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Abstract. We introduce a topology on the set of isomorphism classes of finitely gener-
ated maximal Cohen–Macaulay modules over a commutative complete Cohen–Macaulay
ring, which is analogous to the Ziegler spectrum. We then calculate the Cantor–Bendixson
rank of this topological space for rings of CM+-finite representation type.

1. Introduction

The Ziegler spectrum of an associative algebra is a topological space whose points
are the isomorphism classes of indecomposable pure-injective modules, whose topology is
defined in terms of positive primitive formulas over the algebra. Many studies of Ziegler
spectrums are given in the context of the representation theory of algebras [1, 2, 5] and so
on. In this note, we consider an analog of the Ziegler spectrum for the (stable) category of
maximal Cohen-Macaulay (abbr. MCM) modules over a complete Cohen-Macaulay local
ring.

Let R be complete Cohen–Macaulay local ring with algebraic residue field k. We denote
by C the category of MCM R-modules. We denote by mod(C) the category of finitely
presented contravariant additive functors and also denote by mod(C) the full subcategory
of mod(C) consisting of functors with F (R) = 0. We denote Sp(C) the set of isomorphism
classes of the indecomposable MCM R-modules except R and 0.

For a subset X of Sp(C), we denote by Σ(X ) the subcategory of mod(C) formed by the
functors F such that F (X) = 0 for all X ∈ X . For a subcategory F of mod(C), we denote
by γ(F) the subset of Sp(C) satisfying F (X) = 0 for all F ∈ F .

Theorem 1. Then the assignment X 7→ γ ◦ Σ(X ) is a is a Kuratowski closure operator
on Sp(C). In particular, it induces a topology on Sp(C).

For some specific C, we calculate a Cantor-Bendixson rank of Sp(C) with respect to
the topology. The Cantor-Bendixson rank measures the complexity of the topology. It
measures how far the topology is from the discrete topology.

We say that a Cohen–Macaulay local ring is C+-finite if there exist only finitely many
isomorphism classes of indecomposable MCM modules that are not locally free on the
punctured spectrum [7].

Theorem 2. If R is C+-finite then CB(Sp(C)) ≤ 1.

In this talk, we consider only finitely generated modules. Previous studies have also
considered infinitely generated modules, which is different from our consideration.
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2. The spectrum of the category of maximal Cohen-Macaulay modules

In this note, R is a commutative complete Cohen–Macaulay local ring with algebraic
residue field k and all modules are ”finitely generated” R-modules. We denote by C the
category of maximal Cohen-Macaulay (MCM) modules.

C = {M | ExtiR(k,M) = 0 for i < dimR}
We denote by C the stable category of C. The objects of C are the same as those of C, the
morphisms of C are elements of HomR(M,N) := HomA(M,N)/P (M,N) for M,N ∈ C,
where P (M,N) denote the set of morphisms from M to N factoring through free R-
modules. Since R is complete, C, thus C are Krull-Schmidt categories. That is the
endomorphism ring of the indecomposable module is local.

Let us recall the full subcategory of the functor category of C which is called the Auslan-
der category. The Auslander category mod(C) is the category whose objects are finitely
presented contravariant additive functors from C to a category of abelian groups and
whose morphisms are natural transformations between functors. We denote by mod(C)
the full subcategory mod(C) consisting of functors F with F (R) = 0. The important fact
is that mod(C) and mod(C) are abelian categories.

Remark 3. It is nothing but mod(C) is the Aunslander category of C mod(C). Actually,
the category mod(C) is equivalent to mod(C);

mod(C) → mod(C); F 7→ F ◦ ι,
where ι : C → C. See [8, Remark 4.16]. So in the rest of this note, we denote mod(C)
instead of mod(C).

Note that every object F ∈ mod(C) is obtained from a short exact sequence in C.
Namely we have the short exact sequence 0 → N → M → L → 0 such that

0 → HomR( , N) → HomR( ,M) → HomR( , L) → F → 0

is exact in mod(C).
Definition 4. We denote by Sp(C) the set of isomorphism classes of the indecomposable
MCM R-modules except R and 0. Namely,

Sp(C) := {the indecomposable MCM R-modules except R and 0}/ ∼= .

The following assignments are introduced by Krause [2].

Definition 5. The assignments

Σ : Sp(C) → mod(C), γ : mod(C) → Sp(C)
are defined by

Σ(X ) := {F ∈ mod(C) | F (X) = 0 for ∀X ∈ X},
γ(F) := {M ∈ Sp(C) | F (M) = 0 for ∀F ∈ F}.

We state several basic properties of the assignments Σ and Γ.

Lemma 6. Let X , Y be subsets of Sp(C) and F and G be subcategories of mod(C). For
the assignments Σ and γ, the following statements hold.

(1) X ⊆ Y ⇒ Σ(X ) ⊇ Σ(Y).



(2) F ⊆ G ⇒ γ(F) ⊇ γ(G).
(3) X ⊆ γ ◦ Σ(X ).
(4) F ⊆ Σ ◦ γ(F). Moreover γ(F) = γ ◦ Σ ◦ γ(F).
(5) Σ(X ) is a Serre subcategory in mod(C).
This is the main theorem of this note.

Theorem 7. The assignment X 7→ γ ◦ Σ(X ) is a Kuratowski closure operator. That is,

(1) γ ◦ Σ(∅) = ∅,
(2) X ⊆ γ ◦ Σ(X ),
(3) γ ◦ Σ(X ∪ Y) = γ ◦ Σ(X ) ∪ γ ◦ Σ(Y),
(4) γ ◦ Σ(γ ◦ Σ(X )) = γ ◦ Σ(X )

hold for all subsets X , Y in Sp(C).
Proof. The assertions (i), (ii), and (iv) follow from the definition and the lemma above.
To show (iii), we now notice that HomR(−,M) ∈ mod(C) for ∀M ∈ C. The inclusion
γ ◦Σ(X ∪Y) ⊇ γ ◦Σ(X )∪ γ ◦Σ(Y)) follows from the fact that Σ(X ∪Y) = Σ(X )∩Σ(Y),
and the equality is clear. To show another inclusion, we take M ∈ γ ◦ Σ(X ∪ Y). Note
that M is indecomposable. Assume that M 6∈ γ ◦ Σ(X ) ∪ γ ◦ Σ(Y). Then there exist
F ∈ Σ(X ) and G ∈ Σ(Y) such that F (M) 6= 0 and G(M) 6= 0. We construct the functor
H ∈ Σ(X ∪ Y) such that H(M) 6= 0 by using F and G. If such a functor exists we have
a contradiction because M annihilates all functors in Σ(X ∪ Y). By Yoneda’s Lemma,
we have nonzero morphisms f : HomR(−,M) → F and g : HomR(−,M) → G. Take a
pushout diagram in mod(C):

HomR(−,M)

��

// Im f

��

// 0

Im g //

��

H //

��

0

0 0.

Since Σ(X ) and Σ(Y) are Serre subcategories, Im f ∈ Σ(X ), Im g ∈ Σ(Y). This im-
plies that H ∈ Σ(X ∪ Y). From the push out diagram we obtain the exact sequence
HomR(−,M) → Im f ⊕ Im g → H → 0. Since EndR(M) is local, EndR(M) is an inde-
composable EndR(M)-free module. Moreover Im f(M) and Im g(M) are cyclic modules.
This concludes that H(M) must be nonzero. Therefore we have H ∈ Σ(X ∪ Y) such
that H(M) 6= 0. This gives the contradiction that M ∈ γ ◦ Σ(X ∪ Y), so that M is in
γ ◦ Σ(X ) ∪ γ ◦ Σ(Y). □
Corollary 8. The assignment X 7→ γ ◦ Σ(X ) defines a topology on Sp(C). That is a
subset X of Sp(C) is closed if and only if γ ◦ Σ(X ) = X .

For a locally coherent category G, a bijective correspondence between closed subsets
in Sp(G) and Serre subcategories in mod(G) is given in [1, 2]. In our setting, for a Serre
subcategory F ⊆ mod(C), F = Σ ◦ γ(F) does not hold in general.

Example 9. Let R = k[[x, y]]/(x2). The indecomposable MCM R-modules are R,
I = (x)R and In = (x, yn)R for n > 0. Since γ(HomR(−, In)) = ∅, Σ ◦ γ(HomR(−, In)) =



Σ(∅) = mod(C). However S(HomR(−, In)) 6= mod(C). Here we denote by S(HomR(−, In))
the smallest Serre subcategory which contains HomR(−, In). Since KGdim HomR(−, In) =
1 [6, Proposition 3.8], KGdim S(HomR(−, In)) = 1. Note that KGdim HomR(−, I) = 2.
[6, Proposition 3.11]. Hence HomR(−, I) 6∈ S(HomR(−, In)), so that S(HomR(−, In)) 6=
mod(C).

Lemma 10. Let X,Y ∈ Sp(C) with X 6∼= Y . Suppose that HomR(X,Y ) 6= 0. Then
Y 6∈ γ ◦ Σ(X).

By the lemma above, one can show the following.

Proposition 11. We have γ ◦Σ(X) = {X} for all X ∈ Sp(C). Hence Sp(C) is T1-space.

Proof. Let Y ∈ Sp(C) which is not isomorphic to X. Suppose that HomR(X,Y ) 6= 0.
Then Y 6∈ γ ◦Σ(X) by the lemma. Suppose that HomR(X,Y ) = 0. Then HomR(−, Y ) is
contained in Σ(X) Assume that Y ∈ γ ◦Σ(X), and in the case HomR(Y, Y ) = 0. So that
Y is 0 or R. This never happens since Sp(C) does not contain 0 and R. □

Proposition 12. Let M ∈ Sp(C). M is an isolated point, that is {M} is open, if and
only if there exists an Auslander-Reiten (AR) sequence ending in M .

Proof. If there exists an AR sequence ending in M we can consider the functor SM which
is obtained from the AR sequence. Then γ(SM) = Sp(C)\{M} is closed, so that {M} is
open.

Suppose that M is isolated, and then Sp(C)\{M} is closed. Notice that Σ(Sp(C)\{M})
is not empty, and take F ∈ Σ(Sp(C)\{M}). Then F (M) 6= 0 and F (N) = 0 if N 6∼=
M . By Yoneda’s lemma, we have a nonzero morphism ρ : HomR(−,M) → F . Since
Imf is finitely presented and a subfunctor of F , by considering Imρ instead of F , we
may assume that F has a presentation: HomR(−,M) → F → 0. Take a generator
f1, · · · , fm of radR(M,M) as an R-module. Then the image of HomR(M, (f1, · · · , fm)) :
HomR(M,M⊕m) → HomR(M,M) is radR(M,M). Consider the diagram:

0 0x x
HM −−−→ F/Imρ ◦ f −−−→ 0x x

HomR(−,M)
ρ−−−→ F −−−→ 0xf :=HomR(−,(f1,··· ,fm))

x
HomR(−,M⊕m) −−−→ Imρ ◦ f −−−→ 0x

0.

We should remark that F/Imρ ◦ f is finitely presented since Imρ ◦ f is so. By the
construction, we have HM(M) = HomR(M,M)/radR(M,M) ∼= k. Moreover ρ(f(M)) =



ρ(radR(M,M)) ⊆ radRF (M), so that F/Imρ ◦ f(M) = F (M)/mF (M). This yields that
F/Imρ ◦ f is a simple functor and we conclude that M admits an AR sequence. □

Corollary 13. Let R be an isolated singularity. Then the topology of Sp(C) is discrete.

The author thanks Tsutomu Nakamura for telling him the remark below.

Remark 14. Let GProj(R) be a category of Gorenstein-projective R-modules and GProj(R)c

the full subcategory consisting of compactly generated modules. It has been studied in [5]
that the Ziegler spectrum is defined by using the functor category of the stable category
of GProj(R)c. Suppose that R is Gorenstein. Then it is shown in [5, Theorem 2.33] that
we have the triangulated equivalence C ∼= GProj(R)c. So if R is Gorenstein, the spectrum
Sp(C) is nothing but the Ziegler spectrum which is considered in [5] restricted to finitely
generated ones.

3. Cantor-Bendixson rank

In this section, we calculate a Cantor-Bendixson rank of Sp(C).

Definition 15 (Cantor-Bendixson rank). Let T be a topological space. If x ∈ T is an
isolated point, then CB(x) = 0. Put T ′ ⊂ T is a set of the non-isolated point. Define
the induced topology on T ′. Set T (0) = T , T (1) = T (0)′ , · · · , T (n+1) = T (n)′ . We define
CB(x) = n if x ∈ T (n)\T (n+1) If ∃n such that T (n+1) = ∅ and T (n) 6= ∅, then CB(T ) = n.
Otherwise CB(T ) = ∞.

Example 16. Let R be a DVR (e,g. R = k[[x]]). Then CB(SpecR) = 1 concerning the
Zariski topology. Note that SpecR = {(0),m}. (0) is an isolated point since D(f) = {(0)}
for some f ∈ R\{0}. Thus SpecR′ = {m} = SpecR(1), and m is isolated in the induced
topology. In the case R = k[[x, y]], you can show that CB(SpecR) = ∞. Note that
SpecR′ = SpecR.

By the corollary, we know Sp(C) is a discrete topology if R is an isolated singularity.

Corollary 17. Let R be an isolated singularity. Then CB(Sp(C)) = 0.

The definition of CM+-finite is introduced in [7].

Definition 18. We say that a Cohen–Macaulay local ring R is CM+-finite if there exist
only finitely many isomorphism classes of indecomposable MCM modules that are not
locally free on the punctured spectrum.

Example 19. The following rings are CM+-finite.

(1) A ring which is an isolated singularity. (Thus a ring which is of finite CM-
representation type.)

(2) A hypersurface ring which is of countable CM-representation type.

Here we say that R is of finite (countable) CM-representation type if there exists only
finitely (countably) many isomorphism classes of indecomposable MCM modules.

Theorem 20. If R is CM+-finite then CB(Sp(C)) ≤ 1.



Proof. We denote by C0 the subset of Sp(C) consisting of modules that are locally free on
the punctured spectrum and put C+ as Sp(C)\C0. For all M ∈ C0, M is an isolated point
since M admits an AR sequence. Thus CB(C0) = 0.

On the other hand, for all M ∈ C+, M is not isolated. Since R is CM+-finite, C+ is a
finite set. Hence, for each M ∈ C+,

VM :=

finite⋃
X ̸=M,X∈C+

γ ◦ Σ(X)

is closed in Sp(C). Thus [C+]
⋂

[Sp(C)\VM ] = {M} is open in C+ ∩ Sp(C). Therefore
CB(Sp(C)) ≤ 1. □
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