V)) = C^{\circ}(p(V))$.

Then, we can state our first main result.

Theorem 14. Let $U = \bigoplus_{i=1}^{m} U_i \in 2$ -psilt A with U_i indecomposable, and $I \subset \{1, 2, \ldots, m\}$. We set

$$\Sigma_I := \{ \pi(F) \mid F \in \mathsf{Face}_I \, \overline{N_U} \}.$$

- (1) We have a bijection $\operatorname{Face}_I \overline{N_U} \to \Sigma_I$ sending F to $\pi(F)$. The inverse is given by $\sigma \mapsto \pi^{-1}(\sigma) \cap \partial_I$.
- (2) For any $F \in \mathsf{Face}_I \overline{N_U}$, we have $\dim_{\mathbb{R}} \pi(F) = \dim_{\mathbb{R}} F \#I$.
- (3) Σ_I is a finite complete rational polyhedral fan in $K_0(\text{proj }B)_{\mathbb{R}}$.

Before stating our second main result, we prepare some notions. Since $(\overline{\mathcal{T}}_{\theta}, \mathcal{F}_{\theta}), (\mathcal{T}_{\theta}, \overline{\mathcal{F}}_{\theta})$ are torsion pairs in mod A, for any $M \in \text{mod } A$ and $\theta \in K_0(\text{proj } A)_{\mathbb{R}}$, we have unique short exact sequences

$$0 \to \overline{\mathbf{t}}_{\theta} M \to M \to \mathbf{f}_{\theta} M \to 0 \quad (\overline{\mathbf{t}}_{\theta} M \in \overline{\mathcal{T}}_{\theta}, \ \mathbf{f}_{\theta} M \in \mathcal{F}_{\theta}), \\ 0 \to \mathbf{t}_{\theta} M \to M \to \overline{\mathbf{f}}_{\theta} M \to 0 \quad (\mathbf{t}_{\theta} M \in \mathcal{T}_{\theta}, \ \overline{\mathbf{f}}_{\theta} M \in \overline{\mathcal{F}}_{\theta})$$

with $t_{\theta}M \subset \overline{t}_{\theta}M \subset M$. Moreover, we set $w_{\theta}M := \overline{t}_{\theta}M/t_{\theta}M \in \mathcal{W}_{\theta}$. Then, we introduce the following equivalence relation.

Definition 15. Let $M \in \text{mod } A$, and $\theta, \eta \in K_0(\text{proj } A)_{\mathbb{R}}$. Then, we say that θ and η are M-TF equivalent if the following conditions hold:

- (a) $t_{\theta}M = t_{\eta}M$ and $w_{\theta}M = w_{\eta}M$ and $f_{\theta}M = f_{\eta}M$;
- (b) the composition factors of $w_{\theta}M = w_{\eta}M$ in \mathcal{W}_{θ} and \mathcal{W}_{η} coincide.

Moreover, we set $\Sigma(M)$ as the set of the closures of all *M*-TF equivalence classes.

The condition (b) seems complicated, but it is necessary to make the following property hold.

Proposition 16. Let $M \in \text{mod } A$. Then, $\Sigma(M)$ is a finite complete rational polyhedral fan in $K_0(\text{proj } A)_{\mathbb{R}}$.

We remark that $\Sigma(M)$ coincides with the complete rational polyhedral fan $\Sigma(N(M))$ in [4, Theorem 5.22] constructed from the Newton polytope N(M) of M in $K_0 \pmod{A}_{\mathbb{R}}$.

Now, we can state our second main result.

Theorem 17. Let $U = \bigoplus_{i=1}^{m} U_i \in 2\text{-psilt}_U A$ with U_i indecomposable. Then, there exist $M_1, M_2, \ldots, M_m \in \text{mod } B$ such that, for any subset $I \subset \{1, 2, \ldots, m\}$, the rational polyhedral fans $\Sigma(\bigoplus_{i \in I} M_i)$ and Σ_I in $K_0(\text{proj } B)_{\mathbb{R}}$ coincide.

We sketch the construction of M_1, M_2, \ldots, M_m above. We take the unique $S, T \in 2$ -silt A such that $\overline{\mathcal{T}}_S = \overline{\mathcal{T}}_U$ and $\overline{\mathcal{F}}_S = \overline{\mathcal{F}}_U$. Then, we can prove that T is the left simultaneous mutation of S at S/U. Thus, we can decompose S, T as $S = \bigoplus_{i=1}^n S_i$ and $T = \bigoplus_{i=1}^n T_i$ so that

- (a) for any $i \in \{1, 2, ..., m\}$, we have $S_i = U_i = T_i$; and
- (b) for each $j \in \{m+1, m+2, \ldots, n\}$, there exists a triangle $S_j \to U'_j \to T_j \to S_j$ in $\mathsf{K}^{\mathrm{b}}(\operatorname{proj} A)$ with $S_j \to U'_j$ a minimal left (add U)-approximation.

Next, we take the 2-term simple-minded collections $X = \bigoplus_{i=1}^{n} X_i$ and $Y = \bigoplus_{i=1}^{n} Y_i$ in $\mathsf{D}^{\mathsf{b}}(\mathsf{mod} A)$ corresponding to S, T under the bijection in [19, Theorem 6.1] and [11, Corollary 4.3]. Then, we have proved that, for each $i \in \{1, 2, \ldots, m\}$, there exists a triangle $X_i[-1] \to W_i \to Y_i \to X_i$ in $\mathsf{D}^{\mathsf{b}}(\mathsf{mod} A)$ with $X_i[-1] \to W_i$ a minimal left \mathcal{W}_U approximation by using [15, Proposition 4.8]. Now, $M_i := \Phi(W_i)$ is the desired *B*-module.

References

- [1] T. Adachi, O. Iyama, I. Reiten, *τ*-tilting theory, Compos. Math. 150 (2014), no. 3, 415–452.
- [2] T. Aihara, Tilting-connected symmetric algebras, Algebr. Represent. Theory 16 (2013), 873–894.
- [3] T. Aihara, O. Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. (2) 85 (2012), 633-668.
- [4] T. Aoki, A. Higashitani, O. Iyama, R. Kase, Y. Mizuno, Fans and polytopes in tilting theory I: Foundations, arXiv:2203.15213v2.
- [5] S. Asai, Semibricks, Int. Math. Res. Not. IMRN 2020, Issue 16, 4993–5054.
- [6] _____, The wall-chamber structures of the real Grothendieck groups, Adv. Math. 381 (2021), Paper No. 107615.
- [7] S. Asai, C. Pfeifer, Wide Subcategories and Lattices of Torsion Classes, Algebr. Represent. Theory 25 (2022), 1611–1629.
- [8] M. Auslander, S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), no. 2, 426–454.
- [9] P. Baumann, J. Kamnitzer, P. Tingley, Affine Mirković-Vilonen polytopes, Publ. Math. Inst. Hautes Études Sci. 120 (2014), 113–205.
- [10] T. Brüstle, D. Smith, H. Treffinger, Wall and Chamber Structure for finite dimensional Algebras, Adv. Math. 354 (2019), Paper No. 106746.
- [11] T. Brüstle, D. Yang, Ordered exchange graphs, Advances in representation theory of algebras, 135– 193, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2013.
- [12] L. Demonet, O. Iyama, G. Jasso, τ-tilting finite algebras, bricks, and g-vectors, Int. Math. Res. Not. IMRN 2019, Issue 3, 852–892.

- [13] L. Demonet, O. Iyama, N. Reading, I. Reiten, H. Thomas, Lattice theory of torsion classes: Beyond τ -tilting theory, Trans. Amer. Math. Soc. Ser. B **10** (2023), 542–612.
- [14] S. Hassoun, S. Roy, Admissible intersection and sum property, arXiv:1906.03246v3.
- [15] O. Iyama, D. Yang, Silting reduction and Calabi-Yau reduction of triangulated categories, Trans. Amer. Math. Soc. 370 (2018), no. 11, 7861–7898.
- [16] G. Jasso, Reduction of τ -tilting modules and torsion pairs, Int. Math. Res. Not. IMRN 2015, Issue 16, 7190–7237.
- [17] B. Keller, D. Vossieck, Aisles in derived categories, Deuxième Contact Franco-Belge en Algèbre (Faulx-les-Tombes, 1987), Bull. Soc. Math. Belg. Sér. A, 40 (1988), no. 2, 239–253.
- [18] A. D. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford Ser.
 (2) 45 (1994), no. 180, 515–530.
- [19] S. Koenig, D. Yang, Silting objects, simple-minded collections, t-structures and co-t-structures for finite dimensional algebras, Doc. Math. 19 (2014), 403–438.
- [20] J. Rickard, Morita theory for derived categories, J. London Math. Soc. (2) **39** (1989), no. 3, 436–456.
- [21] T. Yurikusa, Wide subcategories are semistable, Doc. Math. 23 (2018), 35–47.

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES THE UNIVERSITY OF TOKYO 3-8-1 KOMABA, MEGURO-KU, TOKYO, 153-8914, JAPAN Email address: sotaasai@g.ecc.u-tokyo.ac.jp, iyama@ms.u-tokyo.ac.jp