CLASSIFICATION OF TWISTED ALGEBRAS OF 3-DIMENSIONAL SKLYANIN ALGEBRAS

MASAKI MATSUNO

Abstract

A twisting system is one of the major tools to study graded algebras, however, it is often difficult to construct a (non-algebraic) twisting system if a graded algebra is given by generators and relations. In this paper, we show that a twisted algebra of a geometric algebra is determined by a certain automorphism of its point variety. As an application, we classify twisted algebras of 3-dimensional Sklyanin algebras up to graded algebra isomorphism.

1. Introduction

This paper is based on [5]. The notion of twisting system was introduced by Zhang in [8]. If there is a twisting system $\theta=\left\{\theta_{n}\right\}_{n \in \mathbb{Z}}$ for a graded algebra A, then we can define a new graded algebra A^{θ}, called a twisted algebra. Zhang gave a necessary and sufficient algebraic condition via a twisting system when two categories of graded right modules are equivalent ([8, Theorem 3.5]). Although a twisting system plays an important role to study a graded algebra, it is often difficult to construct a twisting system on a graded algebra if it is given by generators and relations.

Mori introduced the notion of geometric algebra $\mathcal{A}(E, \sigma)$ which is determined by a geometric data which consists of a projective variety E, called the point variety, and its automorphism σ. For these algebras, Mori gave a necessary and sufficient geometric condition when two categories of graded right modules are equivalent ([6, Theorem 4.7]). By using this geometric condition, we can easily construct a twisting system.

Cooney and Grabowski defined a groupoid whose objects are geometric noncommutative projective spaces and whose morphisms are isomorphisms between them. By studying a correspondence between the morphisms of this groupoid and a twisting system, they showed that the morphisms of this groupoid are parametrized by a set of certain automorphisms of the point variety ([1, Theorem 28]).

In this paper, we focus on studying a twisted algebra of a geometric algebra $\mathcal{A}(E, \sigma)$. For a twisting system θ on A, we set $\Phi(\theta):=\overline{\left(\left.\theta_{1}\right|_{A_{1}}\right)^{*}} \in \operatorname{Aut}_{k} \mathbb{P}\left(A_{1}^{*}\right)$ by dualization and projectivization. We find a subset $M(E, \sigma)$ of $\operatorname{Aut}_{k} \mathbb{P}\left(A_{1}^{*}\right)$ parametrizing twisted algebras of A up to isomorphism. We show that a twisted algebra of a geometric algebra is determined by a certain automorphism of its point variety. As an application, we classify twisted algebras of 3-dimensional Sklyanin algebras up to graded algebra isomorphism.

The detailed version of this paper is [5].

2. TWISTING SYstems And TWISTED ALGEBRAS

Throughout this paper, we fix an algebraically closed field k of characteristic zero and assume that a graded algebra is an \mathbb{N}-graded algebra $A=\bigoplus_{i \in \mathbb{N}} A_{i}$ over k. A graded algebra $A=\bigoplus_{i \in \mathbb{N}} A_{i}$ is called connected if $A_{0}=k$. Let GrAut $_{k} A$ denote the group of graded algebra automorphisms of A. We denote by $\operatorname{GrMod} A$ the category of graded right A-modules. We say that two graded algebras A and A^{\prime} are graded Morita equivalent if two categories $\operatorname{GrMod} A$ and $\operatorname{GrMod} A^{\prime}$ are equivalent.

Definition 1. Let A be a graded algebra. A set of graded k-linear automorphisms $\theta=\left\{\theta_{n}\right\}_{n \in \mathbb{Z}}$ of A is called a twisting system on A if

$$
\theta_{n}\left(a \theta_{m}(b)\right)=\theta_{n}(a) \theta_{n+m}(b)
$$

for any $l, m, n \in \mathbb{Z}$ and $a \in A_{m}, b \in A_{l}$. The twisted algebra of A by θ, denoted by A^{θ}, is a graded algebra A with a new multiplication $*$ defined by

$$
a * b=a \theta_{m}(b)
$$

for any $a \in A_{m}, b \in A_{l}$. A twisting system $\theta=\left\{\theta_{n}\right\}_{n \in \mathbb{Z}}$ is called algebraic if $\theta_{m+n}=\theta_{m} \circ \theta_{n}$ for every $m, n \in \mathbb{Z}$.

We denote by $\operatorname{TS}(A)$ the set of twisting systems on A. Zhang [8] found a necessary and sufficient algebraic condition for $\operatorname{GrMod} A \cong \operatorname{GrMod} A^{\prime}$.

Theorem 2 ([8, Theorem 3.5]). Let A and A^{\prime} be graded algebras finitely generated in degree 1 over k. Then $\operatorname{GrMod} A \cong \operatorname{GrMod} A^{\prime}$ if and only if A^{\prime} is isomorphic to a twisted algebra A^{θ} by a twisting system $\theta \in \mathrm{TS}(A)$.

Definition 3. For a graded algebra A, we define

$$
\begin{aligned}
& \operatorname{TS}_{0}(A):=\left\{\theta \in \operatorname{TS}(A) \mid \theta_{0}=\operatorname{id}_{A}\right\} \\
& \operatorname{TS}_{\mathrm{alg}}(A):=\left\{\theta \in \operatorname{TS}_{0}(A) \mid \theta \text { is algebraic }\right\} \\
& \operatorname{Twist}(A):=\left\{A^{\theta} \mid \theta \in \operatorname{TS}(A)\right\} / \cong \\
& \operatorname{Twist}_{\text {alg }}(A):=\left\{A^{\theta} \mid \theta \in \operatorname{TS}_{\mathrm{alg}}(A)\right\} / \cong .
\end{aligned}
$$

Lemma 4 ([8, Proposition 2.4]). Let A be a graded algebra. For every $\theta \in \operatorname{TS}(A)$, there exists $\theta^{\prime} \in \mathrm{TS}_{0}(A)$ such that $A^{\theta} \cong A^{\theta^{\prime}}$.

It follows from Lemma 4 that

$$
\operatorname{Twist}(A)=\left\{A^{\theta} \mid \theta \in \operatorname{TS}_{0}(A)\right\} / \cong,
$$

so we may assume that $\theta \in \mathrm{TS}_{0}(A)$ to study $\operatorname{Twist}(A)$. By the definition of twisting system, it follows that $\theta \in \operatorname{TS}_{\text {alg }}(A)$ if and only if $\theta_{n}=\theta_{1}^{n}$ for every $n \in \mathbb{Z}$ and $\theta_{1} \in$ GrAut $_{k} A$, so

$$
\operatorname{Twist}_{\text {alg }}(A)=\left\{A^{\phi} \mid \phi \in \operatorname{GrAut}_{k} A\right\} / \cong
$$

where A^{ϕ} means the twisted algebra of A by $\left\{\phi^{n}\right\}_{n \in \mathbb{Z}}$.

3. Twisted algebras of geometric algebras

Let V be a finite dimensional k-vector space and $A=T(V) /(R)$ be a quadratic algebra where $T(V)$ is a tensor algebra over k and R is a subspace of $V \otimes V$. Since an element of R defines a multilinear function on $V^{*} \times V^{*}$, we can define a zero set associated to R by

$$
\mathcal{V}(R)=\left\{(p, q) \in \mathbb{P}\left(V^{*}\right) \times \mathbb{P}\left(V^{*}\right) \mid g(p, q)=0 \text { for any } g \in R\right\}
$$

Definition 5. Let $A=T(V) /(R)$ be a quadratic algebra. A geometric pair (E, σ) consists of a projective variety $E \subset \mathbb{P}\left(V^{*}\right)$ and $\sigma \in \mathrm{Aut}_{k} E$. We say that A is a geometric algebra if there exists a geometric pair (E, σ) such that
(G1) $\mathcal{V}(R)=\left\{(p, \sigma(p)) \in \mathbb{P}\left(V^{*}\right) \times \mathbb{P}\left(V^{*}\right) \mid p \in E\right\}$,
(G2) $R=\{g \in V \otimes V \mid g(p, \sigma(p))=0$ for all $p \in E\}$.
In this case, we call E the point variety of A, and write $A=\mathcal{A}(E, \sigma)$.
We use the following notations introduced in [1]:
Definition 6. Let $E \subset \mathbb{P}\left(V^{*}\right)$ be a projective variety and $\sigma \in$ Aut $_{k} E$. We define

$$
\begin{aligned}
& \operatorname{Aut}_{k}\left(E \uparrow \mathbb{P}\left(V^{*}\right)\right):=\left\{\tau \in \operatorname{Aut}_{k} E|\tau=\bar{\tau}|_{E} \text { for some } \bar{\tau} \in \operatorname{Aut}_{k} \mathbb{P}\left(V^{*}\right)\right\}, \\
& \operatorname{Aut}_{k}\left(\mathbb{P}\left(V^{*}\right) \downarrow E\right):=\left\{\tau \in \operatorname{Aut}_{k} \mathbb{P}\left(V^{*}\right)|\tau|_{E} \in \operatorname{Aut}_{k} E\right\}, \\
& Z(E, \sigma):=\left\{\tau \in \operatorname{Aut}_{k}\left(\mathbb{P}\left(V^{*}\right) \downarrow E\right)|\sigma \tau|_{E} \sigma^{-1}=\left.\tau\right|_{E}\right\}, \\
& M(E, \sigma):=\left\{\tau \in \operatorname{Aut}_{k}\left(\mathbb{P}\left(V^{*}\right) \downarrow E\right) \mid\left(\left.\tau\right|_{E} \sigma\right)^{i} \sigma^{-i} \in \operatorname{Aut}_{k}\left(E \uparrow \mathbb{P}\left(V^{*}\right)\right) \forall i \in \mathbb{Z}\right\}, \\
& N(E, \sigma):=\left\{\tau \in \operatorname{Aut}_{k}\left(\mathbb{P}\left(V^{*}\right) \downarrow E\right)|\sigma \tau|_{E} \sigma^{-1} \in \operatorname{Aut}_{k}\left(E \uparrow \mathbb{P}\left(V^{*}\right)\right)\right\} .
\end{aligned}
$$

Note that $Z(E, \sigma) \subset M(E, \sigma) \subset N(E, \sigma) \subset \operatorname{Aut}_{k}\left(\mathbb{P}\left(V^{*}\right) \downarrow E\right)$, and $Z(E, \sigma), N(E, \sigma)$ are subgroups of $\mathrm{Aut}_{k}\left(\mathbb{P}\left(V^{*}\right) \downarrow E\right)$.

Let $A=\mathcal{A}(E, \sigma)$ be a geometric algebra. The map $\Phi: \mathrm{TS}_{0}(A) \rightarrow \operatorname{Aut}_{k} \mathbb{P}\left(A_{1}^{*}\right)$ is defined by $\Phi(\theta):=\overline{\left(\left.\theta_{1}\right|_{A_{1}}\right)^{*}}$. This map plays an important role to study twisted algebras of geometric algebras.

Lemma 7 ([5, Lemma 3.3 and Lemma 3.4]). Let $A=\mathcal{A}(E, \sigma)$ be a geometric algebra.
(1) $\Phi\left(\mathrm{TS}_{0}(A)\right)=M(E, \sigma)$.
(2) $\Phi\left(\mathrm{TS}_{\text {alg }}(A)\right)=Z(E, \sigma)$.

The following is one of the main results.
Theorem 8 ([5, Theorem 3.5]). Let $A=\mathcal{A}(E, \sigma)$ be a geometric algebra.
(1) $\operatorname{Twist}(A)=\left\{\mathcal{A}\left(E,\left.\tau\right|_{E} \sigma\right) \mid \tau \in M(E, \sigma)\right\} / \cong$.
(2) $\operatorname{Twist}_{\text {alg }}(A)=\left\{\mathcal{A}\left(E,\left.\tau\right|_{E} \sigma\right) \mid \tau \in Z(E, \sigma)\right\} / \cong$.

4. Twisted algebras of 3-dimensional Sklyanin algebras

In this section, we classify twisted algebras of 3-dimensional Sklyanin algebras. A 3dimensional Sklyanin algebra is a typical example of 3-dimensional quadratic AS-regular algebras. It is known that every 3-dimensional Sklyanin algebra is a geometric algebra $\mathcal{A}(E, \sigma)$ where E is an elliptic curve in \mathbb{P}^{2} and σ is a translation by some point $p \in E$.

First, we recall some properties of elliptic curves in \mathbb{P}^{2}. Let E be an elliptic curve in \mathbb{P}^{2}. We use a Hesse form

$$
E=\mathcal{V}\left(x^{3}+y^{3}+z^{3}-3 \lambda x y z\right)
$$

where $\lambda \in k$ with $\lambda^{3} \neq 1$. It is known that every elliptic curve in \mathbb{P}^{2} can be written in this form (see [2, Corollary 2.18]). The j-invariant of a Hesse form E is given by

$$
j(E)=\frac{27 \lambda^{3}\left(\lambda^{3}+8\right)^{3}}{\left(\lambda^{3}-1\right)^{3}}
$$

(see [2, Proposition 2.16]). The j-invariant $j(E)$ classifies elliptic curves in \mathbb{P}^{2} up to projective equivalence (see [3, Theorem IV 4.1 (b)]). We fix the group structure on E with the zero element $o:=(1,-1,0) \in E$ (see [2, Theorem 2.11]). For a point $p \in E$, a translation by p, denoted by σ_{p}, is an automorphism of E defined by $\sigma_{p}(q)=p+q$ for every $q \in E$. We define $\operatorname{Aut}_{k}(E, o):=\left\{\sigma \in \operatorname{Aut}_{k} E \mid \sigma(o)=o\right\}$. It is known that $\operatorname{Aut}_{k}(E, o)$ is a finite cyclic subgroup of Aut $_{k} E$ (see [3, Corollary IV 4.7]).

Lemma 9 ([4, Theorem 4.6]). A generator of $\operatorname{Aut}_{k}(E, o)$ is given by
(1) $\tau_{E}(a, b, c):=(b, a, c)$ if $j(E) \neq 0,12^{3}$,
(2) $\tau_{E}(a, b, c):=(b, a, \varepsilon c)$ if $\lambda=0$ (so that $j(E)=0$),
(3) $\tau_{E}(a, b, c):=\left(\varepsilon^{2} a+\varepsilon b+c, \varepsilon a+\varepsilon^{2} b+c, a+b+c\right)$ if $\lambda=1+\sqrt{3}$ (so that $j(E)=12^{3}$) where ε is a primitive 3 rd root of unity. In particular, $\operatorname{Aut}_{k}(E, o)$ is a subgroup of $\operatorname{Aut}_{k}\left(E \uparrow \mathbb{P}^{2}\right)=\operatorname{Aut}_{k}\left(\mathbb{P}^{2} \downarrow E\right)$.

Remark 10. When $j(E)=0,12^{3}$, we may fix $\lambda=0,1+\sqrt{3}$ respectively as in Lemma 9, because if two elliptic curves E and E^{\prime} in \mathbb{P}^{2} are projectively equivalent, then for every $\mathcal{A}(E, \sigma)$, there exists an automorphism $\sigma^{\prime} \in \operatorname{Aut}_{k} E^{\prime}$ such that $\mathcal{A}(E, \sigma) \cong \mathcal{A}\left(E^{\prime}, \sigma^{\prime}\right)$ (see [7, Lemma 2.6]).

It follows from [4, Proposition 4.5] that every automorphism $\sigma \in$ Aut $_{k} E$ can be written as $\sigma=\sigma_{p} \tau_{E}^{i}$ where σ_{p} is a translation by a point $p \in E, \tau_{E}$ is a generator of $\operatorname{Aut}_{k}(E, o)$ and $i \in \mathbb{Z}_{\left|\tau_{E}\right|}$. For any $n \geq 1$, we call a point $p \in E n$-torsion if $n p=o$. We set $E[n]:=\{p \in E \mid n p=o\}$ and $T[n]:=\left\{\sigma_{p} \in \operatorname{Aut}_{k} E \mid p \in E[n]\right\}$. It follows from [4, Theorem 4.12 (3)] that every automorphism $\sigma \in \operatorname{Aut}_{k}\left(\mathbb{P}^{2} \downarrow E\right)$ can be written as $\sigma=\sigma_{q} \tau_{E}^{i}$ where $q \in E[3]$ and $i \in \mathbb{Z}_{\left|\tau_{E}\right|}$.

Let $E=\mathcal{V}\left(x^{3}+y^{3}+z^{3}-3 \lambda x y z\right)$ be an elliptic curve in \mathbb{P}^{2} and $p=(a, b, c) \in E \backslash E[3]$. Then $\mathcal{A}\left(E, \sigma_{p}\right)$ is called a 3-dimensional Sklyanin algebra, and

$$
\mathcal{A}\left(E, \sigma_{p}\right)=k\langle x, y, z\rangle /\left(a y z+b z y+c x^{2}, a z x+b x z+c y^{2}, a x y+b y x+c z^{2}\right)
$$

Lemma 11 ([5, Lemma 4.10]). Let $A=\mathcal{A}\left(E, \sigma_{p}\right)$ be a 3-dimensional Sklyanin algebra where $p \in E \backslash E[3]$.
(1) For $\sigma_{q} \tau_{E}^{i} \in \operatorname{Aut}_{k}\left(\mathbb{P}^{2} \downarrow E\right), \sigma_{q} \tau_{E}^{i} \in Z\left(E, \sigma_{p}\right)$ if and only if $p-\tau_{E}^{i}(p)=o$.
(2) For $\sigma_{q} \tau_{E}^{i} \in \operatorname{Aut}_{k}\left(\mathbb{P}^{2} \downarrow E\right), \sigma_{q} \tau_{E}^{i} \in N\left(E, \sigma_{p}\right)$ if and only if $p-\tau_{E}^{i}(p) \in E[3]$.
(3) $M\left(E, \sigma_{p}\right)=N\left(E, \sigma_{p}\right)$.

By Theorem 8, to classify twisted algebras of 3-dimensional Sklyanin algebras $\mathcal{A}\left(E, \sigma_{p}\right)$ up to isomorphism of graded algebras, it is enough to classify subsets $Z\left(E, \sigma_{p}\right)$ and $M\left(E, \sigma_{p}\right)$ of $\mathrm{Aut}_{k}\left(\mathbb{P}^{2} \downarrow E\right)$.

Theorem 12 ([5, Theorem 4.11]). Let $A=\mathcal{A}\left(E, \sigma_{p}\right)$ be a 3-dimensional Sklyanin algebra. Then the following table gives $Z\left(E, \sigma_{p}\right)$ and $M\left(E, \sigma_{p}\right)$;

Type	$j(E)$	$Z\left(E, \sigma_{p}\right)$		$M\left(E, \sigma_{p}\right)$	
EC	$j(E) \neq 0,12^{3}$	$\left\{\begin{array}{l}T[3] \\ \operatorname{Aut}_{k}\left(\mathbb{P}^{2} \downarrow E\right)\end{array}\right.$	if $p \notin E[2]$ if $p \in E[2]$	$\left\{\begin{array}{l}T[3] \\ \operatorname{Aut}_{k}\left(\mathbb{P}^{2} \downarrow E\right)\end{array}\right.$	if $p \notin E[6]$ if $p \in E[6]$
	$j(E)=0$	$\left\{\begin{array}{l}T[3] \\ T[3] \rtimes\left\langle\tau_{E}^{3}\right\rangle\end{array}\right.$	if $p \notin E[2]$ if $p \in E[2]$	$\left\{\begin{array}{l} T[3] \\ T[3] \rtimes\left\langle\tau_{E}^{2}\right\rangle \\ T[3] \rtimes\left\langle\tau_{E}^{3}\right\rangle \end{array}\right.$	$\begin{aligned} & \text { if } p \notin \mathcal{E} \cup E[6] \\ & \text { if } p \in \mathcal{E} \\ & \text { if } p \in E[6] \end{aligned}$
	$j(E)=12^{3}$	$\left\{\begin{array}{l}T[3] \\ T[3] \rtimes\left\langle\tau_{\tau}^{2}\right\rangle \\ \operatorname{Aut}_{k}\left(\mathbb{P}^{2} \downarrow E\right)\end{array}\right.$	if $p \notin E[2]$ if $p \in E[2] \backslash\langle(1,1, \lambda)\rangle$ if $p=(1,1, \lambda)$	$\left\{\begin{array}{l}T[3] \\ T[3] \rtimes\left\langle\tau_{E}^{2}\right\rangle \\ \operatorname{Aut}_{k}\left(\mathbb{P}^{2} \downarrow E\right)\end{array}\right.$	if $p \notin E[6]$ if $p \in E[6] \backslash \mathcal{F}$ if $p \in \mathcal{F}$

where $\mathcal{E}:=\left\{(a, b, c) \in E \mid a^{9}=b^{9}=c^{9}\right\} \subset E[9] \backslash E[6]$ and $\mathcal{F}:=\langle(1,1, \lambda)\rangle \oplus E[3]$.

References

[1] N. Cooney and J. E. Grabowski, Automorphism groupoids in noncommutative projective geometry, J. Algebra 604 (2022), 296-323.
[2] H. R. Frium, The group law on elliptic curves on Hesse form, Finite fields with applications to coding theory, cryptography and related areas, (Oaxaca, 2001), Springer, Berlin, (2002), 123-151.
[3] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977.
[4] A. Itaba and M. Matsuno, Defining relations of 3-dimensional quadratic AS-regular algebras, Math. J. Okayama Univ. 63 (2021), 61-86.
[5] M. Matsuno, Twisted algebras of geometric algebras, Canad. Math. Bull. 66(3) (2023), 715-730.
[6] I. Mori, Non commutative projective schemes and point schemes, Algebras, Rings and Their Representations, World Sci., Hackensack, N.J., (2006), 215-239.
[7] I. Mori and K. Ueyama, Graded Morita equivalences for geometric AS-regular algebras, Glasg. Math. J. 55(2) (2013), 241-257.
[8] J. J. Zhang, Twisted graded algebras and equivalences of graded categories, Proc. Lond. Math. Soc. 72 (1996), 281-311.

Katsushika division

Institute of Arts and Sciences
Tokyo University of Science
6-3-1 Nifjuku, Katsushika-Ku, Tokyo, 125-8585, Japan
Email address: masaki.matsuno@rs.tus.ac.jp

