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Abstract. In the study of silting complexes for a finite dimensional algebra over a field,
silting cones in the real Grothendieck group play an important role. The first named
author defined the interval neighborhood of each silting cone so that it is compatible
with τ -tilting reduction of Jasso. The closure of the interval neighborhood is a rational
polyhedral cone in the real Grothendieck group. We have obtained many important
properties of the faces of this rational polyhedral cone, and explain some of them in this
proceeding.

1. Introduction

The representation theory of a finite dimensional algebra A over a field K studies the
categories modA and projA of finitely generated (projective) A-modules, and its derived
categories Db(modA) and Kb(projA).

Derived equivalences of algebras are characterized by the existence of tilting complexes
in the category Kb(projA) introduced by Rickard [20]. Keller-Vossieck [17] generalized
tilting complexes to silting complexes, and silting complexes are equipped with the opera-
tion called mutation exchanging one indecomposable direct summand of a silting complex
to obtain another one [3].

Among silting complexes, 2-term silting complexes are strongly related to functorially
finite torsion pairs [1, 5, 11], which is known as part of τ -tilting theory. It is natural to also
consider direct summands of 2-term silting complexes, which are called 2-term presilting
complexes.

In the study of (pre)silting complexes, the Grothendieck group K0(projA) is important.
Actually, K0(projA) is nothing but the free abelian group

⊕n
i=1 Z[Pi] whose canonical

basis is given by the isoclasses of indecomposable projective modules P1, P2, . . . , Pn.
Aihara-Iyama [3] proved that the indecomposable direct summands S1, S2 . . . , Sn of each

basic silting complex S =
⊕n

i=1 Si give another free basis [S1], [S2], . . . , [Sn] of K0(projA).
Then, for each basic 2-term presilting complex U =

⊕m
i=1 Ui with Ui indecomposable, we

have a silting cone

C◦(U) :=
m∑
i=1

R>0[Ui],

in the real Grothendieck group K0(projA)R. The silting cone C◦(U) is m-dimensional.
By [12], silting cones give a fan in K0(projA)R so that the intersection C(U)∩C(U ′) of

the silting cones of basic 2-term presilting complexes U and U ′ coincides with the silting
cone C(U ′′) of the maximum common direct summand U ′′ of U and U ′.
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In general, this fan is not necessarily complete. In other words, there can be a region
in K0(projA)R where no silting cones exist. To understand such a region more, it is
helpful to consider semistable subcategories Wθ of King [18] and semistable torsion pairs
(T θ,Fθ), (Tθ,F θ) of Baumann-Kamnitzer-Tingley [9] in modA, given by certain linear
conditions on subfactors of modules in modA for elements θ in K0(projA)R.

By using semistable subcategories, Brüstle-Smith-Treffinger [10] introduced the wall-
chamber structure in K0(projA)R whose walls are ΘM := {θ ∈ K0(projA)R | M ∈ Wθ}
for all nonzero modules M ∈ modA \ {0}. Similarly, by semistable torsion pairs, the first
named author [6] defined an equivalence relation called TF equivalence so that θ and η
are TF equivalent if (T θ,Fθ) = (T η,Fη) and (Tθ,F θ) = (Tη,Fη).
Based on results of Brüstle-Smith-Treffinger [10] and Yurikusa [21], the first named

author [6] proved that the silting cone C◦(U) for each basic 2-term presilting complex U
is a TF equivalence class. The semistable torsion pairs for θ ∈ C◦(U) are the functorially
finite torsion pairs for U which have already been considered in [1, 8].

Sometimes, it is difficult to deal with all 2-term (pre)silting complexes at once. Then,
one of the useful methods is τ -tilting reduction introduced by Jasso [16]. For a fixed basic
2-term presilting complex U , Jasso constructed a finite dimensional algebra B = BU , and
obtained that the basic 2-term (pre)silting complexes which have U as direct summands
in Kb(projA) are in bijections with the basic 2-term (pre)silting complexes in Kb(projB).
Moreover, Jasso also proved that Wθ for θ ∈ C◦(U) is equivalent to the module category
modB.

The first named author introduced a subset NU of K0(projA)R which connects the wall-
chamber structure, TF equivalence and the τ -tilting reduction at U in [6]. The set NU

is an open neighborhood of the silting cone C◦(U), so we decided to call NU the interval
neighborhood of C◦(U).

By the constrution, the closure NU is a rational polyhedral cone in K0(projA)R, so we
are currently studying the faces of NU . We will state some of our results on the faces of
NU in this proceeding.

1.1. Notation. In this proceeding, K is a field, and A is a finite dimensional K-algebra.
The symbol projA denotes the category of finitely generated projective A-modules, and
modA denotes the category of finitely generated A-modules.
As usual, K0(C) is the Grothendieck group of an exact category C. The real Grothendieck

group means the R-vector space K0(C)R := K0(C)⊗Z R.
The Grothendieck group K0(projA) is nothing but

⊕n
i=1 Z[Pi], where P1, P2, . . . , Pn

are the pairwise nonisomorphic indecomposable projective modules. Thus, K0(projA)R is
the Euclidean space

⊕n
i=1 R[Pi]. Similarly, K0(modA) =

⊕n
i=1 Z[Li] and K0(modA)R =⊕n

i=1 R[Li] hold, where Li is the simple top of Pi.
With respect to the Euler form, K0(projA)R can be seen as the dual R-vector space of

K0(modA)R up to scalar multiples. Namely, each θ =
∑n

i=1 ai[Pi] ∈ K0(projA)R gives the
R-linear map K0(modA)R → R such that

θ

(
n∑

i=1

bi[Li]

)
=

n∑
i=1

aibi dimK EndA(Li).



2. Silting cones and TF equivalence

We first recall some terminology on silting cones and TF equivalence.
Let U be a complex in the homotopy category Kb(projA) of bounded complexes in

projA. Since Kb(projA) is Krull-Schmidt, U is isomorphic to a direct sum of the form⊕m
i=1 U

⊕si
i with U1, U2, . . . , Um indecomposable and pairwise nonisomorphic and all si ≥ 1.

In this case, we set |U | := m, and say that U is basic if all si = 1.
Then, we can define (pre)silting complexes as follows.

Definition 1. [17, 5.1][3, Theorem 2.27] Let U ∈ Kb(projA).

(1) We say that U is presilting if HomKb(projA)(U,U [>0]) = 0.
(2) We say that U is silting if U is presilting and |U | = |A|.

Aihara [2, Proposition 2.16] proved that any presilting complex U is a direct sum-
mand of some silting complex S. By this and [3, Theorem 2.27], if U =

⊕m
i=1 Ui with

each Ui indecomposable is presilting, then [U1], [U2], . . . , [Um] ∈ K0(projA)R are linearly
independent.

We say that U ∈ Kb(projA) is 2-term if the terms of U except the −1st and the 0th ones
are zero. The result [2, Proposition 2.16] also says that any 2-term presilting complex U
is a direct summand of some 2-term silting complex S.
We set 2-siltA (resp. 2-psiltA) as the set of basic 2-term (pre)silting complexes in

Kb(projA). Thus, it is natural to consider the following notions.

Definition 2. Let U =
⊕m

i=1 Ui ∈ 2-psiltA with Ui indecomposable. Then, we set the
silting cones C◦(U), C(U) ⊂ K0(projA)R as

C◦(U) =
m∑
i=1

R>0[Ui], C(U) =
m∑
i=1

R≥0[Ui].

We will characterize the silting cone C◦(U) by semistable torsion pairs, which are
defined as follows.

Definition 3. Let θ ∈ K0(projA)R.

(1) [9, Subsection 3.1] We set the semistable torsion pairs (T θ,Fθ), (Tθ,F θ) in modA
by

T θ := {M ∈ modA | θ(N) ≥ 0 for any factor module N of M},
Fθ := {M ∈ modA | θ(L) < 0 for any submodule L 6= 0 of M},
Tθ := {M ∈ modA | θ(N) > 0 for any factor module N 6= 0 of M},
F θ := {M ∈ modA | θ(L) ≤ 0 for any submodule L of M}.

(2) [18, Definition 1.1] We set Wθ := T θ ∩ F θ, and call it the semistable subcategory.

The semistable subcategory Wθ is a wide subcategory of modA; that is, closed under
taking kernels, cokernels, and extensions in modA. Therefore, the interval [Tθ, T θ] in the
poset torsA of torsion classes is a wide interval in [7]. Moreover, Wθ is an abelian length
category, and hence has the Jordan-Hölder property [14, Theorem 6.2].

Then, we can define TF equivalence.



Definition 4. [6, Definition 2.13] Let θ, η ∈ K0(projA)R. We say that θ and η are TF
equivalent if (T θ,Fθ) = (T η,Fη) and (Tθ,F θ) = (Tη,Fη).

The following result based on [10, Proposition 3.27] and [21, Proposition 3.3] is funda-
mental in our study.

Proposition 5. [6, Proposition 3.11] Let U ∈ 2-psiltA. Then, C◦(U) is a TF equivalence
class. For any θ ∈ C◦(U), we have

(T θ,Fθ) = (⊥H−1(νU), SubH−1(νU)), (Tθ,F θ) = (FacH0(U), H0(U)⊥).

The torsion pairs in the right-hand sides are classical functorially finite ones which were
in [8, Theorem 5.10]. In the terminology of [1], the module H−1(νU) is τ−1-rigid, and the
module H0(U) is τ -rigid. See [1, 8] for details including the definitions of the symbols.

Definition 6. Let U ∈ 2-psiltA. Then, we set

(T U ,FU) := (⊥H−1(νU), SubH−1(νU)), (TU ,FU) := (FacH0(U), H0(U)⊥),

WU := T U ∩ FU .

Thus, WU = Wθ for θ ∈ C◦(U) holds, so WU is a wide subcategory of modA. This was
shown by [16, Theorem 3.8] without using semistable torsion pairs. See also [13, Theorem
4.12].

3. Interval neighborhoods of silting cones

For each U ∈ 2-psiltA, we set

2-psiltU A := {V ∈ 2-psiltA | U ∈ addV }.

This is the subset of 2-psiltA consisting all V ∈ 2-psiltA which have U as direct summands.
To study 2-psiltU A, the first named author introduced the following set.

Definition 7. [6, Subsection 4.1] Let U ∈ 2-siltA. Then, we define the interval neighbor-
hood NU of C◦(U) by

NU := {θ ∈ K0(projA)R | H0(U) ⊂ Tθ, H−1(νU) ⊂ Fθ}
= {θ ∈ K0(projA)R | TU ⊂ Tθ, FU ⊂ Fθ}.

We first observe the following properties.

Lemma 8. Let U, V ∈ 2-psiltA.

(1) [6, Lemma 4.3] The set NU is an open neighborhood of C◦(U).
(2) The set NU is given by finitely many linear strict inequalities.
(3) [6, Lemma 3.13] The following conditions are equivalent:

(a) V ∈ 2-psiltU A;
(b) TV ⊃ TU and FV ⊃ FU ;
(c) C◦(V ) ⊂ NU ;
(d) NV ⊂ NU .

Moreover, NU satisfies the following minimality.



Lemma 9. Let U ∈ 2-psiltA. Then, NU is the smallest set satisfying both the following
conditions:

(a) NU is a neighborhood of C◦(U);
(b) NU is a union of TF equivalence classes.

We also focus on the closure NU ⊂ K0(projA)R.

Lemma 10. Let U, V ∈ 2-psiltA.

(1) We have NU = {θ ∈ K0(projA)R | H0(U) ⊂ T θ, H−1(νU) ⊂ F θ}. In particular,
NU is a union of TF equivalence classes.

(2) We have NU ⊃ C(U).
(3) The set NU is a rational polyhedral cone in K0(projA)R.
(4) The following conditions are equivalent:

(a) U ⊕ V is (not necessarily basic) presilting;
(b) NU ∩NV 6= ∅;
(c) C(V ) ⊂ NU .
In this case, NU⊕V = NU ∩NV holds.

4. Faces of interval neighborhoods

Let U ∈ 2-psiltA. Since NU is a rational polyhedral cone, we study the set FaceNU of
its faces. If U =

⊕m
i=1 Ui with Ui indecomposable, we set UI :=

⊕
i∈I Ui for each subset

I ⊂ {1, 2, . . . ,m}. We have obtained the following properties in our study.

Definition-Proposition 11. Let U ∈ 2-psiltA and F ∈ FaceNU . Set IF := {i ∈
{1, 2, . . . ,m} | [Ui] /∈ F}.

(1) We have F ∩ C(U) = C(U/UIF ).
(2) If dimR F = n− 1, then #IF = 1.
(3) For any I ⊂ {1, 2, . . . ,m}, we define

FaceI NU := {F ∈ FaceNU | IF = I}.

Then, we have a (not necessarily convex) subset

∂I :=
∪

F∈FaceI NU

F = NU \
∪
i∈I

NUi
⊂ NU .

To explain our main results, we need to recall some results in τ -tilting reduction.
Fix U ∈ 2-psiltA. Then, we take the unique S ∈ 2-siltA such that T S = T U . This S is

called the Bongartz completion of U . We define a finite dimensional algebra B = BU by
B := EndKb(projA)(S)/〈e〉, where e is the idempotent S → U → S.
Jasso [16] proved the following results. See also [13, Theorem 4.12] and [4, Theorem

4.9].

Proposition 12. Let U ∈ 2-psiltA.

(1) [16, Theorem 3.8] There exists a category equivalence

Φ := HomDb(modA)(S, ?) : WU → modB.



(2) [16, Theorems 3.16, 4.12] There uniquely exist bijections

p : 2-siltU A → 2-siltB, p : 2-psiltU A → 2-psiltB

such that

(Φ(T U ∩WU),Φ(FU ∩WU)) = (T p(U),Fp(U)),

(Φ(TU ∩WU),Φ(FU ∩WU)) = (Tp(U),Fp(U)).

In particular, p(S) = B.

The first named author found the corresponding results in K0(projA)R.

Definition-Proposition 13. [6, Lemma 4.4, Theorem 4.5] Let U ∈ 2-psiltA. Then, there
exists an R-linear surjective map π : K0(projA)R → K0(projB)R satisfying the following
conditions.

(a) The kernel Ker π is the R-vector subspace RC(U) generated by C(U).
(b) The resriction π|NU

: NU → K0(projB)R is still surjective.
(c) For any θ ∈ NU , we have Φ(Tθ ∩ WU) = Tπ(θ) and Φ(Fθ ∩ WU) = Fπ(θ). In

particular, π induces a bijection

{TF equivalence classes in NU} → {TF equivalence classes in K0(projB)R}.
(d) For any V ∈ 2-psiltU A, we have π(C◦(V )) = C◦(p(V )).

Then, we can state our first main result.

Theorem 14. Let U =
⊕m

i=1 Ui ∈ 2-psiltA with Ui indecomposable, and I ⊂ {1, 2, . . . ,m}.
We set

ΣI := {π(F ) | F ∈ FaceI NU}.

(1) We have a bijection FaceI NU → ΣI sending F to π(F ). The inverse is given by
σ 7→ π−1(σ) ∩ ∂I .

(2) For any F ∈ FaceI NU , we have dimR π(F ) = dimR F −#I.
(3) ΣI is a finite complete rational polyhedral fan in K0(projB)R.

Before stating our second main result, we prepare some notions. Since (T θ,Fθ), (Tθ,F θ)
are torsion pairs in modA, for any M ∈ modA and θ ∈ K0(projA)R, we have unique short
exact sequences

0 → tθM → M → fθM → 0 (tθM ∈ T θ, fθM ∈ Fθ),

0 → tθM → M → fθM → 0 (tθM ∈ Tθ, fθM ∈ F θ)

with tθM ⊂ tθM ⊂ M . Moreover, we set wθM := tθM/tθM ∈ Wθ. Then, we introduce
the following equivalence relation.

Definition 15. Let M ∈ modA, and θ, η ∈ K0(projA)R. Then, we say that θ and η are
M-TF equivalent if the following conditions hold:

(a) tθM = tηM and wθM = wηM and fθM = fηM ;
(b) the composition factors of wθM = wηM in Wθ and Wη coincide.

Moreover, we set Σ(M) as the set of the closures of all M -TF equivalence classes.



The condition (b) seems complicated, but it is necessary to make the following property
hold.

Proposition 16. Let M ∈ modA. Then, Σ(M) is a finite complete rational polyhedral
fan in K0(projA)R.

We remark that Σ(M) coincides with the complete rational polyhedral fan Σ(N(M))
in [4, Theorem 5.22] constructed from the Newton polytope N(M) of M in K0(modA)R.

Now, we can state our second main result.

Theorem 17. Let U =
⊕m

i=1 Ui ∈ 2-psiltU A with Ui indecomposable. Then, there ex-
ist M1,M2, . . . ,Mm ∈ modB such that, for any subset I ⊂ {1, 2, . . . ,m}, the rational
polyhedral fans Σ(

⊕
i∈I Mi) and ΣI in K0(projB)R coincide.

We sketch the construction ofM1,M2, . . . ,Mm above. We take the unique S, T ∈ 2-siltA
such that T S = T U and FS = FU . Then, we can prove that T is the left simultaneous
mutation of S at S/U . Thus, we can decompose S, T as S =

⊕n
i=1 Si and T =

⊕n
i=1 Ti

so that

(a) for any i ∈ {1, 2, . . . ,m}, we have Si = Ui = Ti; and
(b) for each j ∈ {m+ 1,m + 2, . . . , n}, there exists a triangle Sj → U ′

j → Tj → Sj in

Kb(projA) with Sj → U ′
j a minimal left (addU)-approximation.

Next, we take the 2-term simple-minded collections X =
⊕n

i=1 Xi and Y =
⊕n

i=1 Yi

in Db(modA) corresponding to S, T under the bijection in [19, Theorem 6.1] and [11,
Corollary 4.3]. Then, we have proved that, for each i ∈ {1, 2, . . . ,m}, there exists a
triangle Xi[−1] → Wi → Yi → Xi in Db(modA) with Xi[−1] → Wi a minimal left WU -
approximation by using [15, Proposition 4.8]. Now, Mi := Φ(Wi) is the desired B-module.
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[11] T. Brüstle, D. Yang, Ordered exchange graphs, Advances in representation theory of algebras, 135–

193, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2013.
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