QUANTUM PROJECTIVE PLANES AND BEILINSON ALGEBRAS OF 3-DIMENSIONAL QUANTUM POLYNOMIAL ALGEBRAS FOR TYPE S'

AYAKO ITABA

Abstract

Let $A=\mathcal{A}(E, \sigma)$ be a 3 -dimensional quantum polynomial algebra where E is the projective plane \mathbb{P}^{2} or a cubic divisor in \mathbb{P}^{2}, and $\sigma \in$ Aut $_{k} E$. In this report, we prove that, for a Type S ' algebra $A=\mathcal{A}(E, \sigma)$, where $E \subset \mathbb{P}^{2}$ is a union of a line and a conic meeting at two points, and $\sigma \in \operatorname{Aut}_{k} E$, the following conditions are equivalent: (1) The noncommutative projective plane $\operatorname{Proj}_{\mathrm{nc}} A$ is finite over its center. (2) The Beilinson algebra ∇A of A is 2 -representation tame. (3) The isomorphism classes of simple 2 regular modules over ∇A are parametrized by \mathbb{P}^{2}.

Key Words: Quantum polynomial algebras, Quantum projective planes, Calabi-Yau algebras, Beilinson algebras.

2020 Mathematics Subject Classification: 16W50, 16S37, 16D90, 16E65.

1. Quantum polynomial algebras and quantum projective spaces

This report is based on [7]. Throughout this report, let k be an algebraically closed field of characteristic 0 , and all algebras are defined over k. Unless otherwise described, let A be a connected graded k-algebra finitely generated in degree 1 .

In noncommutative algebraic geometry, a quantum polynomial algebra defined by Artin and Schelter [2] is a basic and important research object, which is a noncommutative analogue of a commutative polynomial algebra.
Definition 1 ([2]). A right noetherian graded algebra A is called a d-dimensional quantum polynomial algebra if
(i) $\operatorname{gldim} A=d<\infty$,
(ii) $\operatorname{Ext}_{A}^{i}(k, A) \cong\left\{\begin{array}{ll}k & \text { if } i=d, \\ 0 & \text { if } i \neq d,\end{array} \quad\right.$ (Gorenstein condition)
(iii) $H_{A}(t):=\sum_{i=0}^{\infty}\left(\operatorname{dim}_{k} A_{i}\right) t^{i}=(1-t)^{-d} \quad$ (Hilbert series).

A right noetherian graded algebra A is called a d-dimensional $A S$-regular algebra if the above conditions (i) and (ii) hold.

Artin and Schelter [2] gave the classifications of low dimensional quantum polynomial algebras as follows: For a 1-dimensional quantum polynomial algebra A, A is isomorphic to $k[x]$ as graded algebras up to isomorphism. For a 2-dimensional quantum polynomial algebra A, A is isomorphic to

[^0]$$
k\langle x, y\rangle /\left(-x^{2}+x y-y x\right), \text { or } k_{\lambda}[x, y]:=k\langle x, y\rangle /(x y-\lambda y x) \quad(\lambda \in k \backslash\{0\})
$$
as graded algebras up to isomorphism, where $k_{\lambda}[x, y] \cong k_{\lambda^{\prime}}[x, y]$ if and only if $\lambda^{\prime}=\lambda^{ \pm 1}$. Moreover, Artin and Schelter [2] proved that every 3-dimensional quantum polynomial algebra is isomorphic to one of the following algebra as graded k-algebras:
$$
A \cong k\langle x, y, z\rangle /\left(f_{1}, f_{2}, f_{3}\right), \text { or } A \cong k\langle x, y\rangle /\left(g_{1}, g_{2}\right),
$$
where, $f_{i} \in k\langle x, y, z\rangle_{2}$ and $g_{i} \in k\langle x, y\rangle_{3}$. Note that A is a 3 -dimensional quantum polynomial algebra if and only if A is a 3 -dimensional quadratic AS-regular algebra ([2]).

Artin, Tate and Van den Bergh [3] found a nice correspondence between 3-dimensional quantum polynomial algebras and geometric pair (E, σ), where E is the projective plane \mathbb{P}^{2} or a cubic divisor in \mathbb{P}^{2}, and $\sigma \in \mathrm{Aut}_{k} E$. So, this result allows us to write a 3 -dimensional quantum polynomial algebra A as the form $A=\mathcal{A}(E, \sigma)$. This result convinced us that algebraic geometry is very useful to study even noncommutative algebras.

Let A be a right noetherian graded algebra. The category of finitely generated graded right A-modules is denoted by $\operatorname{grmod} A$, and the full subcategory of $\operatorname{grmod} A$ consisting of finite dimensional modules over k id denoted by tors A.

Definition 2 ([5]). (1) The noncommutative projective scheme associated to A is defined by $\operatorname{Proj}_{n c} A=($ tails $A, \pi A)$ where tails $A:=\operatorname{grmod} A / \operatorname{tors} A$ is the quotient category, $\pi: \operatorname{grmod} A \rightarrow \operatorname{tails} A$ is the quotient functor, and $A \in \operatorname{grmod} A$ is regular.
(2) If A is a d-dimensional quantum polynomial algebra. Then $\operatorname{Proj}_{\mathrm{nc}} A$ is called a quantum \mathbb{P}^{d-1}. In particular, if A is a 3 -dimensional quantum polynomial algebra, then $\operatorname{Proj}_{\mathrm{nc}} A$ is called a quantum projective plane.

Note that, if A is commutative, then $\operatorname{Proj}_{\mathrm{nc}} A \cong\left(\bmod X, \mathcal{O}_{X}\right), X=\operatorname{Proj} A$. If A is a 2-dimensional quantum polynomial algebra, then $\operatorname{Proj}_{\mathrm{nc}} A \cong\left(\operatorname{coh} \mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}\right)$.

2. Characterization of quantum projective planes finite their centers

For a 3-dimensional quantum polynomial algebra $A=\mathcal{A}(E, \sigma)$, Artin-Tate-Van den Bergh [4] gave the following geometric characterization when A is finite over its center $Z(A)$.

Theorem 3 ([4]). For a 3-dimensional quantum polynomial algebra $A=\mathcal{A}(E, \sigma)$, then A is finite over its center $Z(A)$ if and only if the order $|\sigma|$ of σ is finite.

To prove Theorem 3, "fat points of a quantum projective plane Projnc A " plays an essential role. By Artin [1], if A is finite over its center and $E \neq \mathbb{P}^{2}$, then $\operatorname{Proj}_{\mathrm{nc}} A$ has a fat point, however, the converse is not true.

Definition 4. Let A be a graded algebra.
(1) A point of $\operatorname{Proj}_{\mathrm{nc}} A$ is an isomorphism class of a simple object of the form $\pi M \in$ tails A where $M \in \operatorname{grmod} A$ is a graded right A-module such that $\lim _{i \rightarrow \infty} \operatorname{dim}_{k} M_{i}<$ ∞.
(2) A point πM is called fat if $\lim _{i \rightarrow \infty} \operatorname{dim}_{k} M_{i}>1$ In this case, M is called a fat point module over A.

To check the existence of a fat point, the following was introduced by Mori [12].
Definition 5 ([12]). For a geometric pair (E, σ) where $E \subset \mathbb{P}^{n-1}$ and $\sigma \in \operatorname{Aut}_{k} E$,

$$
\operatorname{Aut}_{k}\left(\mathbb{P}^{n-1}, E\right):=\left\{\left.\phi\right|_{E} \in \operatorname{Aut}_{k} E \mid \phi \in \operatorname{Aut}_{k} \mathbb{P}^{n-1}\right\}
$$

and $\|\sigma\|:=\inf \left\{i \in \mathbb{N}^{+} \mid \sigma^{i} \in \operatorname{Aut}_{k}\left(\mathbb{P}^{n-1}, E\right)\right\}=\left.\tau\right|_{E}$ for some $\left.\tau \in \operatorname{Aut}_{k} \mathbb{P}^{n-1}\right\}$, which is called the norm of σ.

For a geometric pair $(E, \sigma),\|\sigma\| \leq|\sigma|$ holds in general.
Lemma 6 ([12], [1]). Let $A=\mathcal{A}(E, \sigma)$ be a 3-dimensional quantum polynomial algebra. Then the following hold:
(1) $\|\sigma\|=1$ if and only if $E=\mathbb{P}^{2}$.
(2) $1<\|\sigma\|<\infty$ if and only if $\operatorname{Proj}_{\mathrm{nc}} A$ has a fat point.

For a d-dimensional quantum polynomial algebra, the following holds in general:
Lemma 7 ([13], [12]). Let A and A^{\prime} d-dimensional quantum polynomial algebras "satisfying the condition (G1), where $\mathcal{P}(A)=(E, \sigma)$ and $\mathcal{P}\left(A^{\prime}\right)=\left(E^{\prime}, \sigma^{\prime}\right)$ ", respectively. Then the following hold:
(1) If $A \cong A^{\prime}$, then $E \cong E^{\prime}$ and $|\sigma|=\left|\sigma^{\prime}\right|$.
(2) If $\operatorname{grmod} A \cong \operatorname{grmod} A^{\prime}$, then $E \cong E^{\prime},\|\sigma\|=\left\|\sigma^{\prime}\right\|$.

In particular, when $d=3$, if $\operatorname{Proj}_{\mathrm{nc}} A \cong \operatorname{Proj}_{\mathrm{nc}} A^{\prime}$, then $E \cong E^{\prime}$ and $\|\sigma\|=\left\|\sigma^{\prime}\right\|$.
We remark that Lemma 7 (2) tells us that, for a 3-dimensional quantum polynomial algebra $A=\mathcal{A}(E, \sigma)$, the norm $\|\sigma\|$ of σ is a categorical invariant in $\operatorname{Proj}_{\mathrm{nc}} A$.

Definition 8 ([12], [10]). Let A be a d-dimensional quantum polynomial algebra. We say that $\operatorname{Proj}_{\mathrm{nc}} A$ is finite over its center if there exists a d-dimensional quantum polynomial algebra A^{\prime} finite over its center such that $\operatorname{Proj}_{\mathrm{nc}} A \cong \operatorname{Proj}_{\mathrm{nc}} A^{\prime}$.

For a 3-dimensional quantum polynomial algebra $A=\mathcal{A}(E, \sigma)$ the author and Mori [10] proved that the following results: This is a categorical analogue of Theorem 3.
Theorem 9 ([10]). If $A=\mathcal{A}(E, \sigma)$ is a 3-dimensional Calabi-Yau quantum polynomial algebra, then $\|\sigma\|=\left|\sigma^{3}\right|$, so the following are equivalent:
(1) $|\sigma|<\infty$.
(2) $\|\sigma\|<\infty$.
(3) A is finite over its center.
(4) $\operatorname{Proj}_{\mathrm{nc}} A$ is finite over its center.

Theorem 10 ([10]). If $A=\mathcal{A}(E, \sigma)$ is a 3-dimensional quantum polynomial algebra such that $E \neq \mathbb{P}^{2}$, and $\nu \in$ Aut A the Nakayama automorphism of A. Then $\|\sigma\|=\left|\nu^{*} \sigma^{3}\right|$, so the following are equivalent:
(1) $\left|\nu^{*} \sigma^{3}\right|<\infty$.
(2) $\|\sigma\|<\infty$.
(3) $\operatorname{Proj}_{\mathrm{nc}} A$ is finite over its center.
(4) $\operatorname{Proj}_{\mathrm{nc}} A$ has a fat point.

We apply the above results of the author and Mori [10] to representation theory of finite dimensional algebras.

Definition 11 ([6]). Let R be a finite dimensional algebra of gldim $R=d<\infty$. An autoequivalence $\nu_{d} \in \operatorname{Aut} \mathrm{D}^{\mathrm{b}}(\bmod R)$ is defined by $\nu_{d}(M):=M \otimes_{R}^{\mathrm{L}} D R[-d]$ where $\mathrm{D}^{\mathrm{b}}(\bmod R)$ is the bounded derived category of $\bmod R$ and $D R:=\operatorname{Hom}_{k}(R, k)$. If $\nu_{d}^{-i}(R) \in \bmod R$ for all $i \in \mathbb{N}$, then R is called d-representation infinite. In this case, we say that a module $M \in \bmod R$ is d-regular if $\nu_{d}^{i}(M) \in \bmod R$ for all $i \in \mathbb{Z}$.

In Minamoto-Mori [11], for a d-dimensional quantum polynomial algebra A, the Beilinson algebra ∇A of A is defined by

$$
\nabla A:=\left(\begin{array}{cccc}
A_{0} & A_{1} & \cdots & A_{d-1} \\
0 & A_{0} & \cdots & A_{d-2} \\
\vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & A_{0}
\end{array}\right) .
$$

Theorem 12 ([11]). If A is a d-dimensional quantum polynomial algebra A and the Beilinson algebra ∇A of A. Then ∇A is extremely Fano of global dimension of $d-1$, and there exists an equivalence of triangulated category $D^{b}(\operatorname{tails} A) \cong D^{b}(\bmod \nabla A)$.

The Beilinson algebra is a typical example of $(d-1)$-representation infinite algebra in the sense of Herschend-Iyama-Oppermann [6] ([11]). To investigate representation theory of such an algebra, it is important to classify simple $(d-1)$-regular modules.
Remark 13. (1) If A is a 2-dimensional quantum polynomial algebra, then

$$
\nabla A \cong\left(\begin{array}{cc}
k & k^{2} \\
0 & k
\end{array}\right) \cong k(\bullet \longrightarrow \bullet),
$$

that is, ∇A is isomorphic to a 2 -Kronecker algebra, so ∇A is a finite dimensional hereditary algebra of tame representation type. It is known that the isomorphism classes of simple regular modules over ∇A are parameterized by \mathbb{P}^{1} (cf. [12]).
(2) For a 3-dimensional quantum polynomial algebra $A, \nabla A$ is a finite-dimensional algebra;

$$
\nabla A \cong k(\bullet \longrightarrow \bullet \bullet \bullet) /(\text { the same relations of } A) .
$$

Corollary 14 ([10]). Let $A=\mathcal{A}(E, \sigma)$ be a 3-dimensional quantum polynomial algebra with the Nakayama automorphism $\nu \in$ Aut A. Then the following are equivalent:
(1) $\left|\nu^{*} \sigma^{3}\right|(=\|\sigma\|)=1$ or ∞.
(2) $\operatorname{Proj}_{\mathrm{nc}} A$ has no fat point.
(3) The isomorphism classes of simple 2-regular modules over ∇A are parameterized by the set of closed points of $E \subset \mathbb{P}^{2}$.

In particular, if $A=\mathcal{A}(E, \sigma)$ is one of the following types, then A satisfies all of the above conditions.

$$
\begin{array}{lll}
\text { Type } \mathrm{P}\left(E=\mathbb{P}^{2}\right) & \text { Type } \mathrm{T}(E=\not \subset) & \text { Type T'}(E=\varnothing) \\
\text { Type } \mathrm{CC}(E=<) & \text { Type TL }(E=\square) & \text { Type WL }(E=\not /)
\end{array}
$$

More precisely, if E is of Type P , then $\|\sigma\|=1$ by Lemma 6 , and if E is of Type T, Type T', Type CC, Type TL or Type WL, then $\|\sigma\|$ is infinite. The following types of

3-dimensional quantum polynomial algebras $A=\mathcal{A}(E, \sigma)$ have the case that $\|\sigma\|$ is finite.

$$
\text { Type } \mathrm{S}(E=\not \subset) \quad \text { Type } \mathrm{S}^{\prime}(E=\varnothing) \quad \text { Type NC }(E=\propto) \quad \text { Type EC }(E=G)
$$

In [10], for a 3 -dimensional quantum polynomial algebra A, the author and Mori expect that the following are equivalent:
(1) $\operatorname{Proj}_{\text {nc }} A$ is finite over its center.
(2) ∇A is 2-representation tame in the sense of Herschend-Iyama-Oppermann [6].
(3) The isomorphism classes of simple 2-regular modules over ∇A are parameterized by \mathbb{P}^{2}.

Note that these equivalences are shown for Type S in [12, Theorem 4.17, Theorem 4.21]. Do these equivalences in the above conjecture hold for Type S ' in particular?

3. Main Results

In this report, we prove the following results for Type S ' algebra $A=\mathcal{A}(E, \sigma)$, where $E \subset \mathbb{P}^{2}$ is a union of a line and a conic meeting at two points, and $\sigma \in \mathrm{Aut}_{k} E$.

Let $A=\mathcal{A}(E, \sigma)=k\langle x, y, z\rangle /\left(f_{1}, f_{2}, f_{3}\right)$ be a 3 -dimensional quantum polynomial algebra of Type S^{\prime} where

$$
\left\{\begin{array}{l}
f_{1}=y z-\alpha z y+x^{2}, \\
f_{2}=z x-\beta x z, \\
f_{3}=x y-\beta y x \quad\left(\alpha, \beta \in k, \alpha \beta^{2} \neq 0,1\right)
\end{array}\right.
$$

(see [8, Theorem 3.2], [9, Table 1 in Proposition 3.1]). For a 3-dimensional quantum polynomial algebra $A=\mathcal{A}(E, \sigma)$ of Type S^{\prime}, there exists the 3-dimensi onal CalabiYau quantum polynomial algebra A^{\prime} of Type S^{\prime} such that $\operatorname{grmod} A \cong \operatorname{grmod} A^{\prime}$ so that $\operatorname{Proj}_{\mathrm{nc}} A \cong \operatorname{Proj}_{\mathrm{nc}} A^{\prime}$ where $A^{\prime}=\mathcal{A}\left(E, \sigma^{\prime}\right)=k\langle x, y, z\rangle /\left(g_{1}, g_{2}, g_{3}\right)$ is a 3-dimensional CalabiYau quantum polynomial algebra of Type S^{\prime} :

$$
\left\{\begin{array}{l}
g_{1}=y z-\alpha z y+x^{2}, \\
g_{2}=z x-\alpha x z, \\
g_{3}=x y-\alpha y x \quad\left(\alpha^{3} \neq 0,1\right)
\end{array}\right.
$$

(see [9, Table 2 in Theorem 3.4]).
Proposition 15 ([7, Proposition 3.2]). Let $A=\mathcal{A}(E, \sigma)=k\langle x, y, z\rangle /\left(g_{1}, g_{2}, g_{3}\right)$ be a 3-dimensional Calabi-Yau quantum polynomial algebra of Type S^{\prime},

(1) If A is finite over its center $Z(A)$ (that is, $|\alpha|$ is finite), then $Z(A)=k\left[x^{|\alpha|}, y^{|\alpha|}, z^{|\alpha|}, g\right]$.
(2) If A is not finite over its center $Z(A)$ (that is, $|\alpha|$ is infinite), then $Z(A)=k[g]$.

Theorem 16 ([12]). Let $A=\mathcal{A}(E, \sigma)$ be a 3-dimensional quantum polynomial algebra. If the Beilinson algebra ∇A of A is not 2-representation tame, then the isomorphism classes of simple 2-regular modules over ∇A are parametrized by the set of points of $E \subsetneq \mathbb{P}^{2}$.

Theorem 17 ([7, Theorem 4.3]). Let $A=\mathcal{A}(E, \sigma)$ be a 3-dimensional quantum polynomial algebra of Type S^{\prime}. If the Beilinson algebra ∇A of A is 2 -representation tame, then the isomorphism classes of simple 2 -regular modules over ∇A are parametrized by the set of points of \mathbb{P}^{2}.

By using Proposition 15 and Theorems 16, 17, we have the following result:
Theorem 18 ([7, Theorem 4.4]). For a 3-dimensional quantum polynomial algebra A of Type S ', the following are equivalent:
(1) The noncommutative projective plane $\operatorname{Proj}_{n c} A$ is finite over its center.
(2) The Beilinson algebra ∇A of A is 2-representation tame in the sense of Herschend, Iyama and Oppermann [6].
(3) The isomorphism classes of simple 2-regular modules over ∇A are parameterized by \mathbb{P}^{2}.

References

[1] M. Artin, Geometry of quantum planes, Azumaya algebras, actions, and modules (Bloomington, IN, 1990), 1-15, Contemp. Math., 124, Amer. Math. Soc., Providence, RI, 1992.
[2] M. Artin and W. Schelter, Graded algebras of global dimension 3, Adv. Math. 66 (1987), 171-216.
[3] M. Artin, J. Tate and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, vol. 1, Progress in Mathematics vol. 86 (Birkhäuser, Basel, 1990) 33-85.
[4] ___ Module over regular algebras of dimension 3, Invent. Math. 106 (1991), no. 2, 335-388.
[5] M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228287.
[6] M. Herschend, O. Iyama and S. Oppermann, n-representation infinite algebras, Adv. Math. 252 (2014), 292-342.
[7] A. Itaba, Quantum projective planes and Beilinson algebras of 3-dimensional quantum polynomial algebras for Type S', submitted (2023), arXiv:2304.02242.
[8] A. Itaba and M. Matsuno, Defining relations of 3-dimensional quadratic AS-regular algebras, Math. J. Okayama Univ. 63 (2021), 61-86.
[9] A. Itaba and M. Matsuno, AS-regularity of geometric algebras of plane cubic curves, J. Aust. Math. Soc., 112 (2022), Issue 2, 193-217.
[10] A. Itaba and I. Mori, Quantum projective planes finite over their centers, Canad. Math. Bull., Vol. 66 (2023), Issue 1, 53-67.
[11] H. Minamoto and I. Mori, The structure of AS-Gorenstein algebras, Adv. Math. 226 (2011), no. 5, 4061-4095.
[12] I. Mori, Regular modules over 2-dimensional quantum Beilinson algebras of Type S, Math. Z. 279 (2015), no. 3-4, 1143-1174.
[13] I. Mori and K. Ueyama, Graded Morita equivalences for geometric $A S$-regular algebras, Glasg. Math. J. 55 (2013), no. 2, 241-257.

Ayako Itaba
Katsushika Division
Institute of Arts and Sciences
Tokyo University of Science
6-3-1 Niijuku, Katsushika-ku,Tokyo, 125-8585, JAPAN
Email address: itaba@rs.tus.ac.jp

[^0]: The detailed version of this paper has been submitted for publication elsewhere.
 The author was supported by Grants-in-Aid for Young Scientific Research 21K13781 Japan Society for the Promotion of Science.

