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ON TRIVIAL TILTING THEORY

TAKUMA AIHARA

Abstract. We explore when an algebra has only trivial tilting module/complex.

Introduction

In mathematics, trivial cases are regularly trivial (insipid and uninteresting). For in-
stance, we study that in group theory, a group with only trivial subgroup is a cyclic group
of prime order, and in ring theory, a commutative ring with only trivial ideal is a field.
These are first exercises for beginners. Neverthless, we cannot turn away from them.
In this note, we discuss trivial tilting thoery for a finite dimensional algebra Λ over an

algebraically closed field. Tilting theory deals with (classical) tilting modules, one-sided
tilting complexes, two-sided tilting complexes (derived Picard groups), support τ -tilting
modules, Wakamatsu tilting modules and so on. For example, ΛΛ is a trivial tilting
module and the one-sided stalk complexes ΛΛ[m] are trivial tilting complexes. We will
give answers to the question “when does Λ have only trivial tilting module/complex”.

1. Module version

The right finitistic dimension r.fin.dimΛ of Λ is defined to be the supremum of the
projective dimensions of right modules with finite projective dimension. Dually, we define
the left finitistic dimension l.fin.dimΛ of Λ. Note that r.fin.dimΛ and l.fin.dimΛ do not
necessarily coincide. As is well-known, r.fin.dimΛ = 0 if and only if there is a non-zero
homomorphism from every simple module to Λ in modΛop [4]. Here, Λop stands for the
opposite algebra of Λ.
A module T is said to be tilting if it has finite projective dimension satisfying ExtnΛ(T, T ) =

0 for any positive integer n and there exists an exact sequence 0 → Λ → T0 → T1 →
· · · → T� → 0 with Ti ∈ addT ; this is also called Miyashita tilting. When proj.dimT ≤ 1,
we often call T classical tilting.
We state the first observation of this note; it seems to be well-known (or easy to show)

for researchers who are familiar with tilting theory.

Theorem 1. The following are equivalent for an algebra Λ:

(1) r.fin.dimΛ = 0;
(2) The module Λ is the only (basic) Miyashita tilting module;
(3) It is the only (basic) classical tilting module.

The detailed version of this paper will be submitted for publication elsewhere.
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Remark 2. An affirmative answer to the finitistic dimension conjecture, which states that
the dimension is always finite, would give us the fact that r.fin.dimΛ = proj.dimT for
some (possibly infinitely generated) tilting module T [3, Theorem 2.6].

2. Complex version

A tilting complex T is defined to be a perfect complex satisfying HomKb(projΛ)(T, T [n]) =

0 for every nonzero integer n and Kb(projΛ) = thickT . We denote by tiltΛ the set of
isomorphism classes of (basic) tilting complexes of Λ. In this section, we explore when Λ
has only trivial tilting complex. First, one gives well-known examples; (1) [6], (2) [1] and
(3) by Ringel (unpublished paper).

Example 3. The following algebras have only trivial tilting complexes:

(1) local algebras;
(2) selfinjective algebras with cyclic Nakayama permutation;
(3) radical-square-zero algebras satisfying Ext1(S, S ′) �= 0 for all simple modules S, S ′.

All algebras above have left and right finitistic dimension zero. However, even if Λ
satisfies the property, it does not necessarily hold that Λ admits no nontrivial tilting
complex; many selfinjective algebras satisfy both the property and tiltΛ �= Λ[Z], so we
should give an example of nonselfinjective algebras.

Example 4. Let Λ be the radical-square-zero algebra presented by the quiver:

1
x ��y �� 2 z�� .

It is easy to check that r.fin.dimΛ = 0 = l.fin.dimΛ.
As is seen in [2, Example 5.10], we have only three indecomposable pretilting complexes

up to shift: P1, P2 and X := P2
x−→ P1. This tells us that there precisely exist two types

of nontrivial tilting complexes:

T :=
⊕⎧⎨⎩ P1

P2 x
�� P1

, U :=
⊕⎧⎨⎩ P2

P2 x
�� P1

So, we obtain tiltΛ = Λ[Z] ∪ T [Z] ∪ U [Z]. Moreover, each component admits the endo-
morphism algebra isomorphic to Λ,Γ or Γop (mutually nonisomorphic). Here, Γ is given
by the following quiver with relations αβα = αγ = γβ = γ2 = 0:

1
α �� 2
β

�� γ�� .

We say that a complex T is two-term provided it is of the form T−1 → T 0. The subset
of tiltΛ consisting of two-term tilting complexes is denoted by 2tiltΛ.

A full subcategory of modΛ is said to be a torsion class if it is closed under extensions
and factors. We say that a torsion class is ν-stable provided it is closed under taking the
Nakayama functor ν := −⊗Λ DΛ. Here is a useful observation.

Proposition 5. [5, Proposition 5.5] Let T be a two-term perfect complex of Λ and put
X := H0(T ). Then T is tilting if and only if FacX is a ν-stable functorially finite torsion
class of modΛ.
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An Iwanaga–Gorenstein algebra is defined to have finite left and right selfinjective
dimension. We can get a result similar to Theorem 1.

Theorem 6. The following are equivalent for an Iwanaga–Gorenstein algebra Λ:

(1) Λ is a selfinjective algebra with cyclic Nakayama permutation;
(2) tiltΛ = {Λ[m] | m ∈ Z};
(3) 2tiltΛ = {Λ,Λ[1]}.
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ON INTERVAL GLOBAL DIMENSION OF POSETS:
A CHARACTERIZATION OF CASE 0

TOSHITAKA AOKI, EMERSON G. ESCOLAR, AND SHUNSUKE TADA

Abstract. We study the relative homological algebra of posets with respect to the
intervals. We introduce our recent research on the properties of the supports of interval
approximations and interval resolution global dimension. We also provide necessary and
sufficient conditions on a poset to ensure that any representation is interval-decomposable
(i.e. a characterization of the case where interval resolution global dimension is equal to
0).

Key Words: Representation, Relative homological algebra, Persistence module, In-
terval module

2000 Mathematics Subject Classification: 16G20, 55N31, 18G25, 16E05

1. Introduction

We refer the reader to [3] (arXiv:2308.14979) for details on the contents of this article.
Topological data analysis is a rapidly growing field applying the ideas of algebraic

topology for data analysis. One of its main tools is persistent homology [1], which can
compactly summarize the birth and death parameters of topological features (e.g. con-
nected components, rings, cavities, and so on) of data via the persistence diagram. This
allows us to analyze hidden structures in data. Algebraically, one part of the persistent
homology analysis can be formalized by using the so-called one-parameter persistence
modules, which are just (“pointwise”) finite dimensional modules over the incidence al-
gebra of a totally ordered set. In this point of view, one-parameter persistence modules
are guaranteed to decompose into the indecomposable modules called interval modules,
which provide a multiset of intervals that are encoded by the persistence diagram.
As a generalization, multi-parameter persistence modules are proposed, understood as

representations of n-dimensional grids, and are expected to provide richer information
than the one-parameter setting. When dealing with multi-parameter settings, however,
there are some difficulties with adapting the same techniques.
Recently, there has been an interest in the use of relative homological algebra in persis-

tence theory. Especially, the notion of right minimal approximations and resolutions by
interval-decomposable modules are developed, and the finiteness of the interval resolution
global dimension has been confirmed [2].
The aim of this article is to introduce the properties of right minimal approximations

and resolutions by interval-decomposable modules studied in [3].

The detailed version of this paper will be submitted for publication elsewhere.
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2. Preliminaries

Let A be a finite dimensional algebra over a field k. We denote by modA the category of
finitely generated right A-modules. Throughout this article, we assume that all modules
are finitely generated. For morphisms f : X → Y and g : Y → Z of A-modules, we denote
their composition by gf : X → Z.

2.1. Approximations and resolutions. We recall the basic terminology of relative
homological algebra. We consider the full subcategory X := addX of modA for a fixed
finite collection X of (isomorphism classes of) indecomposable A-modules including all
the indecomposable projective modules.

Definition 1. For a morphism f : X →M of A-modules, we say that

(1) f is right minimal if any morphism g : X → X satisfying fg = f is an isomorphism.
(2) f is a right X -approximation of M if X ∈ X and HomA(Y, f) is surjective for any

Y ∈ X .
(3) f is a right minimal X -approximation of M if it is a right X -approximation which is

right minimal.
(4) A right minimal X-resolution of M is an exact sequence

· · · −→ Jm
gm−→ · · · g2−→ J1

g1−→ J0
f−→M −→ 0,

such that f is a right minimal (addX)-approximation of M , and for each 1 ≤ i, the
morphism gi is a right minimal (addX)-approximation of Im gi = Ker gi−1.

(5) If M has a right minimal X-resolution of the form

0 −→ Jm
gm−→ · · · g2−→ J1

g1−→ J0
f−→M −→ 0,

then we say that the X-resolution dimension of M is m and write X-res-dimM = m.
Otherwise, we say that the X-resolution dimension of M is infinity. We set

X-res-gldimA := sup{X-res-dimM |M ∈ modA}
and call X-resolution global dimension of A. Notice that it can be infinity.

2.2. Partially ordered set and its representations. Let P be a finite poset. We
recall that the Hasse diagram of P is a directed graph whose vertices are in bijection with
elements of P and there is an arrow x→ y for x, y ∈ P if x < y and there is no z ∈ P such
that x < z < y. The incidence algebra k[P ] of a poset P is defined to be the quotient of
the path algebra of the Hasse diagram of P modulo the two-sided ideal generated by all
the commutative relations. The module category mod k[P ] can be described in terms of a
functor category as follows. Firstly, we regard P as a category whose objects are elements
of P , and morphisms are defined by relations in P , i.e., there is a unique morphism a→ b
for a, b ∈ P if and only if a ≤ b. We denote by repk(P ) the category of (covariant) functors
from P to the category of finite dimensional vector spaces over k. For V in repk(P ), the
subset supp V := {a ∈ P | Va �= 0} is called the support of V .
It is well-known that there is an equivalence of abelian categories between repk(P ) and

the module category mod k[P ] of the incidence algebra of P . In this sense, we identify
objects V of repk(P ) and k[P ]-modules, and the support of a k[P ]-module M is the subset
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supp(M) = {a ∈ P |Mea �= 0}, where ea is a primitive idempotent of k[P ] corresponding
to the element a ∈ P .
In our study, the following class of full subposets called interval is basic.

Definition 2. A full subposet of P is a subset P ′ ⊆ P equipped with the induced partial
order. Notice that it is completely determined by its elements. We say that

(1) P ′ is convex in P if, for any x, y ∈ P ′ and any z ∈ P , x < z < y implies z ∈ P ′,
(2) P ′ is an interval of P if P ′ is connected as a poset and is convex in P .

We denote by I(P ) the set of intervals of P .

The following special class of modules plays an important role in this article.

Definition 3. For an interval I of P , let kI be a k[P ]-module given as follows.

(2.1) (kI)a =

{
k if a ∈ I,

0 otherwise,
kI(a ≤ b) =

{
1k if a, b ∈ I,

0 otherwise.

An interval module is a k[P ]-module M such that M ∼= kI for some interval I ∈ I(P ).
Clearly, every interval module is indecomposable.

We denote by Ik,P the set of isomorphism classes of the interval k[P ]-modules, which
is in bijection with I(P ) by I 
→ kI . Notice that IP and IP,k are finite since so is P . Each
module in add IP,k is said to be interval-decomposable. In other words, a given k[P ]-module
M is interval-decomposable if and only if it can be written as

M ∼=
⊕

I∈I(P )

k
m(I)
I

for some non-negative integers m(I). We will write IP instead of Ik,P when the base field
k is clear.
Since IP contains all indecomposable projective k[P ]-modules by definition, one can

consider resolutions by interval modules. By interval covers over P (resp., interval res-
olutions over P ), we mean right minimal (add IP )-approximations (resp., IP -resolutions)
of k[P ]-modules. When the poset P is clear, we may omit it. In addition, we will write

int-res-dimM := IP -res-dimM and int-res-gldim k[P ] := IP -res-gldim k[P ],

and call them the interval resolution dimension of a module M and the interval resolution
global dimension of k[P ] respectively. It has been shown in [2, Proposition 4.5] that the
interval resolution global dimension is always finite. To show that, the next proposition
is a key.

Proposition 4. [2, Lemma 4.4 and its dual] The subcategory add IP is closed under both
submodules and quotients of indecomposable modules.

Then, we can apply [10, Theorem in §5](cf. [8]) and obtain the following.

Theorem 5. [2, Proposition 4.5] For any finite poset P , int-res-gldim(k[P ]) <∞.
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3. Results

In this section, we will give three results on interval covers and interval resolution
dimensions (Theorems 6, 8, and 9). These results are motivated by topological data
analysis, and they would be interesting from the perspective of representation theory of
finite dimensional algebras.

3.1. Result 1. We show the following result.

Theorem 6. Let P be a finite poset and IP the set of isomorphism classes of interval
modules. For a given k[P ]-module M , we take its interval cover f : X =

⊕m
i=1 Xi → M ,

where all the Xi’s are interval modules. Then, the following holds.

(1) f is surjective.
(2) f |Xi

: Xi →M is injective for every i ∈ {1, . . . ,m}.
(3) suppX = suppM .

In particular, every Xi can be taken as an interval submodule of M .

An importance of Theorem 6 is that it provides one way to reduce the computational
burden for computing interval resolutions. We note that [5, Proposition 4.8] show Theo-
rem 6 in essentially the same way.

Example 7. We consider the D4-type quiver D4(b) displayed below:

1

��
2 3�� �� 4.

Then, the incidence algebra is just a path algebra of type D4. The Auslander-Reiten
quiver is given by

0
1 0 0

0
0 1 1

1
1 1 0

0
1 1 1

1
1 1 1 M 0

0 1 0
1

0 1 0
1

0 0 0 ,

0
0 0 1

0
1 1 0

1
0 1 1

a1

b2

b1

b3

a2

a3

where all indecomposable modules except for M are interval, but M is

k
t[1 1]

��
k k2

[1 0]
��

[0 1]
�� k.

Looking at the Auslander-Reiten quiver, we find that an interval resolution of M is

0 −→ 0
1 1 1

t[b1,b2,b3]−−−−−→ 0
0 1 1 ⊕ 1

1 1 1 ⊕ 0
1 1 0

[a1,a2,a3]−−−−−→M −→ 0,
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and hence

int-res-dimM = 1.

Consequently, the interval resolution global dimension for D4(b) is 1. One can also show
that any D4-type quiver has the interval resolution global dimension 1.

3.2. Result 2. We give a complete classification of posets whose modules are always
interval-decomposable. This result generalizes the one-parameter settings of persistent
homology.

Theorem 8. Let P be a finite poset and k[P ] the incidence algebra of P . Then, the
following conditions are equivalent.

(a) int-res-gldim k[P ] = 0.
(b) Every k[P ]-module is interval-decomposable.
(c) Each connected component of the Hasse diagram of P is one of An(a) for some ori-

entation a or Cm,� displayed below, where the symbol ↔ is either → or ← assigned by
its orientation a:

An(a) : 1←→ 2←→ · · · · · · ←→ n,

Cm,� :

1
α1 �� · · · αm−1 �� m

αm

��
0̂

α0

��

β0

		

1̂

1′
β1 �� · · · β�−1 �� �′

β�

��

In particular, these conditions do not depend on the characteristic of the base field k.

We note that equivalences among (a) and (b) in the statement are trivial.

3.3. Result 3. Finally, we study a relationship between the interval resolution global
dimensions of different posets. Our result is the following.

Theorem 9. Let P be a finite poset and k[P ] the incidence algebra of P . For any full
subposet P ′ of P , we have

(3.1) int-res-gldim k[P ′] ≤ int-res-gldim k[P ].

For the usual global dimension, we do not have the above monotonicity in general.

Example 10. Let P and P ′ be posets given by

P : •

•
• •

•
• •

and P ′ :

•
• •

•
• •
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respectively. Then, P ′ is a full subposet of P , which is obtained by removing the point
in the center. The global dimension of k[P ] is 2 but that of k[P ′] is 3 (over an arbitrary
field), see [7, Section 3].
On the other hands, we have int-res-gldim k[P ′] = 2 ≤ 3 = int-res-gldim k[P ] over a

field with two elements.

In the rest, we give a sketch of a proof of Theorem 9. The main ingredient for its proof
is a functor Θe defined as follows. Let A be a finite dimensional k-algebra. For a given
idempotent e ∈ A, we consider the idempotent subalgebra B := eAe. It is well-known
that the functors

Rese(−) := (−)e, Inde(−) := −⊗B eA, Coinde(−) := HomB(Ae,−),
respectively called the restriction, induction, and coinduction functors, provide a diagram

(3.2) modA modB.
Rese

Inde

Coinde

which gives an adjoint triple. Then, the identity 1M is associated to the map θM by

HomA(Inde(M),Coinde(M))

∈

HomB(M,M)
∼��

∈

θM 1M ,���

and an A-module

Θe(M) := Im θM ⊆ Coinde(M).

It gives rise to a functor Θe called intermediate extension in [9, Proposition 4.6], and
prolongedment intermédiare in [4]. We have Rese ◦Θe

∼= 1modB.
Let P be a finite poset and P ′ a full subposet of P . In this setting, the incidence algebra

k[P ′] can be obtained as an idempotent subalgebra. In fact, we have an isomorphism
k[P ′] ∼= ek[P ]e of algebras, where e :=

∑
x∈P ′ ex. Due to the previous paragraph, we can

define the functor Θe : mod k[P ′]→ mod k[P ].
The following is a key observation on interval modules.

Proposition 11. The functor Θe sends interval modules to interval modules. More ex-
plicitly, for a given interval I ∈ I(P ′), we have Θe(kI) ∼= kconv(I), where conv(I) is the
smallest interval of P containing I.

Consequently, we find the exact functor Rese and the functor Θe provides the diagram

mod k[P ] Rese 



∪
mod k[P ′]

Θe
��

∪
add IP Rese|add IP �� add IP ′ ,

Θe|add IP ′
��
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where IP (resp., IP ′) is the set of isomorphism classes of interval modules over P (resp.,
P ′). Then, we can directly compare interval resolutions via these functors and obtain the
following.

Proposition 12. For any module M ∈ k[P ′], we have the following inequality

(3.3) IP ′-res-dimM ≤ IP -res-dimΘe(M).

Now, we are ready to prove Theorem 9.

Proof of Theorem 9. Since M is an arbitrary module in (3.3), we obtain the desired in-
equality (3.1) by Proposition 12. �
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FACES OF INTERVAL NEIGHBORHOODS OF SILTING CONES

SOTA ASAI AND OSAMU IYAMA

Abstract. In the study of silting complexes for a finite dimensional algebra over a field,
silting cones in the real Grothendieck group play an important role. The first named
author defined the interval neighborhood of each silting cone so that it is compatible
with τ -tilting reduction of Jasso. The closure of the interval neighborhood is a rational
polyhedral cone in the real Grothendieck group. We have obtained many important
properties of the faces of this rational polyhedral cone, and explain some of them in this
proceeding.

1. Introduction

The representation theory of a finite dimensional algebra A over a field K studies the
categories modA and projA of finitely generated (projective) A-modules, and its derived
categories Db(modA) and Kb(projA).
Derived equivalences of algebras are characterized by the existence of tilting complexes

in the category Kb(projA) introduced by Rickard [20]. Keller-Vossieck [17] generalized
tilting complexes to silting complexes, and silting complexes are equipped with the opera-
tion called mutation exchanging one indecomposable direct summand of a silting complex
to obtain another one [3].
Among silting complexes, 2-term silting complexes are strongly related to functorially

finite torsion pairs [1, 5, 11], which is known as part of τ -tilting theory. It is natural to also
consider direct summands of 2-term silting complexes, which are called 2-term presilting
complexes.
In the study of (pre)silting complexes, the Grothendieck group K0(projA) is important.

Actually, K0(projA) is nothing but the free abelian group
⊕n

i=1 Z[Pi] whose canonical
basis is given by the isoclasses of indecomposable projective modules P1, P2, . . . , Pn.

Aihara-Iyama [3] proved that the indecomposable direct summands S1, S2 . . . , Sn of each
basic silting complex S =

⊕n
i=1 Si give another free basis [S1], [S2], . . . , [Sn] of K0(projA).

Then, for each basic 2-term presilting complex U =
⊕m

i=1 Ui with Ui indecomposable, we
have a silting cone

C◦(U) :=
m∑
i=1

R>0[Ui],

in the real Grothendieck group K0(projA)R. The silting cone C◦(U) is m-dimensional.
By [12], silting cones give a fan in K0(projA)R so that the intersection C(U)∩C(U ′) of

the silting cones of basic 2-term presilting complexes U and U ′ coincides with the silting
cone C(U ′′) of the maximum common direct summand U ′′ of U and U ′.

The detailed version of this paper will be submitted for publication elsewhere.
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In general, this fan is not necessarily complete. In other words, there can be a region
in K0(projA)R where no silting cones exist. To understand such a region more, it is
helpful to consider semistable subcategories Wθ of King [18] and semistable torsion pairs
(T θ,Fθ), (Tθ,F θ) of Baumann-Kamnitzer-Tingley [9] in modA, given by certain linear
conditions on subfactors of modules in modA for elements θ in K0(projA)R.

By using semistable subcategories, Brüstle-Smith-Treffinger [10] introduced the wall-
chamber structure in K0(projA)R whose walls are ΘM := {θ ∈ K0(projA)R | M ∈ Wθ}
for all nonzero modules M ∈ modA \ {0}. Similarly, by semistable torsion pairs, the first
named author [6] defined an equivalence relation called TF equivalence so that θ and η
are TF equivalent if (T θ,Fθ) = (T η,Fη) and (Tθ,F θ) = (Tη,Fη).
Based on results of Brüstle-Smith-Treffinger [10] and Yurikusa [21], the first named

author [6] proved that the silting cone C◦(U) for each basic 2-term presilting complex U
is a TF equivalence class. The semistable torsion pairs for θ ∈ C◦(U) are the functorially
finite torsion pairs for U which have already been considered in [1, 8].
Sometimes, it is difficult to deal with all 2-term (pre)silting complexes at once. Then,

one of the useful methods is τ -tilting reduction introduced by Jasso [16]. For a fixed basic
2-term presilting complex U , Jasso constructed a finite dimensional algebra B = BU , and
obtained that the basic 2-term (pre)silting complexes which have U as direct summands
in Kb(projA) are in bijections with the basic 2-term (pre)silting complexes in Kb(projB).
Moreover, Jasso also proved that Wθ for θ ∈ C◦(U) is equivalent to the module category
modB.
The first named author introduced a subset NU of K0(projA)R which connects the wall-

chamber structure, TF equivalence and the τ -tilting reduction at U in [6]. The set NU

is an open neighborhood of the silting cone C◦(U), so we decided to call NU the interval
neighborhood of C◦(U).
By the constrution, the closure NU is a rational polyhedral cone in K0(projA)R, so we

are currently studying the faces of NU . We will state some of our results on the faces of
NU in this proceeding.

1.1. Notation. In this proceeding, K is a field, and A is a finite dimensional K-algebra.
The symbol projA denotes the category of finitely generated projective A-modules, and
modA denotes the category of finitely generated A-modules.
As usual, K0(C) is the Grothendieck group of an exact category C. The real Grothendieck

group means the R-vector space K0(C)R := K0(C)⊗Z R.
The Grothendieck group K0(projA) is nothing but

⊕n
i=1 Z[Pi], where P1, P2, . . . , Pn

are the pairwise nonisomorphic indecomposable projective modules. Thus, K0(projA)R is
the Euclidean space

⊕n
i=1 R[Pi]. Similarly, K0(modA) =

⊕n
i=1 Z[Li] and K0(modA)R =⊕n

i=1 R[Li] hold, where Li is the simple top of Pi.
With respect to the Euler form, K0(projA)R can be seen as the dual R-vector space of

K0(modA)R up to scalar multiples. Namely, each θ =
∑n

i=1 ai[Pi] ∈ K0(projA)R gives the
R-linear map K0(modA)R → R such that

θ

(
n∑

i=1

bi[Li]

)
=

n∑
i=1

aibi dimK EndA(Li).
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2. Silting cones and TF equivalence

We first recall some terminology on silting cones and TF equivalence.
Let U be a complex in the homotopy category Kb(projA) of bounded complexes in

projA. Since Kb(projA) is Krull-Schmidt, U is isomorphic to a direct sum of the form⊕m
i=1 U

⊕si
i with U1, U2, . . . , Um indecomposable and pairwise nonisomorphic and all si ≥ 1.

In this case, we set |U | := m, and say that U is basic if all si = 1.
Then, we can define (pre)silting complexes as follows.

Definition 1. [17, 5.1][3, Theorem 2.27] Let U ∈ Kb(projA).

(1) We say that U is presilting if HomKb(projA)(U,U [>0]) = 0.
(2) We say that U is silting if U is presilting and |U | = |A|.
Aihara [2, Proposition 2.16] proved that any presilting complex U is a direct sum-

mand of some silting complex S. By this and [3, Theorem 2.27], if U =
⊕m

i=1 Ui with
each Ui indecomposable is presilting, then [U1], [U2], . . . , [Um] ∈ K0(projA)R are linearly
independent.
We say that U ∈ Kb(projA) is 2-term if the terms of U except the −1st and the 0th ones

are zero. The result [2, Proposition 2.16] also says that any 2-term presilting complex U
is a direct summand of some 2-term silting complex S.
We set 2-siltA (resp. 2-psiltA) as the set of basic 2-term (pre)silting complexes in

Kb(projA). Thus, it is natural to consider the following notions.

Definition 2. Let U =
⊕m

i=1 Ui ∈ 2-psiltA with Ui indecomposable. Then, we set the
silting cones C◦(U), C(U) ⊂ K0(projA)R as

C◦(U) =
m∑
i=1

R>0[Ui], C(U) =
m∑
i=1

R≥0[Ui].

We will characterize the silting cone C◦(U) by semistable torsion pairs, which are
defined as follows.

Definition 3. Let θ ∈ K0(projA)R.

(1) [9, Subsection 3.1] We set the semistable torsion pairs (T θ,Fθ), (Tθ,F θ) in modA
by

T θ := {M ∈ modA | θ(N) ≥ 0 for any factor module N of M},
Fθ := {M ∈ modA | θ(L) < 0 for any submodule L �= 0 of M},
Tθ := {M ∈ modA | θ(N) > 0 for any factor module N �= 0 of M},
F θ := {M ∈ modA | θ(L) ≤ 0 for any submodule L of M}.

(2) [18, Definition 1.1] We set Wθ := T θ ∩ F θ, and call it the semistable subcategory.

The semistable subcategory Wθ is a wide subcategory of modA; that is, closed under
taking kernels, cokernels, and extensions in modA. Therefore, the interval [Tθ, T θ] in the
poset torsA of torsion classes is a wide interval in [7]. Moreover, Wθ is an abelian length
category, and hence has the Jordan-Hölder property [14, Theorem 6.2].
Then, we can define TF equivalence.
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Definition 4. [6, Definition 2.13] Let θ, η ∈ K0(projA)R. We say that θ and η are TF
equivalent if (T θ,Fθ) = (T η,Fη) and (Tθ,F θ) = (Tη,Fη).

The following result based on [10, Proposition 3.27] and [21, Proposition 3.3] is funda-
mental in our study.

Proposition 5. [6, Proposition 3.11] Let U ∈ 2-psiltA. Then, C◦(U) is a TF equivalence
class. For any θ ∈ C◦(U), we have

(T θ,Fθ) = (⊥H−1(νU), SubH−1(νU)), (Tθ,F θ) = (FacH0(U), H0(U)⊥).

The torsion pairs in the right-hand sides are classical functorially finite ones which were
in [8, Theorem 5.10]. In the terminology of [1], the module H−1(νU) is τ−1-rigid, and the
module H0(U) is τ -rigid. See [1, 8] for details including the definitions of the symbols.

Definition 6. Let U ∈ 2-psiltA. Then, we set

(T U ,FU) := (⊥H−1(νU), SubH−1(νU)), (TU ,FU) := (FacH0(U), H0(U)⊥),

WU := T U ∩ FU .

Thus, WU =Wθ for θ ∈ C◦(U) holds, so WU is a wide subcategory of modA. This was
shown by [16, Theorem 3.8] without using semistable torsion pairs. See also [13, Theorem
4.12].

3. Interval neighborhoods of silting cones

For each U ∈ 2-psiltA, we set

2-psiltU A := {V ∈ 2-psiltA | U ∈ addV }.
This is the subset of 2-psiltA consisting all V ∈ 2-psiltA which have U as direct summands.
To study 2-psiltU A, the first named author introduced the following set.

Definition 7. [6, Subsection 4.1] Let U ∈ 2-siltA. Then, we define the interval neighbor-
hood NU of C◦(U) by

NU := {θ ∈ K0(projA)R | H0(U) ⊂ Tθ, H−1(νU) ⊂ Fθ}
= {θ ∈ K0(projA)R | TU ⊂ Tθ, FU ⊂ Fθ}.

We first observe the following properties.

Lemma 8. Let U, V ∈ 2-psiltA.

(1) [6, Lemma 4.3] The set NU is an open neighborhood of C◦(U).
(2) The set NU is given by finitely many linear strict inequalities.
(3) [6, Lemma 3.13] The following conditions are equivalent:

(a) V ∈ 2-psiltU A;
(b) TV ⊃ TU and FV ⊃ FU ;
(c) C◦(V ) ⊂ NU ;
(d) NV ⊂ NU .

Moreover, NU satisfies the following minimality.
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Lemma 9. Let U ∈ 2-psiltA. Then, NU is the smallest set satisfying both the following
conditions:

(a) NU is a neighborhood of C◦(U);
(b) NU is a union of TF equivalence classes.

We also focus on the closure NU ⊂ K0(projA)R.

Lemma 10. Let U, V ∈ 2-psiltA.

(1) We have NU = {θ ∈ K0(projA)R | H0(U) ⊂ T θ, H−1(νU) ⊂ F θ}. In particular,
NU is a union of TF equivalence classes.

(2) We have NU ⊃ C(U).
(3) The set NU is a rational polyhedral cone in K0(projA)R.
(4) The following conditions are equivalent:

(a) U ⊕ V is (not necessarily basic) presilting;
(b) NU ∩NV �= ∅;
(c) C(V ) ⊂ NU .
In this case, NU⊕V = NU ∩NV holds.

4. Faces of interval neighborhoods

Let U ∈ 2-psiltA. Since NU is a rational polyhedral cone, we study the set FaceNU of
its faces. If U =

⊕m
i=1 Ui with Ui indecomposable, we set UI :=

⊕
i∈I Ui for each subset

I ⊂ {1, 2, . . . ,m}. We have obtained the following properties in our study.

Definition-Proposition 11. Let U ∈ 2-psiltA and F ∈ FaceNU . Set IF := {i ∈
{1, 2, . . . ,m} | [Ui] /∈ F}.

(1) We have F ∩ C(U) = C(U/UIF ).
(2) If dimR F = n− 1, then #IF = 1.
(3) For any I ⊂ {1, 2, . . . ,m}, we define

FaceI NU := {F ∈ FaceNU | IF = I}.
Then, we have a (not necessarily convex) subset

∂I :=
⋃

F∈FaceI NU

F = NU \
⋃
i∈I

NUi
⊂ NU .

To explain our main results, we need to recall some results in τ -tilting reduction.
Fix U ∈ 2-psiltA. Then, we take the unique S ∈ 2-siltA such that T S = T U . This S is

called the Bongartz completion of U . We define a finite dimensional algebra B = BU by
B := EndKb(projA)(S)/〈e〉, where e is the idempotent S → U → S.
Jasso [16] proved the following results. See also [13, Theorem 4.12] and [4, Theorem

4.9].

Proposition 12. Let U ∈ 2-psiltA.

(1) [16, Theorem 3.8] There exists a category equivalence

Φ := HomDb(modA)(S, ?) : WU → modB.
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(2) [16, Theorems 3.16, 4.12] There uniquely exist bijections

p : 2-siltU A→ 2-siltB, p : 2-psiltU A→ 2-psiltB

such that

(Φ(T U ∩WU),Φ(FU ∩WU)) = (T p(U),Fp(U)),

(Φ(TU ∩WU),Φ(FU ∩WU)) = (Tp(U),Fp(U)).

In particular, p(S) = B.

The first named author found the corresponding results in K0(projA)R.

Definition-Proposition 13. [6, Lemma 4.4, Theorem 4.5] Let U ∈ 2-psiltA. Then, there
exists an R-linear surjective map π : K0(projA)R → K0(projB)R satisfying the following
conditions.

(a) The kernel Ker π is the R-vector subspace RC(U) generated by C(U).
(b) The resriction π|NU

: NU → K0(projB)R is still surjective.
(c) For any θ ∈ NU , we have Φ(Tθ ∩ WU) = Tπ(θ) and Φ(Fθ ∩ WU) = Fπ(θ). In

particular, π induces a bijection

{TF equivalence classes in NU} → {TF equivalence classes in K0(projB)R}.
(d) For any V ∈ 2-psiltU A, we have π(C◦(V )) = C◦(p(V )).

Then, we can state our first main result.

Theorem 14. Let U =
⊕m

i=1 Ui ∈ 2-psiltA with Ui indecomposable, and I ⊂ {1, 2, . . . ,m}.
We set

ΣI := {π(F ) | F ∈ FaceI NU}.
(1) We have a bijection FaceI NU → ΣI sending F to π(F ). The inverse is given by

σ 
→ π−1(σ) ∩ ∂I .
(2) For any F ∈ FaceI NU , we have dimR π(F ) = dimR F −#I.
(3) ΣI is a finite complete rational polyhedral fan in K0(projB)R.

Before stating our second main result, we prepare some notions. Since (T θ,Fθ), (Tθ,F θ)
are torsion pairs in modA, for any M ∈ modA and θ ∈ K0(projA)R, we have unique short
exact sequences

0→ tθM →M → fθM → 0 (tθM ∈ T θ, fθM ∈ Fθ),

0→ tθM →M → fθM → 0 (tθM ∈ Tθ, fθM ∈ F θ)

with tθM ⊂ tθM ⊂ M . Moreover, we set wθM := tθM/tθM ∈ Wθ. Then, we introduce
the following equivalence relation.

Definition 15. Let M ∈ modA, and θ, η ∈ K0(projA)R. Then, we say that θ and η are
M-TF equivalent if the following conditions hold:

(a) tθM = tηM and wθM = wηM and fθM = fηM ;
(b) the composition factors of wθM = wηM in Wθ and Wη coincide.

Moreover, we set Σ(M) as the set of the closures of all M -TF equivalence classes.
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The condition (b) seems complicated, but it is necessary to make the following property
hold.

Proposition 16. Let M ∈ modA. Then, Σ(M) is a finite complete rational polyhedral
fan in K0(projA)R.

We remark that Σ(M) coincides with the complete rational polyhedral fan Σ(N(M))
in [4, Theorem 5.22] constructed from the Newton polytope N(M) of M in K0(modA)R.
Now, we can state our second main result.

Theorem 17. Let U =
⊕m

i=1 Ui ∈ 2-psiltU A with Ui indecomposable. Then, there ex-
ist M1,M2, . . . ,Mm ∈ modB such that, for any subset I ⊂ {1, 2, . . . ,m}, the rational
polyhedral fans Σ(

⊕
i∈I Mi) and ΣI in K0(projB)R coincide.

We sketch the construction ofM1,M2, . . . ,Mm above. We take the unique S, T ∈ 2-siltA
such that T S = T U and FS = FU . Then, we can prove that T is the left simultaneous
mutation of S at S/U . Thus, we can decompose S, T as S =

⊕n
i=1 Si and T =

⊕n
i=1 Ti

so that

(a) for any i ∈ {1, 2, . . . ,m}, we have Si = Ui = Ti; and
(b) for each j ∈ {m+ 1,m + 2, . . . , n}, there exists a triangle Sj → U ′

j → Tj → Sj in

Kb(projA) with Sj → U ′
j a minimal left (addU)-approximation.

Next, we take the 2-term simple-minded collections X =
⊕n

i=1 Xi and Y =
⊕n

i=1 Yi

in Db(modA) corresponding to S, T under the bijection in [19, Theorem 6.1] and [11,
Corollary 4.3]. Then, we have proved that, for each i ∈ {1, 2, . . . ,m}, there exists a
triangle Xi[−1] → Wi → Yi → Xi in Db(modA) with Xi[−1] → Wi a minimal left WU -
approximation by using [15, Proposition 4.8]. Now, Mi := Φ(Wi) is the desired B-module.
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Études Sci. 120 (2014), 113–205.
[10] T. Brüstle, D. Smith, H. Treffinger, Wall and Chamber Structure for finite dimensional Algebras,

Adv. Math. 354 (2019), Paper No. 106746.
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THE SPECTRUM OF THE CATEGORY OF MAXIMAL
COHEN-MACAULAY MODULES

NAOYA HIRAMATSU

Abstract. We introduce a topology on the set of isomorphism classes of finitely gener-
ated maximal Cohen–Macaulay modules over a commutative complete Cohen–Macaulay
ring, which is analogous to the Ziegler spectrum. We then calculate the Cantor–Bendixson
rank of this topological space for rings of CM+-finite representation type.

1. Introduction

The Ziegler spectrum of an associative algebra is a topological space whose points
are the isomorphism classes of indecomposable pure-injective modules, whose topology is
defined in terms of positive primitive formulas over the algebra. Many studies of Ziegler
spectrums are given in the context of the representation theory of algebras [1, 2, 5] and so
on. In this note, we consider an analog of the Ziegler spectrum for the (stable) category of
maximal Cohen-Macaulay (abbr. MCM) modules over a complete Cohen-Macaulay local
ring.
Let R be complete Cohen–Macaulay local ring with algebraic residue field k. We denote

by C the category of MCM R-modules. We denote by mod(C) the category of finitely
presented contravariant additive functors and also denote by mod(C) the full subcategory
of mod(C) consisting of functors with F (R) = 0. We denote Sp(C) the set of isomorphism
classes of the indecomposable MCM R-modules except R and 0.
For a subset X of Sp(C), we denote by Σ(X ) the subcategory of mod(C) formed by the

functors F such that F (X) = 0 for all X ∈ X . For a subcategory F of mod(C), we denote
by γ(F) the subset of Sp(C) satisfying F (X) = 0 for all F ∈ F .
Theorem 1. Then the assignment X 
→ γ ◦ Σ(X ) is a is a Kuratowski closure operator
on Sp(C). In particular, it induces a topology on Sp(C).
For some specific C, we calculate a Cantor-Bendixson rank of Sp(C) with respect to

the topology. The Cantor-Bendixson rank measures the complexity of the topology. It
measures how far the topology is from the discrete topology.
We say that a Cohen–Macaulay local ring is C+-finite if there exist only finitely many

isomorphism classes of indecomposable MCM modules that are not locally free on the
punctured spectrum [7].

Theorem 2. If R is C+-finite then CB(Sp(C)) ≤ 1.

In this talk, we consider only finitely generated modules. Previous studies have also
considered infinitely generated modules, which is different from our consideration.

The detailed version of this paper will be submitted for publication elsewhere.
The author was partly supported by JSPS KAKENHI Grant Number 21K03213.
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2. The spectrum of the category of maximal Cohen-Macaulay modules

In this note, R is a commutative complete Cohen–Macaulay local ring with algebraic
residue field k and all modules are ”finitely generated” R-modules. We denote by C the
category of maximal Cohen-Macaulay (MCM) modules.

C = {M | ExtiR(k,M) = 0 for i < dimR}
We denote by C the stable category of C. The objects of C are the same as those of C, the
morphisms of C are elements of HomR(M,N) := HomA(M,N)/P (M,N) for M,N ∈ C,
where P (M,N) denote the set of morphisms from M to N factoring through free R-
modules. Since R is complete, C, thus C are Krull-Schmidt categories. That is the
endomorphism ring of the indecomposable module is local.
Let us recall the full subcategory of the functor category of C which is called the Auslan-

der category. The Auslander category mod(C) is the category whose objects are finitely
presented contravariant additive functors from C to a category of abelian groups and
whose morphisms are natural transformations between functors. We denote by mod(C)
the full subcategory mod(C) consisting of functors F with F (R) = 0. The important fact
is that mod(C) and mod(C) are abelian categories.

Remark 3. It is nothing but mod(C) is the Aunslander category of C mod(C). Actually,
the category mod(C) is equivalent to mod(C);

mod(C)→ mod(C); F 
→ F ◦ ι,
where ι : C → C. See [8, Remark 4.16]. So in the rest of this note, we denote mod(C)
instead of mod(C).
Note that every object F ∈ mod(C) is obtained from a short exact sequence in C.

Namely we have the short exact sequence 0→ N →M → L→ 0 such that

0→ HomR( , N)→ HomR( ,M)→ HomR( , L)→ F → 0

is exact in mod(C).
Definition 4. We denote by Sp(C) the set of isomorphism classes of the indecomposable
MCM R-modules except R and 0. Namely,

Sp(C) := {the indecomposable MCM R-modules except R and 0}/ ∼= .

The following assignments are introduced by Krause [2].

Definition 5. The assignments

Σ : Sp(C)→ mod(C), γ : mod(C)→ Sp(C)
are defined by

Σ(X ) := {F ∈ mod(C) | F (X) = 0 for ∀X ∈ X},
γ(F) := {M ∈ Sp(C) | F (M) = 0 for ∀F ∈ F}.

We state several basic properties of the assignments Σ and Γ.

Lemma 6. Let X , Y be subsets of Sp(C) and F and G be subcategories of mod(C). For
the assignments Σ and γ, the following statements hold.

(1) X ⊆ Y ⇒ Σ(X ) ⊇ Σ(Y).
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(2) F ⊆ G ⇒ γ(F) ⊇ γ(G).
(3) X ⊆ γ ◦ Σ(X ).
(4) F ⊆ Σ ◦ γ(F). Moreover γ(F) = γ ◦ Σ ◦ γ(F).
(5) Σ(X ) is a Serre subcategory in mod(C).
This is the main theorem of this note.

Theorem 7. The assignment X 
→ γ ◦ Σ(X ) is a Kuratowski closure operator. That is,

(1) γ ◦ Σ(∅) = ∅,
(2) X ⊆ γ ◦ Σ(X ),
(3) γ ◦ Σ(X ∪ Y) = γ ◦ Σ(X ) ∪ γ ◦ Σ(Y),
(4) γ ◦ Σ(γ ◦ Σ(X )) = γ ◦ Σ(X )

hold for all subsets X , Y in Sp(C).
Proof. The assertions (i), (ii), and (iv) follow from the definition and the lemma above.
To show (iii), we now notice that HomR(−,M) ∈ mod(C) for ∀M ∈ C. The inclusion
γ ◦Σ(X ∪Y) ⊇ γ ◦Σ(X )∪ γ ◦Σ(Y)) follows from the fact that Σ(X ∪Y) = Σ(X )∩Σ(Y),
and the equality is clear. To show another inclusion, we take M ∈ γ ◦ Σ(X ∪ Y). Note
that M is indecomposable. Assume that M �∈ γ ◦ Σ(X ) ∪ γ ◦ Σ(Y). Then there exist
F ∈ Σ(X ) and G ∈ Σ(Y) such that F (M) �= 0 and G(M) �= 0. We construct the functor
H ∈ Σ(X ∪ Y) such that H(M) �= 0 by using F and G. If such a functor exists we have
a contradiction because M annihilates all functors in Σ(X ∪ Y). By Yoneda’s Lemma,
we have nonzero morphisms f : HomR(−,M) → F and g : HomR(−,M) → G. Take a
pushout diagram in mod(C):

HomR(−,M)

��

�� Im f

��

�� 0

Im g ��

��

H ��

��

0

0 0.

Since Σ(X ) and Σ(Y) are Serre subcategories, Im f ∈ Σ(X ), Im g ∈ Σ(Y). This im-
plies that H ∈ Σ(X ∪ Y). From the push out diagram we obtain the exact sequence
HomR(−,M) → Im f ⊕ Im g → H → 0. Since EndR(M) is local, EndR(M) is an inde-
composable EndR(M)-free module. Moreover Im f(M) and Im g(M) are cyclic modules.
This concludes that H(M) must be nonzero. Therefore we have H ∈ Σ(X ∪ Y) such
that H(M) �= 0. This gives the contradiction that M ∈ γ ◦ Σ(X ∪ Y), so that M is in
γ ◦ Σ(X ) ∪ γ ◦ Σ(Y). �
Corollary 8. The assignment X 
→ γ ◦ Σ(X ) defines a topology on Sp(C). That is a
subset X of Sp(C) is closed if and only if γ ◦ Σ(X ) = X .

For a locally coherent category G, a bijective correspondence between closed subsets
in Sp(G) and Serre subcategories in mod(G) is given in [1, 2]. In our setting, for a Serre
subcategory F ⊆ mod(C), F = Σ ◦ γ(F) does not hold in general.

Example 9. Let R = k[[x, y]]/(x2). The indecomposable MCM R-modules are R,
I = (x)R and In = (x, yn)R for n > 0. Since γ(HomR(−, In)) = ∅, Σ ◦ γ(HomR(−, In)) =
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Σ(∅) = mod(C). However S(HomR(−, In)) �= mod(C). Here we denote by S(HomR(−, In))
the smallest Serre subcategory which contains HomR(−, In). Since KGdim HomR(−, In) =
1 [6, Proposition 3.8], KGdim S(HomR(−, In)) = 1. Note that KGdim HomR(−, I) = 2.
[6, Proposition 3.11]. Hence HomR(−, I) �∈ S(HomR(−, In)), so that S(HomR(−, In)) �=
mod(C).
Lemma 10. Let X,Y ∈ Sp(C) with X �∼= Y . Suppose that HomR(X,Y ) �= 0. Then
Y �∈ γ ◦ Σ(X).

By the lemma above, one can show the following.

Proposition 11. We have γ ◦Σ(X) = {X} for all X ∈ Sp(C). Hence Sp(C) is T1-space.

Proof. Let Y ∈ Sp(C) which is not isomorphic to X. Suppose that HomR(X,Y ) �= 0.
Then Y �∈ γ ◦Σ(X) by the lemma. Suppose that HomR(X,Y ) = 0. Then HomR(−, Y ) is
contained in Σ(X) Assume that Y ∈ γ ◦Σ(X), and in the case HomR(Y, Y ) = 0. So that
Y is 0 or R. This never happens since Sp(C) does not contain 0 and R. �

Proposition 12. Let M ∈ Sp(C). M is an isolated point, that is {M} is open, if and
only if there exists an Auslander-Reiten (AR) sequence ending in M .

Proof. If there exists an AR sequence ending in M we can consider the functor SM which
is obtained from the AR sequence. Then γ(SM) = Sp(C)\{M} is closed, so that {M} is
open.
Suppose that M is isolated, and then Sp(C)\{M} is closed. Notice that Σ(Sp(C)\{M})

is not empty, and take F ∈ Σ(Sp(C)\{M}). Then F (M) �= 0 and F (N) = 0 if N �∼=
M . By Yoneda’s lemma, we have a nonzero morphism ρ : HomR(−,M) → F . Since
Imf is finitely presented and a subfunctor of F , by considering Imρ instead of F , we
may assume that F has a presentation: HomR(−,M) → F → 0. Take a generator
f1, · · · , fm of radR(M,M) as an R-module. Then the image of HomR(M, (f1, · · · , fm)) :
HomR(M,M⊕m)→ HomR(M,M) is radR(M,M). Consider the diagram:

0 0⏐⏐ ⏐⏐
HM −−−→ F/Imρ ◦ f −−−→ 0⏐⏐ ⏐⏐

HomR(−,M)
ρ−−−→ F −−−→ 0⏐⏐f :=HomR(−,(f1,··· ,fm))

⏐⏐
HomR(−,M⊕m) −−−→ Imρ ◦ f −−−→ 0⏐⏐

0.

We should remark that F/Imρ ◦ f is finitely presented since Imρ ◦ f is so. By the
construction, we have HM(M) = HomR(M,M)/radR(M,M) ∼= k. Moreover ρ(f(M)) =
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ρ(radR(M,M)) ⊆ radRF (M), so that F/Imρ ◦ f(M) = F (M)/mF (M). This yields that
F/Imρ ◦ f is a simple functor and we conclude that M admits an AR sequence. �

Corollary 13. Let R be an isolated singularity. Then the topology of Sp(C) is discrete.

The author thanks Tsutomu Nakamura for telling him the remark below.

Remark 14. Let GProj(R) be a category of Gorenstein-projective R-modules and GProj(R)c

the full subcategory consisting of compactly generated modules. It has been studied in [5]
that the Ziegler spectrum is defined by using the functor category of the stable category
of GProj(R)c. Suppose that R is Gorenstein. Then it is shown in [5, Theorem 2.33] that
we have the triangulated equivalence C ∼= GProj(R)c. So if R is Gorenstein, the spectrum
Sp(C) is nothing but the Ziegler spectrum which is considered in [5] restricted to finitely
generated ones.

3. Cantor-Bendixson rank

In this section, we calculate a Cantor-Bendixson rank of Sp(C).
Definition 15 (Cantor-Bendixson rank). Let T be a topological space. If x ∈ T is an
isolated point, then CB(x) = 0. Put T ′ ⊂ T is a set of the non-isolated point. Define
the induced topology on T ′. Set T (0) = T , T (1) = T (0)′ , · · · , T (n+1) = T (n)′ . We define
CB(x) = n if x ∈ T (n)\T (n+1) If ∃n such that T (n+1) = ∅ and T (n) �= ∅, then CB(T ) = n.
Otherwise CB(T ) =∞.

Example 16. Let R be a DVR (e,g. R = k[[x]]). Then CB(SpecR) = 1 concerning the
Zariski topology. Note that SpecR = {(0),m}. (0) is an isolated point since D(f) = {(0)}
for some f ∈ R\{0}. Thus SpecR′ = {m} = SpecR(1), and m is isolated in the induced
topology. In the case R = k[[x, y]], you can show that CB(SpecR) = ∞. Note that
SpecR′ = SpecR.

By the corollary, we know Sp(C) is a discrete topology if R is an isolated singularity.

Corollary 17. Let R be an isolated singularity. Then CB(Sp(C)) = 0.

The definition of CM+-finite is introduced in [7].

Definition 18. We say that a Cohen–Macaulay local ring R is CM+-finite if there exist
only finitely many isomorphism classes of indecomposable MCM modules that are not
locally free on the punctured spectrum.

Example 19. The following rings are CM+-finite.

(1) A ring which is an isolated singularity. (Thus a ring which is of finite CM-
representation type.)

(2) A hypersurface ring which is of countable CM-representation type.

Here we say that R is of finite (countable) CM-representation type if there exists only
finitely (countably) many isomorphism classes of indecomposable MCM modules.

Theorem 20. If R is CM+-finite then CB(Sp(C)) ≤ 1.
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Proof. We denote by C0 the subset of Sp(C) consisting of modules that are locally free on
the punctured spectrum and put C+ as Sp(C)\C0. For all M ∈ C0, M is an isolated point
since M admits an AR sequence. Thus CB(C0) = 0.
On the other hand, for all M ∈ C+, M is not isolated. Since R is CM+-finite, C+ is a

finite set. Hence, for each M ∈ C+,

VM :=

finite⋃
X 	=M,X∈C+

γ ◦ Σ(X)

is closed in Sp(C). Thus [C+]
⋂
[Sp(C)\VM ] = {M} is open in C+ ∩ Sp(C). Therefore

CB(Sp(C)) ≤ 1. �
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QUANTUM PROJECTIVE PLANES AND BEILINSON ALGEBRAS OF
3-DIMENSIONAL QUANTUM POLYNOMIAL ALGEBRAS

FOR TYPE S’

AYAKO ITABA

Abstract. Let A = A(E, σ) be a 3-dimensional quantum polynomial algebra where E
is the projective plane P

2 or a cubic divisor in P
2, and σ ∈ AutkE. In this report, we

prove that, for a Type S’ algebra A = A(E, σ), where E ⊂ P
2 is a union of a line and a

conic meeting at two points, and σ ∈ AutkE, the following conditions are equivalent: (1)
The noncommutative projective plane ProjncA is finite over its center. (2) The Beilinson
algebra ∇A of A is 2-representation tame. (3) The isomorphism classes of simple 2-
regular modules over ∇A are parametrized by P

2.

Key Words: Quantum polynomial algebras, Quantum projective planes, Calabi-Yau
algebras, Beilinson algebras.
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1. Quantum polynomial algebras and quantum projective spaces

This report is based on [7]. Throughout this report, let k be an algebraically closed
field of characteristic 0, and all algebras are defined over k. Unless otherwise described,
let A be a connected graded k-algebra finitely generated in degree 1.

In noncommutative algebraic geometry, a quantum polynomial algebra defined by Artin
and Schelter [2] is a basic and important research object, which is a noncommutative
analogue of a commutative polynomial algebra.

Definition 1 ([2]). A right noetherian graded algebra A is called a d-dimensional quantum
polynomial algebra if

(i) gldimA = d <∞,

(ii) ExtiA(k,A)
∼=
{
k if i = d,

0 if i �= d,
(Gorenstein condition)

(iii) HA(t) :=
∑∞

i=0(dimk Ai)t
i = (1− t)−d (Hilbert series).

A right noetherian graded algebra A is called a d-dimensional AS-regular algebra if the
above conditions (i) and (ii) hold.

Artin and Schelter [2] gave the classifications of low dimensional quantum polynomial
algebras as follows: For a 1-dimensional quantum polynomial algebra A, A is isomorphic
to k[x] as graded algebras up to isomorphism. For a 2-dimensional quantum polynomial
algebra A, A is isomorphic to

The detailed version of this paper has been submitted for publication elsewhere.
The author was supported by Grants-in-Aid for Young Scientific Research 21K13781 Japan Society

for the Promotion of Science.
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k〈x, y〉/(−x2 + xy − yx), or kλ[x, y] := k〈x, y〉/(xy − λyx) (λ ∈ k \ {0})
as graded algebras up to isomorphism, where kλ[x, y] ∼= kλ′ [x, y] if and only if λ′ = λ±1.
Moreover, Artin and Schelter [2] proved that every 3-dimensional quantum polynomial
algebra is isomorphic to one of the following algebra as graded k-algebras:

A ∼= k〈x, y, z〉/(f1, f2, f3), or A ∼= k〈x, y〉/(g1, g2),
where, fi ∈ k〈x, y, z〉2 and gi ∈ k〈x, y〉3. Note that A is a 3-dimensional quantum poly-
nomial algebra if and only if A is a 3-dimensional quadratic AS-regular algebra ([2]).
Artin, Tate and Van den Bergh [3] found a nice correspondence between 3-dimensional

quantum polynomial algebras and geometric pair (E, σ), where E is the projective plane P2

or a cubic divisor in P
2, and σ ∈ AutkE. So, this result allows us to write a 3-dimensional

quantum polynomial algebra A as the form A = A(E, σ). This result convinced us that
algebraic geometry is very useful to study even noncommutative algebras.
Let A be a right noetherian graded algebra. The category of finitely generated graded

right A-modules is denoted by grmodA, and the full subcategory of grmodA consisting
of finite dimensional modules over k id denoted by torsA.

Definition 2 ([5]). (1) The noncommutative projective scheme associated to A is de-
fined by Projnc A = (tailsA, πA) where tailsA := grmodA/torsA is the quotient
category, π : grmodA → tailsA is the quotient functor, and A ∈ grmodA is
regular.

(2) If A is a d-dimensional quantum polynomial algebra. Then Projnc A is called a
quantum P

d−1. In particular, if A is a 3-dimensional quantum polynomial algebra,
then Projnc A is called a quantum projective plane.

Note that, if A is commutative, then Projnc A ∼= (modX,OX), X = ProjA. If A is a
2-dimensional quantum polynomial algebra, then Projnc A ∼= (cohP1,OP1).

2. Characterization of quantum projective planes finite their centers

For a 3-dimensional quantum polynomial algebra A = A(E, σ), Artin-Tate-Van den
Bergh [4] gave the following geometric characterization when A is finite over its center
Z(A).

Theorem 3 ([4]). For a 3-dimensional quantum polynomial algebra A = A(E, σ), then
A is finite over its center Z(A) if and only if the order |σ| of σ is finite.

To prove Theorem 3, “fat points of a quantum projective plane Projnc A”plays an es-
sential role. By Artin [1], if A is finite over its center and E �= P

2, then Projnc A has a fat
point, however, the converse is not true.

Definition 4. Let A be a graded algebra.

(1) A point of Projnc A is an isomorphism class of a simple object of the form πM ∈
tailsA where M ∈ grmodA is a graded right A-module such that lim

i→∞
dimk Mi <

∞.
(2) A point πM is called fat if lim

i→∞
dimk Mi > 1 In this case, M is called a fat point

module over A.
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To check the existence of a fat point, the following was introduced by Mori [12].

Definition 5 ([12]). For a geometric pair (E, σ) where E ⊂ P
n−1 and σ ∈ AutkE,

Autk(P
n−1, E) := {φ|E ∈ AutkE | φ ∈ AutkP

n−1}
and ‖σ‖ := inf{i ∈ N

+ | σi ∈ Autk(P
n−1, E)} = τ |E for some τ ∈ AutkP

n−1}, which is
called the norm of σ.

For a geometric pair (E, σ), ‖σ‖ ≤ |σ| holds in general.

Lemma 6 ([12], [1]). Let A = A(E, σ) be a 3-dimensional quantum polynomial algebra.
Then the following hold:

(1) ‖σ‖ = 1 if and only if E = P
2.

(2) 1 < ‖σ‖ <∞ if and only if Projnc A has a fat point.

For a d-dimensional quantum polynomial algebra, the following holds in general:

Lemma 7 ([13], [12]). Let A and A′ d-dimensional quantum polynomial algebras “satis-
fying the condition (G1), where P(A) = (E, σ) and P(A′) = (E ′, σ′)”, respectively. Then
the following hold:

(1) If A ∼= A′, then E ∼= E ′ and |σ| = |σ′|.
(2) If grmodA ∼= grmodA′, then E ∼= E ′, ‖σ‖ = ‖σ′‖.

In particular, when d = 3, if Projnc A ∼= Projnc A
′, then E ∼= E ′ and ‖σ‖ = ‖σ′‖.

We remark that Lemma 7 (2) tells us that, for a 3-dimensional quantum polynomial
algebra A = A(E, σ), the norm ‖σ‖ of σ is a categorical invariant in Projnc A.

Definition 8 ([12], [10]). Let A be a d-dimensional quantum polynomial algebra. We say
that Projnc A is finite over its center if there exists a d-dimensional quantum polynomial
algebra A′ finite over its center such that Projnc A

∼= Projnc A
′.

For a 3-dimensional quantum polynomial algebra A = A(E, σ) the author and Mori
[10] proved that the following results: This is a categorical analogue of Theorem 3.

Theorem 9 ([10]). If A = A(E, σ) is a 3-dimensional Calabi-Yau quantum polynomial
algebra, then ‖σ‖ = |σ3|, so the following are equivalent:

(1) |σ| <∞.
(2) ||σ|| <∞.
(3) A is finite over its center.
(4) Projnc A is finite over its center.

Theorem 10 ([10]). If A = A(E, σ) is a 3-dimensional quantum polynomial algebra such
that E �= P

2, and ν ∈ AutA the Nakayama automorphism of A. Then ‖σ‖ = |ν∗σ3|, so
the following are equivalent:

(1) |ν∗σ3| <∞.
(2) ‖σ‖ <∞.
(3) Projnc A is finite over its center.
(4) Projnc A has a fat point.

We apply the above results of the author and Mori [10] to representation theory of finite
dimensional algebras.
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Definition 11 ([6]). Let R be a finite dimensional algebra of gldimR = d <∞. An auto-
equivalence νd ∈ AutDb(modR) is defined by νd(M) := M ⊗L

R DR[−d] where Db(modR)
is the bounded derived category of modR and DR := Homk(R, k). If ν−i

d (R) ∈ modR for
all i ∈ N, then R is called d-representation infinite. In this case, we say that a module
M ∈ modR is d-regular if νi

d(M) ∈ modR for all i ∈ Z.

In Minamoto-Mori [11], for a d-dimensional quantum polynomial algebra A, the Beilin-
son algebra ∇A of A is defined by

∇A :=

⎛⎜⎜⎝
A0 A1 · · · Ad−1

0 A0 · · · Ad−2
...

. . .
...

...
0 0 · · · A0

⎞⎟⎟⎠ .

Theorem 12 ([11]). If A is a d-dimensional quantum polynomial algebra A and the
Beilinson algebra ∇A of A. Then ∇A is extremely Fano of global dimension of d−1, and
there exists an equivalence of triangulated category Db(tails A) ∼= Db(mod∇A).

The Beilinson algebra is a typical example of (d− 1)-representation infinite algebra in
the sense of Herschend-Iyama-Oppermann [6] ([11]). To investigate representation theory
of such an algebra, it is important to classify simple (d− 1)-regular modules.

Remark 13. (1) If A is a 2-dimensional quantum polynomial algebra, then

∇A ∼=
(
k k2

0 k

)
∼= k( • ��

�� • ),

that is, ∇A is isomorphic to a 2-Kronecker algebra, so ∇A is a finite dimensional
hereditary algebra of tame representation type. It is known that the isomorphism
classes of simple regular modules over ∇A are parameterized by P

1 (cf. [12]).
(2) For a 3-dimensional quantum polynomial algebra A, ∇A is a finite-dimensional

algebra;

∇A ∼= k
(
•

��
��
��
•

��
��
��
•
)/

(the same relations of A).

Corollary 14 ([10]). Let A = A(E, σ) be a 3-dimensional quantum polynomial algebra
with the Nakayama automorphism ν ∈ AutA. Then the following are equivalent:

(1) |ν∗σ3|(= ‖σ‖) = 1 or ∞.
(2) Projnc A has no fat point.
(3) The isomorphism classes of simple 2-regular modules over ∇A are parameterized by

the set of closed points of E ⊂ P
2.

In particular, if A = A(E, σ) is one of the following types, then A satisfies all of the
above conditions.

Type P (E = P
2) Type T (E= ) Type T’ (E= )

Type CC (E= ) Type TL (E= ) Type WL (E= )

More precisely, if E is of Type P, then ‖σ‖ = 1 by Lemma 6, and if E is of Type T,
Type T’, Type CC, Type TL or Type WL, then ‖σ‖ is infinite. The following types of
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3-dimensional quantum polynomial algebras A = A(E, σ) have the case that ‖σ‖ is finite.

Type S (E= ) Type S’ (E= ) Type NC (E= ) Type EC (E= )

In [10], for a 3-dimensional quantum polynomial algebra A, the author and Mori expect
that the following are equivalent:

(1) Projnc A is finite over its center.
(2) ∇A is 2-representation tame in the sense of Herschend-Iyama-Oppermann [6].
(3) The isomorphism classes of simple 2-regular modules over ∇A are parameterized

by P
2.

Note that these equivalences are shown for Type S in [12, Theorem 4.17, Theorem 4.21].
Do these equivalences in the above conjecture hold for Type S’ in particular?

3. Main results

In this report, we prove the following results for Type S’ algebra A = A(E, σ), where
E ⊂ P

2 is a union of a line and a conic meeting at two points, and σ ∈ AutkE.
Let A = A(E, σ) = k〈x, y, z〉/(f1, f2, f3) be a 3-dimensional quantum polynomial alge-

bra of Type S’ where ⎧⎨⎩ f1 = yz − αzy + x2,
f2 = zx− βxz,
f3 = xy − βyx (α, β ∈ k, αβ2 �= 0, 1)

(see [8, Theorem 3.2], [9, Table 1 in Proposition 3.1]). For a 3-dimensional quantum
polynomial algebra A = A(E, σ) of Type S’, there exists the 3-dimensi onal Calabi-
Yau quantum polynomial algebra A′ of Type S’ such that grmodA ∼= grmodA′ so that
Projnc A

∼= Projnc A
′ where A′ = A(E, σ′) = k〈x, y, z〉/(g1, g2, g3) is a 3-dimensional Calabi-

Yau quantum polynomial algebra of Type S’:⎧⎨⎩ g1 = yz − αzy + x2,
g2 = zx− αxz,
g3 = xy − αyx (α3 �= 0, 1)

(see [9, Table 2 in Theorem 3.4]).

Proposition 15 ([7, Proposition 3.2]). Let A = A(E, σ) = k〈x, y, z〉/(g1, g2, g3) be a
3-dimensional Calabi-Yau quantum polynomial algebra of Type S’,

where

⎧⎨⎩ g1 = yz − αzy + x2,
g2 = zx− αxz,
g3 = xy − αyx (α3 �= 0, 1).

Define g := xyz + (1− α3)−1x3 ∈ A3.

(1) If A is finite over its center Z(A) (that is, |α| is finite), then Z(A) = k[x|α|, y|α|, z|α|, g].
(2) If A is not finite over its center Z(A) (that is, |α| is infinite), then Z(A) = k[g].

Theorem 16 ([12]). Let A = A(E, σ) be a 3-dimensional quantum polynomial algebra. If
the Beilinson algebra ∇A of A is not 2-representation tame, then the isomorphism classes
of simple 2-regular modules over ∇A are parametrized by the set of points of E � P

2.
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Theorem 17 ([7, Theorem 4.3]). Let A = A(E, σ) be a 3-dimensional quantum polyno-
mial algebra of Type S’. If the Beilinson algebra ∇A of A is 2-representation tame, then
the isomorphism classes of simple 2-regular modules over ∇A are parametrized by the set
of points of P2.

By using Proposition 15 and Theorems 16, 17, we have the following result:

Theorem 18 ([7, Theorem 4.4]). For a 3-dimensional quantum polynomial algebra A of
Type S’, the following are equivalent:

(1) The noncommutative projective plane ProjncA is finite over its center.
(2) The Beilinson algebra ∇A of A is 2-representation tame in the sense of Herschend,

Iyama and Oppermann [6].
(3) The isomorphism classes of simple 2-regular modules over ∇A are parameterized by

P
2.
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THE AUSLANDER–REITEN CONJECTURE FOR NORMAL RINGS

KAITO KIMURA

Abstract. In this article, we consider the Auslander–Reiten conjecture, which is a
celebrated long-standing conjecture in ring theory. One of the main results of this article
asserts that the conjecture holds for an arbitrary normal ring.

Key Words: Auslander–Reiten conjecture, Ext module, Serre’s condition.
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1. Introduction

We refer the reader to [7] (arXiv:2304.03956) for details on the contents of this article.
Throughout this article, we assume that R is a commutative noetherian ring and that M
is a finitely generated R-module.
Auslander and Reiten [3] proposed the generalized Nakayama conjecture, which is rooted

in the Nakayama conjecture [9] and asserts that for any artin algebra Λ, any indecompos-
able injective Λ-module appears as a direct summand in the minimal injective resolution
of Λ. In addition, they proposed another conjecture, characterizing the projectivity of a
module in terms of vanishing of Ext modules, which is called the Auslander–Reiten con-
jecture, and proved that this conjecture is true if and only if the generalized Nakayama
conjecture is true.
The Auslander–Reiten conjecture remains meaningful for arbitrary commutative noe-

therian rings for formalization by Auslander, Ding, and Solberg [2]. The conjecture is
known as follows: if ExtiR(M,M ⊕R) = 0 for all i ≥ 1, then M is projective. This conjec-
ture is known to hold true if R is a complete intersection [2], or if R is a locally excellent
Cohen-Macaulay normal ring containing the field of rational numbers Q [6], or if R is a
Gorenstein normal ring [1], or if R is a Cohen–Macaulay normal ring and M is a maximal
Cohen–Macaulay module of rank one [5], or if R is a Cohen–Macaulay normal ring and M
is a maximal Cohen–Macaulay module such that HomR(M,M) is projective [4]. Recently,
Kimura, Otake, and Takahashi [8] proved the conjecture for every Cohen-Macaulay nor-
mal ring. Even if R is not Cohen–Macaulay, it is known that R satisfies the conjecture
if it is a normal ring and either ExtiR(HomR(M,M), R) = 0 for all 2 ≤ i ≤ depthR or
HomR(M,M) has finite G-dimension [10], or if it is a quotient of a regular ring and is a
normal ring containing Q [4].
We give the following answer to this conjecture. We say that R satisfies Serre’s condition

(S2) if depthRp ≥ inf{2, ht p} for all prime ideals p of R.

The detailed version [7] of this article will be submitted for publication elsewhere.
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Theorem 1. Suppose that R satisfies (S2). Then the Auslander–Reiten conjecture holds
for R if it holds for Rp for all prime ideals p of R such that ht p ≤ 1. In particular, the
Auslander–Reiten conjecture holds true for every normal ring.

The above result is discussed in Section 2. It is worth noting that we shall prove the
result of Kimura, Otake and Takahashi [8] without assuming Cohen–Macaulayness of the
ring. We extend the method over Cohen–Macaulay rings to the general case, using the
dualizing complex instead of the canonical module.

2. Comments on Theorem 1

In this section, we provide sufficient conditions for finitely generated modules over
a commutative noetherian ring to be projective in terms of vanishing of Ext modules
and prove the theorem stated in the Introduction. We prepare several lemmas to state
Theorem 1. See [7] for proofs.

Lemma 2. Let N be an R-module, and let I be an injective R-module. Then there is an
isomorphism TorRi (M,Hom(N, I)) ∼= Hom(ExtiR(M,N), I) for every integer i ≥ 0.

Lemma 3. Let F be an R-linear functor on the category of R-modules. Let p be a prime
ideal of R and ER(R/p) the injective hull of R/p. If F (ER(R/p))p is the zero module,
then so is F (ER(R/p)).

We denote by (−)∗ the R-dual HomR(−, R). Let R be a local ring, and let F = (· · · →
F2 → F1

α−→ F0 → 0) be a minimal free resolution of M . The (Auslander) transpose TrM
of M is defined as Coker(α∗).

Lemma 4. Let (R,m, k) be a local ring, and let N be an R-module such that k ⊗R N is
nonzero. Suppose that TorR1 (TrM,M ⊗R N) = 0. Then M is a free R-module.

This Lemma 4 also played an important role in the proof of the main result of [8].
However, compared to [8, Proposition 3.3(1)], the assumption that N is finitely generated
is removed by assuming k ⊗R N �= 0.
One of the main results of this article is the theorem below.

Theorem 5. Let (R,m, k) be a local ring of depth t. Suppose that ExtiR(M,R) = 0 for
all 1 ≤ i ≤ t and Extt+1

R (TrM,M ∗) = 0, and that M is locally free on the punctured
spectrum of R. Then M is free.

Proof. Put d = dimR. We may assume that R admits a dualizing complex D = (· · · →
0 → D0 → · · · → Dd−1 → Dd → 0 → · · · ). Set K = Ker(Dd−t → Dd−t+1). It follows
from Lemma 2 that TorRt+1(TrM,M ⊗RDd) = 0. Lemma 3 implies that for any i �= 0 and

j �= d, TorRi (TrM,M ⊗R Dj) = 0. From the above, we have TorR1 (TrM,M ⊗R K) = 0 by
Lemma 2. Noting that k ⊗R K �= 0, we see that Lemma 4 concludes that M is free. �

Below is a direct corollary of Theorem 5.

Corollary 6. Let R be a local ring of depth t ≥ 2. Suppose that M is locally free on the
punctured spectrum of R. Then M is free in each of the two cases below.
(1) ExtiR(M,R) = 0 = Extt−1

R (M∗,M ∗) for all 1 ≤ i ≤ t.
(2) ExtiR(M,R) = 0 = Extt−1

R (M,M) for all 1 ≤ i ≤ 2t+ 1.
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We obtain Theorem 1 as a corollary of Corollary 6. Indeed, applying the case (2) of
Corollary 6, we can prove by induction on ht p that Mp is free for any prime ideal p of R.

3. Comparison with previous studies

The results obtained in this article refine (or recover) a lot of results in the literature.

Remark 7. (1) Corollary 6(2) is a non-Gorenstein version of [1, Corollary 10]. Indeed,
let R be a Gorenstein ring of dimension d ≥ 2. It is seen that ExtiR(M,R) = 0 for
all i > d and that M is maximal Cohen–Macaulay if and only if for all 1 ≤ j ≤ d,
ExtjR(M,R) = 0.

(2) The Auslander–Reiten conjecture is known to hold for every Cohen–Macaulay
normal ring by virtue of [10, Corollary 1.3]. Theorem 1 shows that the conjecture
also holds for an arbitrary normal ring, i.e. it refines [10, Corollary 1.3].

(3) The Auslander–Reiten conjecture holds true if R is a quotient of a regular local
ring and is a normal ring containing Q [4, Theorem 3.14]. In particular, every
complete normal local ring of equicharacteristic zero satisfies the conjecture. Note
that since the normality is not necessarily stable under completion, it is not easy
to remove from these results the assumption that R is a quotient of a regular local
ring or R is complete. Theorem 1, however, does make it happen.

(4) As mentioned in the introduction, besides (2) and (3) above, there are many results
that show that the Auslander–Reiten conjecture holds in normal rings when some
conditions are imposed; see [1, 4, 5, 6, 10] for instance. Theorem 1 improves all of
them.

(5) The Auslander–Reiten conjecture is known to hold true if R is a complete in-
tersection [2, Proposition 1.9]. Using this result, we see that if R is a complete
intersection, then R satisfies (S2) and the Auslander–Reiten conjecture holds for
Rp for all prime ideals p of R such that ht p ≤ 1. In this sense, Theorem 1 refines
[2, Proposition 1.9].
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ON INDUCTIONS AND RESTRICTIONS OF
SUPPORT τ-TILTING MODULES OVER GROUP ALGEBRAS

RYOTARO KOSHIO AND YUTA KOZAKAI

Abstract. Let G be a finite group, k an algebraically closed field of characteristic
p > 0, and N a normal subgroup of G. Support τ -tilting modules over group algebras
are under the one-to-one correspondences with many kinds of important objects for the
representation theory. We will compare a certain subset of the support τ -tilting modules
over kN and that of kG, and give a poset isomorphism between these two sets. Moreover,
we introduce two applications of the results.

1. Motivation

Since τ -tilting theory was introduced by Adachi-Iyama-Reiten in [2], classifications and
features of the support τ -tilting modules have been given for many kinds of algebras. In
particular, for group algebras and their block algebras, the considerations of the support
τ -tilting modules are equivalent to those of two-term tilting complexes which control
derived equivalences, hence they are expected to help the solution of the Broué’s Abelian
Defect Group Conjecture. For that perspective, it is important to consider the support
τ -tilting modules for group algebras and their block algebras.
Let k be an algebraically closed field of characteristic p > 0, G a finite group, N a

normal subgroup of G, and X a support τ -tilting kN -module. In [4], the authors showed
that if N has a cyclic Sylow p-subgroup and if the index of N in G is a power of p, then
the induction functor IndG

N := kG ⊗kN − gives a poset isomorphism between the set of
support τ -tilting modules over kN and that over kG. Also, in [3], the first author showed
that if X is G-invariant, then IndG

NX is a support τ -tilting module over kG.
Naturally, we consider the following two questions.

• For the restriction functor ResGN , when is ResGNM a support τ -tilting kG-module
for support τ -tilting kG-module M?

• Without the assumption that N has a cyclic Sylow p-subgroup and that the index
of N in G is a power of p, can we determine the image of G-invariant support
τ -tilting modules over kN under the induction functor IndG

N?

In this report, we give some results as positive answers of the above questions. Moreover
we give applications of the results.

2. Main results

In this section, let k be an algebraically closed field of characteristic p > 0, G a finite
group and N a normal subgroup of G. Moreover IndG

N means the induction functor and

The detailed version of this paper will be submitted for publication elsewhere.
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ResGN means the restriction functor. For Λ ∈ {kN, kG} and Λ-module M , we denote by
addM the set of all Λ-modules which are direct summand of M⊕r for some integer r ∈ Z.
First, we recall the definition of support τ -tilting modules introduced by Adachi-Iyama-

Reiten [2]. For a finite dimensional algebra A and an A-module M , we denote by |M | the
number of pairwise non-isomorphic indecomposable direct summands of M and by s(M)
the number of pairwise non-isomorphic composition factors of M .

Definition 1 ([2]). Let M be an A-module.

(1) We say that the A-module M is τ -rigid if HomA(M, τM) = 0, here τ means the
Auslander-Reiten translation.

(2) We say that the A-module M is a support τ -tilting module if M is τ -rigid and if
|M | = s(M).

Here we remark that the above definition is different from the original one, but it is
equivalent definition to the original one (see [1]).

Remark 2. Let M be a A-module. If A is a symmetric algebra, then τM is isomorphic to
Ω2M . In particular, if A is a group algebra or a block algebra of a group algebra, then
the isomorphism holds.

2.1. Restricted support τ-tilting modules. As a answer to the first question in Sec-
tion 1, we have one result. We recall that the relative projectivity of kG-modules.

Definition 3. Let G be a finite group, H a subgroup of G, and M a kG-module. We say
that M is relatively H-projective if it holds that M is a direct summand of IndG

HRes
G
HX.

Now we state the first result.

Theorem 4. Let k be an algebraically closed field of characteristic p > 0, G a finite group,
N a normal subgroup of G, and M a support τ -tilting kG-module. If M is relatively N-
projective and it holds that IndG

NRes
G
NM ∈ addM , then the restricted module ResGNM is

a support τ -tilting kN -module.

Before stating the second result, we recall G-invariances of kN -modules.

Definition 5. Let G be a finite group, N a normal subgroup, and M a kN -module. For
g ∈ G, we construct a kN -module gM by the following data.

• As a set gM := {gm |m ∈M}.
• For x ∈ N and gm ∈ gM , the action of x is given by x(gm) := g(g−1xgm).

We say that M is G-invariant if M is isomorphic to gM as kN -modules for any g ∈ G.

The next theorem explains how strong the assumption in Theorem 4 is in a sense.

Theorem 6. Let k be an algebraically closed field of characteristic p > 0, G a finite
group, N a normal subgroup of G, and M a support τ -tilting kG-module. The following
conditions are equivalent:

• The support τ -tilting kG-module M is relatively N-projective and it holds that
IndG

NRes
G
NM ∈ addM .

• addM = add IndG
NX for some G-invariant support τ -tilting kN -module X.

• For each simple k(G/N)-module S, it holds that S ⊗k M ∈ addM .
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2.2. The image of the induction functor IndG
N . As a answer to the second question

in Section 1, we introduce one result.
For Λ ∈ {kG, kN} and Λ-modules X and Y , we say that X is add-equivalent to Y if

addX = addY , and we denote the set of add-equivalence classes of support τ -tilting Λ-
modules by sτ -tiltΛ. Moreover we denote the set of add-equivalence classes of G-invariant
support τ -tilting kN -modules by (sτ -tiltkN)G.
We know that the induction functor IndG

N gives a well-defined map from (sτ -tiltkN)G

to sτ -tiltkG by the following result.

Theorem 7 ([3, Theorem 3.2]). For M ∈ (sτ -tiltkN)G, the induced module IndG
N is a

support τ -tilting kG-module.

As we stated in Section 1, we wonder if we describe the image of (sτ -tiltkN)G by the
induction functor explicitly. The following is one answer to this question.

Theorem 8. Let (sτ -tiltkG)� be the set of add-equivalence classes of support τ -tilting kG-
modules satisfying the equivalent conditions in Theorem 6. Then the induction functor
IndG

NM gives a poset isomorphism between (sτ -tiltkN)G and (sτ -tiltkG)�:

IndG
N : (sτ -tiltkN)G

∼−→ (sτ -tiltkG)� (M 
→ IndG
NM).

In particular, the image of (sτ -tiltkN)G by the induction functor is (sτ -tiltkG)�

2.3. Applications. We consider the case that the quotient group G/N is a p-group.
Then the only simple k(G/N)-module is the trivial k(G/N)-module up to isomorphism,
here trivial k(G/N)-module means one dimensional vector space on which any element
g ∈ G/N acts trivially. Moreover we can easily check that for any kG-module M and the
trivial k(G/N)-module kG/N , the isomorphism kG/N ⊗k M ∼= M holds. By using these
facts and Theorem 6, we have the following.

Theorem 9. Let G/N be a p-group. Then we have the following isomorphism of the
partially ordered sets by the induction functor IndG

N :

IndG
N : (sτ -tiltkN)G

∼−→ sτ -tiltkG (M 
→ IndG̃
GM).

As a further application, we consider the vertex of an indecomposable τ -rigid kG-
module. We recall the definition of the vertices of the indecomposable kG-modules.

Definition 10. Let M be an indecomposable kG-module. We say that a subgroup H of
G is a vertex of M if H is a minimal subgroup of G with the property that M is relatively
H-projective.

It is known that a vertex is unique up to conjugacy, and a p-subgroup of G. Also,
a vertex of the trivial kG-module is a Sylow p-subgroup. We consider vertices of in-
decomposable τ -rigid kG-modules, and we have the following result by using Theorem
9.

Theorem 11. Let G be a finite group and k an algebraically closed field of characteristic
p > 0. Then any indecomposable τ -rigid kG-module has a vertex contained in a Sylow
p-subgroup properly if and only if G has a proper normal subgroup of p-power index.
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CLASSIFICATION OF TWISTED ALGEBRAS OF
3-DIMENSIONAL SKLYANIN ALGEBRAS

MASAKI MATSUNO

Abstract. A twisting system is one of the major tools to study graded algebras, how-
ever, it is often difficult to construct a (non-algebraic) twisting system if a graded algebra
is given by generators and relations. In this paper, we show that a twisted algebra of a
geometric algebra is determined by a certain automorphism of its point variety. As an
application, we classify twisted algebras of 3-dimensional Sklyanin algebras up to graded
algebra isomorphism.

1. Introduction

This paper is based on [5]. The notion of twisting system was introduced by Zhang in
[8]. If there is a twisting system θ = {θn}n∈Z for a graded algebra A, then we can define
a new graded algebra Aθ, called a twisted algebra. Zhang gave a necessary and sufficient
algebraic condition via a twisting system when two categories of graded right modules
are equivalent ([8, Theorem 3.5]). Although a twisting system plays an important role
to study a graded algebra, it is often difficult to construct a twisting system on a graded
algebra if it is given by generators and relations.
Mori introduced the notion of geometric algebra A(E, σ) which is determined by a

geometric data which consists of a projective variety E, called the point variety, and
its automorphism σ. For these algebras, Mori gave a necessary and sufficient geometric
condition when two categories of graded right modules are equivalent ([6, Theorem 4.7]).
By using this geometric condition, we can easily construct a twisting system.
Cooney and Grabowski defined a groupoid whose objects are geometric noncommuta-

tive projective spaces and whose morphisms are isomorphisms between them. By studying
a correspondence between the morphisms of this groupoid and a twisting system, they
showed that the morphisms of this groupoid are parametrized by a set of certain auto-
morphisms of the point variety ([1, Theorem 28]).
In this paper, we focus on studying a twisted algebra of a geometric algebra A(E, σ).

For a twisting system θ on A, we set Φ(θ) := (θ1|A1)
∗ ∈ Autk P(A

∗
1) by dualization and

projectivization. We find a subset M(E, σ) of Autk P(A
∗
1) parametrizing twisted algebras

of A up to isomorphism. We show that a twisted algebra of a geometric algebra is
determined by a certain automorphism of its point variety. As an application, we classify
twisted algebras of 3-dimensional Sklyanin algebras up to graded algebra isomorphism.

The detailed version of this paper is [5].
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2. Twisting systems and twisted algebras

Throughout this paper, we fix an algebraically closed field k of characteristic zero and
assume that a graded algebra is an N-graded algebra A =

⊕
i∈N Ai over k. A graded

algebra A =
⊕

i∈N Ai is called connected if A0 = k. Let GrAutk A denote the group of
graded algebra automorphisms of A. We denote by GrModA the category of graded right
A-modules. We say that two graded algebras A and A′ are graded Morita equivalent if
two categories GrModA and GrModA′ are equivalent.

Definition 1. Let A be a graded algebra. A set of graded k-linear automorphisms
θ = {θn}n∈Z of A is called a twisting system on A if

θn(aθm(b)) = θn(a)θn+m(b)

for any l,m, n ∈ Z and a ∈ Am, b ∈ Al. The twisted algebra of A by θ, denoted by Aθ, is
a graded algebra A with a new multiplication ∗ defined by

a ∗ b = aθm(b)

for any a ∈ Am, b ∈ Al. A twisting system θ = {θn}n∈Z is called algebraic if θm+n = θm◦θn
for every m,n ∈ Z.

We denote by TS(A) the set of twisting systems on A. Zhang [8] found a necessary and
sufficient algebraic condition for GrModA ∼= GrModA′.

Theorem 2 ([8, Theorem 3.5]). Let A and A′ be graded algebras finitely generated in
degree 1 over k. Then GrModA ∼= GrModA′ if and only if A′ is isomorphic to a twisted
algebra Aθ by a twisting system θ ∈ TS(A).

Definition 3. For a graded algebra A, we define

TS0(A) := {θ ∈ TS(A) | θ0 = idA}
TSalg(A) := {θ ∈ TS0(A) | θ is algebraic }
Twist(A) := {Aθ | θ ∈ TS(A)}/∼=
Twistalg(A) := {Aθ | θ ∈ TSalg(A)}/∼=.

Lemma 4 ([8, Proposition 2.4]). Let A be a graded algebra. For every θ ∈ TS(A), there
exists θ′ ∈ TS0(A) such that Aθ ∼= Aθ′.

It follows from Lemma 4 that

Twist(A) = {Aθ | θ ∈ TS0(A)}/∼=,

so we may assume that θ ∈ TS0(A) to study Twist(A). By the definition of twisting
system, it follows that θ ∈ TSalg(A) if and only if θn = θn1 for every n ∈ Z and θ1 ∈
GrAutk A, so

Twistalg(A) = {Aφ | φ ∈ GrAutk A}/∼=
where Aφ means the twisted algebra of A by {φn}n∈Z.
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3. Twisted algebras of geometric algebras

Let V be a finite dimensional k-vector space and A = T (V )/(R) be a quadratic algebra
where T (V ) is a tensor algebra over k and R is a subspace of V ⊗ V . Since an element of
R defines a multilinear function on V ∗ × V ∗, we can define a zero set associated to R by

V(R) = {(p, q) ∈ P(V ∗)× P(V ∗) | g(p, q) = 0 for any g ∈ R}.
Definition 5. Let A = T (V )/(R) be a quadratic algebra. A geometric pair (E, σ) consists
of a projective variety E ⊂ P(V ∗) and σ ∈ AutkE. We say that A is a geometric algebra
if there exists a geometric pair (E, σ) such that
(G1) V(R) = {(p, σ(p)) ∈ P(V ∗)× P(V ∗) | p ∈ E},
(G2) R = {g ∈ V ⊗ V | g(p, σ(p)) = 0 for all p ∈ E}.

In this case, we call E the point variety of A, and write A = A(E, σ).

We use the following notations introduced in [1]:

Definition 6. Let E ⊂ P(V ∗) be a projective variety and σ ∈ Autk E. We define

Autk(E ↑ P(V ∗)) := {τ ∈ Autk E | τ = τ |E for some τ ∈ Autk P(V
∗)},

Autk(P(V
∗) ↓ E) := {τ ∈ Autk P(V

∗) | τ |E ∈ Autk E},
Z(E, σ) := {τ ∈ Autk(P(V

∗) ↓ E) | στ |Eσ−1 = τ |E},
M(E, σ) := {τ ∈ Autk(P(V

∗) ↓ E) | (τ |Eσ)iσ−i ∈ Autk(E ↑ P(V ∗)) ∀i ∈ Z},
N(E, σ) := {τ ∈ Autk(P(V

∗) ↓ E) | στ |Eσ−1 ∈ Autk(E ↑ P(V ∗))}.
Note that Z(E, σ) ⊂ M(E, σ) ⊂ N(E, σ) ⊂ Autk(P(V

∗) ↓ E), and Z(E, σ), N(E, σ)
are subgroups of Autk(P(V

∗) ↓ E).
Let A = A(E, σ) be a geometric algebra. The map Φ : TS0(A) → Autk P(A

∗
1) is

defined by Φ(θ) := (θ1|A1)
∗. This map plays an important role to study twisted algebras

of geometric algebras.

Lemma 7 ([5, Lemma 3.3 and Lemma 3.4]). Let A = A(E, σ) be a geometric algebra.
(1) Φ(TS0(A)) = M(E, σ).
(2) Φ(TSalg(A)) = Z(E, σ).

The following is one of the main results.

Theorem 8 ([5, Theorem 3.5]). Let A = A(E, σ) be a geometric algebra.
(1) Twist(A) = {A(E, τ |Eσ) | τ ∈M(E, σ)}/∼=.
(2) Twistalg(A) = {A(E, τ |Eσ) | τ ∈ Z(E, σ)}/∼=.

4. Twisted algebras of 3-dimensional Sklyanin algebras

In this section, we classify twisted algebras of 3-dimensional Sklyanin algebras. A 3-
dimensional Sklyanin algebra is a typical example of 3-dimensional quadratic AS-regular
algebras. It is known that every 3-dimensional Sklyanin algebra is a geometric algebra
A(E, σ) where E is an elliptic curve in P

2 and σ is a translation by some point p ∈ E.
First, we recall some properties of elliptic curves in P

2. Let E be an elliptic curve in
P
2. We use a Hesse form

E = V(x3 + y3 + z3 − 3λxyz)
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where λ ∈ k with λ3 �= 1. It is known that every elliptic curve in P
2 can be written in

this form (see [2, Corollary 2.18]). The j-invariant of a Hesse form E is given by

j(E) =
27λ3(λ3 + 8)3

(λ3 − 1)3

(see [2, Proposition 2.16]). The j-invariant j(E) classifies elliptic curves in P
2 up to

projective equivalence (see [3, Theorem IV 4.1 (b)]). We fix the group structure on E
with the zero element o := (1,−1, 0) ∈ E (see [2, Theorem 2.11]). For a point p ∈ E,
a translation by p, denoted by σp, is an automorphism of E defined by σp(q) = p + q
for every q ∈ E. We define Autk(E, o) := {σ ∈ Autk E | σ(o) = o}. It is known that
Autk(E, o) is a finite cyclic subgroup of Autk E (see [3, Corollary IV 4.7]).

Lemma 9 ([4, Theorem 4.6]). A generator of Autk(E, o) is given by
(1) τE(a, b, c) := (b, a, c) if j(E) �= 0, 123,
(2) τE(a, b, c) := (b, a, εc) if λ = 0 (so that j(E) = 0),
(3) τE(a, b, c) := (ε2a+ εb+ c, εa+ ε2b+ c, a+ b+ c) if λ = 1+

√
3 (so that j(E) = 123)

where ε is a primitive 3rd root of unity. In particular, Autk(E, o) is a subgroup of
Autk(E ↑ P2) = Autk(P

2 ↓ E).

Remark 10. When j(E) = 0, 123, we may fix λ = 0, 1 +
√
3 respectively as in Lemma 9,

because if two elliptic curves E and E ′ in P
2 are projectively equivalent, then for every

A(E, σ), there exists an automorphism σ′ ∈ Autk E
′ such that A(E, σ) ∼= A(E ′, σ′) (see

[7, Lemma 2.6]).

It follows from [4, Proposition 4.5] that every automorphism σ ∈ Autk E can be written
as σ = σpτ

i
E where σp is a translation by a point p ∈ E, τE is a generator of Autk(E, o)

and i ∈ Z|τE |. For any n ≥ 1, we call a point p ∈ E n-torsion if np = o. We set
E[n] := {p ∈ E | np = o} and T [n] := {σp ∈ Autk E | p ∈ E[n]}. It follows from [4,
Theorem 4.12 (3)] that every automorphism σ ∈ Autk(P

2 ↓ E) can be written as σ = σqτ
i
E

where q ∈ E[3] and i ∈ Z|τE |.
Let E = V(x3 + y3 + z3− 3λxyz) be an elliptic curve in P

2 and p = (a, b, c) ∈ E \E[3].
Then A(E, σp) is called a 3-dimensional Sklyanin algebra, and

A(E, σp) = k〈x, y, z〉/(ayz + bzy + cx2, azx+ bxz + cy2, axy + byx+ cz2).

Lemma 11 ([5, Lemma 4.10]). Let A = A(E, σp) be a 3-dimensional Sklyanin algebra
where p ∈ E \ E[3].
(1) For σqτ

i
E ∈ Autk(P

2 ↓ E), σqτ
i
E ∈ Z(E, σp) if and only if p− τ iE(p) = o.

(2) For σqτ
i
E ∈ Autk(P

2 ↓ E), σqτ
i
E ∈ N(E, σp) if and only if p− τ iE(p) ∈ E[3].

(3) M(E, σp) = N(E, σp).

By Theorem 8, to classify twisted algebras of 3-dimensional Sklyanin algebras A(E, σp)
up to isomorphism of graded algebras, it is enough to classify subsets Z(E, σp) and
M(E, σp) of Autk(P

2 ↓ E).

Theorem 12 ([5, Theorem 4.11]). Let A = A(E, σp) be a 3-dimensional Sklyanin algebra.
Then the following table gives Z(E, σp) and M(E, σp);
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Type j(E) Z(E, σp) M(E, σp)

j(E) �= 0, 123
⎧⎪⎨
⎪⎩

T [3] if p /∈ E[2]

Autk(P
2 ↓ E) if p ∈ E[2]

⎧⎪⎨
⎪⎩

T [3] if p /∈ E[6]

Autk(P
2 ↓ E) if p ∈ E[6]

EC j(E) = 0

⎧⎪⎨
⎪⎩

T [3] if p /∈ E[2]

T [3] � 〈τ3
E〉 if p ∈ E[2]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T [3] if p /∈ E ∪ E[6]

T [3] � 〈τ2
E〉 if p ∈ E

T [3] � 〈τ3
E〉 if p ∈ E[6]

j(E) = 123

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T [3] if p /∈ E[2]

T [3] � 〈τ2
E〉 if p ∈ E[2] \ 〈(1, 1, λ)〉

Autk(P
2 ↓ E) if p = (1, 1, λ)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T [3] if p /∈ E[6]

T [3] � 〈τ2
E〉 if p ∈ E[6] \ F

Autk(P
2 ↓ E) if p ∈ F

where E := {(a, b, c) ∈ E | a9 = b9 = c9} ⊂ E[9] \ E[6] and F := 〈(1, 1, λ)〉 ⊕ E[3].
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THE CLASSIFICATION OF 3-DIMENSIONAL CUBIC AS-REGULAR
ALGEBRAS OF TYPEP, S, T AND WL

MASAKI MATSUNO AND YU SAITO

Abstract. Classification of AS-regular algebras is one of the most important projects
in noncommutative algebraic geometry. In this paper, we extend the notion of geometric
algebra to cubic algebras, and give a geometric condition for isomorphism and graded
Morita equivalence. One of the main results is a complete list of defining relations of 3-
dimensional cubic AS-regular algebras corresponding to P

1×P
1 or a union of irreducible

divisors of bidegree (1, 1) in P
1×P

1. Moreover, we classify them up to isomorphism and
up to graded Morita equivalence in terms of their defining relations.

1. Artin-Schelter regular algebras

Throughout this report, let k be an algebraically closed field of characteristic 0, A a
graded algebra finitely generated in degree 1 over k. That is, A = k〈x1, · · · , xn〉/I where
deg xi = 1 for any i = 1, · · · , n, and I is a homogeneous two-sided ideal of k〈x1, · · · , xn〉
with I0 = I1 = 0. We call A = 〈x1, · · · , xn〉/I a cubic algebra if I is an two-sided ideal
of k〈x1, · · · , xn〉 generated by homogeneous polynomials of degree three. We denote by
GrModA the category of graded right A-modules and graded right A-module homomor-
phisms preserving degrees. We say that two graded algebras A and A′ are graded Morita
equivalent if the categories GrModA and GrModB are equivalent.
Let A be a graded algebra. We recall that

GKdimA := inf{α ∈ R | dim(
∑n

i=0 Ai) ≤ nα for all n! 0}
is called the Gelfand-Kirillov dimension of A. In noncommutative algebraic geometry,
Artin-Schelter regular algebras are main objects to study.

Definition 1 ([1]). A graded algebra A is called a d-dimensional Artin-Schelter regular
(simply AS-regular) algebra if A satisfies the following conditions:
(1) gldimA = d <∞,
(2) GKdimA <∞,

(3) ExtiA(k,A) =

{
k if i = d,

0 if i �= d.

It follows from [1, Theorem 1.5 (i)] that a 3-dimensional AS-regular algebra A finitely
generated in degree 1 over k is one of the following forms:

A = k〈x, y, z〉/(f1, f2, f3)
where fi are homogeneous polynomials of degree 2 (quadratic case), or

A = k〈x, y〉/(g1, g2)
The detailed version of this paper has been submitted for publication elsewhere.
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where gj are homogeneous polynomials of degree 3 (cubic case). In this report, we focus
on studying 3-dimensional cubic AS-regular algebras.

2. 3-GEOMETRIC ALGEBRAS

Artin, Tate and Van den Bergh [2] found a nice one-to-one correspondence between
3-dimensional AS-regular algebras and pairs (E, σ) where E is a scheme and σ is an
automorphism of E. Focusing on pairs (E, σ), Mori introduced the notion of geometric
algebra which determines and is determined by a pair (E, σ) (see [3, Definition 4.3]). In
this report, we extend the notion of geometric algebra to cubic algebras.
Let A = k〈x1, · · · , xn〉/(R) be a cubic algebra where R is a subspace of k〈x1, · · · , xn〉3.

We denote by P
n−1 the projective space of dimension n− 1 over k. We define the zero set

of R by
V(R) := {(p, q, r) ∈ (Pn−1)×3 | f(p, q, r) = 0 ∀f ∈ R}.

Let E ⊂ P
n−1×Pn−1 be a projective variety and πi : P

n−1×Pn−1 → P
n−1 i-th projections

where i = 1, 2. We set the following notation:

AutGk E := {σ ∈ Autk E | π1σ(p, q) = π2(p, q) ∀(p, q) ∈ E}.
We say that a pair (E, σ) is a 3-geometric pair if σ ∈ AutGk E.

Definition 2. Let A = k〈x1, · · · , xn〉/(R) be a cubic algebra. We say that A is a 3-
geometric algebra if there exists 3-geometric pair (E, σ) such that
(G1) V(R) = {(p, q, π2σ(p, q)) | (p, q) ∈ E},
(G2) R = {f ∈ k〈x1, · · · , xn〉3 | f(p, q, π2σ(p, q)) = 0 ∀(p, q) ∈ E}.

In this case, we write A = A(E, σ).

The following theorem tells us that classifying geometric algebras is equivalent to clas-
sifying 3-geometric pairs.

Theorem 3 (cf. [4, Lemma 2.5]). Let A = A(E, σ) and A′ = A(E ′, σ′) be 3-geometric
algebras.
(1) A ∼= A′ as graded algebras if and only if there exists an automorphism τ of Pn−1

such that (τ × τ)(E) = E ′ and the diagram

E
τ×τ−−−→ E ′

σ

⏐⏐� ⏐⏐�σ′

E −−−→
τ×τ

E ′

commutes.
(2) GrModA ∼= GrModA′ if and only if there exists a sequence {τi}i∈Z of automor-

phisms of Pn−1 such that (τi × τi+1)(E) = E ′ and the diagram

E
τi×τi+1−−−−→ E ′

σ

⏐⏐� ⏐⏐�σ′

E −−−−−−→
τi+1×τi+2

E ′

commutes for all i ∈ Z.
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Definition 4. Let E and E ′ be projective varieties in P
n−1 × P

n−1.
(1) We say that E and E ′ are equivalent, denoted by E ∼ E ′, if E ′ = (τ1 × τ2)(E) for

some τ1, τ2 ∈ AutkP
n−1.

(2) We say that E and E ′ are 2-equivalent, denoted by E ∼2 E
′, if E ′ = (τ × τ)(E) for

some τ ∈ AutkP
n−1.

It is clear that if E and E ′ are 2-equivalent, then they are equivalent. Let A = A(E, σ)
and A′ = A(E ′, σ′) be 3-geometric algebras. If A ∼= A′ (resp.GrModA ∼= GrModA′), then
E and E ′ are 2-equivalent (resp.equivalent) by Theorem 3. As the first step of classification
of geometric algebras up to graded algebra isomorphism (resp.graded Morita equivalence),
we need to classify projective varieties up to 2-equivalence (resp.equivalence).

3. Main results

In [2], Artin-Tate-Van den Bergh found a nice geometric characterization of 3-dimensional
AS-regular algebras finitely generated in degree 1 over k. In this report, we focus on the
cubic case.

Theorem 5 ([3]). Every 3-dimensional cubic AS-reguar algebra A is a 3-geometric algebra
A = A(E, σ). Moreover, E is P

1 × P
1 or a divisor of bidegree (2, 2) in P

1 × P
1.

In this report, we study two cases when E = P
1×P

1 and E is a union of two irreducible
divisors of bidegree (1, 1) in P

1 × P
1. For each case, we

(I) give a complete list of defining relations of 3-dimensional cubic AS-regular algebras,
(II) classify them up to isomorphism as graded algebras in terms of their defining

relations, and
(III) classify them up to graded Morita equivalence in terms of their defining relations.
We first treat the case E = P

1 × P
1. We denote by ν an automorphism of P1 × P

1

defined by ν(p, q) = (q, p) for (p, q) ∈ P
1 × P

1.

Lemma 6. AutGk (P
1 × P

1) = {(id× ρ)ν | ρ ∈ Autk P
1}.

Example 7. For ρ ∈ AutkP
1(∼= PGL2(k)), we set

Aρ := A(P1 × P
1, (id× ρ)ν).

By Theorem 3 (1), Aρ
∼= Aρ′ if and only if there exists τ ∈ AutkP

1 such that the diagram

P
1 × P

1 τ×τ−−−→ P
1 × P

1

(id×ρ)ν

⏐⏐� ⏐⏐�(id×ρ′)ν

P
1 × P

1 −−−→
τ×τ

P
1 × P

1

commutes if and only if there exists τ ∈ AutkP
1 such that ρ′τ = τρ. Hence, Aρ is

isomorphic to Aρλ or AρJ where λ ∈ k \ {0}, ρλ =

(
1 0
0 λ

)
and ρJ =

(
1 1
0 1

)
. Moreover,

Aρλ
∼= Aρλ′ if and only if λ′ = λ±1.

We next treat the case when E is a union of two irreducible divisors of bidegree (1, 1)
in P

1 × P
1.
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Lemma 8. Let C = V(f) ⊂ P
1 × P

1 where f ∈ k[x1, y1] ◦ k[x2, y2]. Assume that C is
irreducible. Then C is a divisor of bidegree (1, 1) if and only if there exists τ ∈ AutkP

1

such that C = Cτ := {(p, τ(p)) | p ∈ P
1}.

By Lemma 8, if E is a union of two irreducible divisors of bidegree (1, 1) in P
1 × P

1,
then E = Cτ1 ∪ Cτ2 for some τi ∈ Autk P

1 (i = 1, 2). The following result is one of our
main results.

Theorem 9. Let E = Cτ1 ∪ Cτ2 be a union of two irreducible divisors of bidegree (1, 1)
in P

1 × P
1. Then one of the following statements holds:

(1) |Cτ1 ∩ Cτ2 | = 2 (if and only if τ−1
2 τ1 ∼

(
1 0
0 λ

)
for some λ ∈ k \ {0, 1}),

(2) |Cτ1 ∩ Cτ2 | = 1 (if and only if τ−1
2 τ1 ∼

(
1 1
0 1

)
),

(3) |Cτ1 ∩ Cτ2 | =∞ (if and only if τ−1
2 τ1 =

(
1 0
0 1

)
).

In this report, we define the types of 3-geometric pairs (E, σ) as follows:
(1) TypeP: E = P

1 × P
1 and σ = (id × τ)ν ∈ AutGk (P

1 × P
1) (TypeP is divided into

TypePi (i = 1, 2) in terms of the Jordan canonical form of τ).
(2) Type S: E = Cτ1 ∪ Cτ2 is a union of two irreducible divisors of bidegree (1, 1) in

P
1 × P

1 such that |Cτ1 ∩ Cτ2 | = 2. Type S is divided into Type Si (i = 1, 2); Type S1: σ
fixes each components and Type S2: σ switches each components.
(3) TypeT: E = Cτ1 ∪ Cτ2 is a union of two irreducible divisors of bidegree (1, 1) in

P
1 × P

1 such that |Cτ1 ∩ Cτ2 | = 1. TypeT is divided into TypeTi (i = 1, 2); TypeT1: σ
fixes each components and TypeT2: σ switches each components.
(4) TypeWL: E = Cτ1 ∪ Cτ2 is a union of two irreducible divisors of bidegree (1, 1) in

P
1×P

1 such that |Cτ1 ∩Cτ2 | =∞. TypeWL is divided into TypeWLi (i = 1, 2) in terms
of the Jordan canonical form of τ1(= τ2).

The following theorem lists all possible defining relations of algebras in each type up
to isomorphism of graded algebra.

Theorem 10. Let A = A(E, σ) be a 3-dimensional cubic AS-regular algebra. For each
type the following table describes
(I) the defining relations of A, and
(II) the conditions to be isomorphic in terms of their defining relations.

Moreover, every algebra listed in the following table is AS-regular. In the following table,
if X �= Y or i �= j, then Type Xi algebra is not isomorphic to any Type Yj algebra.

Type (I) defining relations (II) condition to be

(α, β ∈ k) graded algebra isomorphic

P1

{
x2y − αyx2,

xy2 − αy2x (α �= 0)
α′ = α±1

P2

{
x2y − yx2 + yxy,

xy2 − y2x+ y3
———————
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S1

{
αβx2y + (α + β)xyx+ yx2,

αβxy2 + (α + β)yxy + y2x

(αβ �= 0, α2 �= β2)

{α′, β′} = {α, β}, {α−1, β−1}

S2

{
xy2 + y2x+ (α + β)x3,

x2y + yx2 + (α−1 + β−1)y3

(αβ �= 0, α2 �= β2)

α′

β′ =
(
α

β

)±1

T1

⎧⎪⎨⎪⎩
x2y − 2xyx+ yx2 − 2(2β − 1)yxy

+2(2β − 1)xy2 + 2β(β − 1)y3,

xy2 − 2yxy + y2x

β′ = β, 1− β

T2

{
x2y + 2xyx+ yx2 + 2y3,

xy2 + 2yxy + y2x
———————

WL1

{
α2xy2 + y2x− 2αyxy,

yx2 + α2x2y − 2αxyx

(α �= 0)

α′ = α±1

WL2

⎧⎪⎨⎪⎩
xy2 + y2x− 2yxy,

4xy2 + 2y3 + yx2 + x2y

−4yxy − 2xyx

———————

The following theorem lists all possible defining relations of algebras in each type up
to graded Morita equivalence.

Theorem 11. Let A = A(E, σ) be a 3-dimensional cubic AS-regular algebra. For each
type the following table describes
(I) the defining relations of A, and
(III) the conditions to be graded Morita equivalent in terms of their defining relations.

Moreover, every algebra listed in the following table is AS-regular. In the following table,
if X �= Y , then Type X algebra is not graded Morita equivalent to any Type Y algebra.

Type (I) defining relations (III) condition to be

(α, β ∈ k) graded Morita equivalent

P

{
x2y − yx2,

xy2 − y2x
———————

S

{
αβx2y + (α + β)xyx+ yx2,

αβxy2 + (α + β)yxy + y2x

(αβ �= 0, α2 �= β2)

α′

β′ =
(
α

β

)±1

T

⎧⎪⎨⎪⎩
x2y + yx2 + 2xy2

−2xyx− 2yxy,

xy2 + y2x− 2yxy

———————
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WL

{
xy2 + y2x− 2yxy

yx2 + x2y − 2xyx
———————
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QUIVER HEISENBERG ALGEBRAS AND THE ALGEBRA B(Q)

HIROYUKI MINAMOTO

Abstract. This is a report on ongoing joint work with Martin Herschend about quiver
Heisenberg algebras (QHA) and the algebra vB(Q). In this note, we mainly investigate
QHA of Dynkin type. The first main result tells that QHA vΛ(Q) of Dynkin type is
finite dimensional if and only if the weight v ∈ kQ0 is regular (see Definition 1), and
moreover that if this is the case, vΛ(Q) is a symmetric algebra. In the case chark = 0,
the “if” part of the first statement is proved by Etingof and Rains [10], and the second
is verified for a generic weight by Etingof, Latour and Rains [11].

Compare to the preprojective algebras Π(Q) which are only Frobenius in general,
QHA vΛ(Q) can be said to be well-behaved, since they are always symmetric. Making
use of this, we investigate silting theory of QHA of Dynkin type. We obtain results which
are analogous to the results for Π(Q) by Aihara-Mizuno [3].

1. Introduction

Throughout this note k is an algebraically closed field and Q is a finite acyclic quiver.
For kQ-module M , the dimension vector dimM is regarded as an element of kQ0 =
k× · · · × k (not of ZQ0).
For an element v ∈ kQ0, which we call weight, we define the weighted dimension of M

to be
vdimM :=

∑
i∈Q0

vi dim eiM.

Definition 1. A weight v ∈ kQ0 is called regular if

vdimM �= 0 (∀M ∈ ind Q)

Remark 2. In the case Q is Dynkin and char k = 0, the vector space kQ0 may be identified
with the Cartan subalgebra h of the semi-simple Lie algebra g corresponding to Q. By
Gabriel’s theorem the dimension vectors of indecomposable kQ-modules are precisely the
roots of g, so the regularity given here coincides with that are used by Etingof-Rains [10].

Example 3. Let Q be a directed A3-quiver.

Q : 1
α �� 2

β �� 3 .

The dimension vectors of indecomposable modules are

1
0
0
,

0
1
0
,

0
0
1
,

1
1
0
,

0
1
1
,

1
1
1
.

The detailed version of this paper will be submitted for publication elsewhere.
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Thus, regularity of a weight v = (v1, v2, v3)
t is

v1 �= 0, v2 �= 0, v3 �= 0,

v1 + v2 �= 0, v2 + v3 �= 0, v1 + v2 + v3 �= 0.

Looking the weighted dimension of simple modules Si (i ∈ Q0), we obtain

Lemma 4. A regular weight v is sincere i.e., vi �= 0 (∀i ∈ Q0).

Let Q be the double of Q.

Q i
α �� j

��
��
��
��
��
��
��
��

i

α


j

α∗

�� Q

For i ∈ Q0, ρi denotes the mesh relation at i

ρi :=
∑

α∈Q1:t(α)=i

αα∗ −
∑

α∈Q1:h(α)=i

α∗α.

Definition 5. The quiver Heisenberg algebra vΛ(Q) with the weight v ∈ kQ0 is defined
to be

vΛ(Q) :=
k[z]Q

(ρi − vizei | i ∈ Q0)
.

Remark 6. This algebra is a special case of algebras studied in [6, 7, 10].

Remark 7. If v is sincere, then vΛ(Q) is isomorphic to the algebra which was given in
previous talks of QHA, via the isomorphism

vΛ(Q) ∼= kQ

([a, vρ] | a ∈ Q1)
, z 
→ vρ

where vρ :=
∑

i v
−1
i ρi the “weighted mesh relation” and [a, vρ] = avρ− vρa is the commu-

tator.

We recall an indecomposable decomposition of vΛ(Q) as kQ-module.

Theorem 8 ([12]). If v is regular, then as kQ-modules

vΛ(Q) ∼=
⊕
M

MdimM .

where M runs over representatives of isomorphism class of indecomposable preprojective
modules.

In particular, in the case Q is Dynkin, if v is regular, vΛ(Q) is finite dimensional. One
of our main result asserts that the converse holds and moreover, if this is the case, vΛ(Q)
is symmetric.

Theorem 9 ((1) [12], (2) [13]). Let Q be a Dynkin quiver. The followings hold.

(1) A weight v is regular if and only if vΛ(Q) is finite dimensional.
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(2) If a weight v is regular, then vΛ(Q) is symmetric.

Remark 10. In the case chark = 0, Etingof-Latour-Rains [11] showed that vΛ(Q) is sym-
metric for a generic weight v.

In the next section, we explain keys of proofs. In the third section, we discuss silting
theory of vΛ(Q).

2. Proof of Theorem 9

2.1. Proof of Theorem 9(1). We only have to prove “if” direction. We do this by
proving the contraposition. Namely, we show that if v is not regular, then vΛ(Q) is
infinite dimensional. In the case v is not sincere, using an explicit presentation of vΛ(Q)
by a quiver with relations, we can directly check that dim vΛ(Q) = ∞. Thus we may
assume that v is sincere (and not regular). In that case, we conclude dim vΛ(Q) =∞ by
the following proposition.
To state the proposition, we recall that vΛ(Q) acquires a grading that counts the number

of extra arrows α∗, which we call the ∗-grading. Let vΛ(Q)n denote the ∗-degree n-part
of vΛ(Q). It is clear that vΛ(Q)0 = kQ and vΛ(Q)n has a canonical structure of kQ-
bimodule.

Proposition 11 ([12]). Assume that v is sincere but not regular. Let M be an indecom-
posable kQ-module such that v dimM = 0. Then for any n ≥ 0, M is a direct summand
of vΛ(Q)n ⊗kQ M as kQ-module.
In particular vΛ(Q)n �= 0 for all n ≥ 0.

The case n = 0 is clear. For the case n = 1, we recall that there is a canonical exact
triangle which is obtained from analysis of QHA and preprojective algebra

M → vΛ̃(Q)1 ⊗L

kQ M → ν−1
1 M →,

in the derived category Db(kQmod) where vΛ̃(Q) is the derived quiver Heisenberg algebra
given in the next section. We can show that vdimM = 0 if and only if the above exact
triangle splits. We note that in the case vdimM �= 0, the exact triangle is an almost split
exact triangle.
The case n ≥ 2 uses the following exact triangle

Π̃1 ⊗L vΛ̃n−2 ⊗L M → vΛ̃1 ⊗L vΛ̃n−1 ⊗L M → vΛ̃n ⊗L M

Please see [12] for details.

2.2. Proof of Theorem 9(2). Main ingredients of our proof is the followings:
(i) A general result about derived preprojective algebra of d-representation finite alge-

bra.
(ii) The algebra vB(Q).
(iii) A direct computation of the cohomology algebra of derived QHA.
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2.2.1. Let A be a d-representation finite algebra. Iyama-Oppermann [15] showed that
the d + 1-preprojective algebra Π := Πd+1(A) is Frobenius. Let ν be the Nakayama
automorphism of Π, i.e., Π ∼= νD(Π) as Π-bimodules.

Theorem 12 ([13]). Let Π̃ be the d + 1-derived preprojective algebra of A. Then, the

cohomology algebra H(Π̃) of the derived d+1-preprojective algebra Π̃ is isomorphic to the
skew polynomial algebra Π[u; ν]

H(Π̃) ∼= Π[u; ν]

as cohomologically graded algebras, where u is a formal variable of cohomological degree
−d and

au = uν(a) (∀a ∈ Π).

This theorem connects the Nakayama automorphism ν to the algebra structure of H(Π̃).

2.2.2. We introduce a finite dimensional algebra vB(Q).

Definition 13. For a quiver Q and a regular weight v, we define

vB(Q) :=

(
kQ vΛ(Q)1
0 kQ

)
the bypath algebra (a.k.a., 2-path algebra) of Q.

The algebra vB(Q) has various properties that are 1-dimension higher version of that
of the path algebra kQ. Among other things, we have a 1-dimension higher version of
Gabriel’s dichotomy of representation types.

Theorem 14 ([13]). The followings hold.

(1) vB(Q) is 2-representation finite if and only if Q is Dynkin.
(2) vB(Q) is 2-representation infinite if and only if Q is non-Dynkin.

Recall that the derived QHA vΛ̃(Q) is a DGA explicitly defined by the quiver

Q i
α �� j

��
��
��
��
��
��
��
��
��

iti
��

α�

��
α 

j tj
��

α∗��

α◦

��

the differential is defined by

d(α) := 0, d(α∗) := 0, d(α◦) := −[α∗, vρ], d(α�) := [α, vρ],

d(ti) :=
∑
α∈Q1

ei[α, α
◦]ei +

∑
α∈Q1

ei[α
∗, α�]ei.

If chark �= 2, vΛ̃(Q) is the Ginzburg dg-algebra G(Q,W ) where

W := −1

2
vρρ = −1

2

∑
i∈Q0

v−1
i ρ2i .
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Lemma 15 ([13]). The 3-derived preprojective algebra of vB(Q) and the 2-ed quasi-

Veronese algebra of vΛ̃(Q) are isomorphic

Π̃3(
vB(Q)) ∼= vΛ̃(Q)[2].

2.2.3. By (more or less) direct computation we have

Theorem 16 ([12]). Assume that Q is Dynkin and v is regular. Then,

H(vΛ̃(Q)) ∼= vΛ(Q)[u]

where u is a formal variable of cohomological degree −2.
Comparing the right hand sides of the isomorphisms given in Theorem 12 for vB(Q)

and Theorem 16 via Lemma 15, we conclude that νΛ = idΛ up to inner automorphisms.

3. Silting theory of QHA of Dynkin type

Compare to the preprojective algebras Π(Q) which are only Frobenius in general, QHA
vΛ(Q) can be said to be well-behaved, since they are always symmetric. Making use of
this, we investigate silting theory of QHA of Dynkin type. Before doing this, first we
introduce a general construction of a tilting complex.

3.1. In this subsection, Q denote a quiver which is not necessarily Dynkin.
Let i ∈ Q0. We define a complex T (i) over vΛ to be

T (i) := vΛ(1− ei)⊕

⎡⎣vΛei
(±a∗)a∈h−1(i)−−−−−−−−→

⊕
a∈h−1(i)

vΛet(a)

⎤⎦
where the right factor is a complex placed in −1, 0-th cohomological. degree.
This complex is a “family version” of the tilting complex of Crawley-Boevey-Kimura

[8]. The reduction Π⊗vΛ T
(i) is the tilting complex introduced by Baumann-Kamniter [4]

and Buan-Iyama-Reiten-Scott [5].
Let r : WQ � kQ0 be the dual action. Let ri be the action of the Coxeter generator si.

Theorem 17 ([13]). The complex T (i) is a tilting complex and

EndvΛ(T
(i))op ∼= ri(v)Λ.

3.2. From now we assume that Q is Dynkin. We note siltvΛ = tiltvΛ by Theorem 5.
Then, it is straightforward to check that T (i) is the left silting mutation of vΛ:

T (i) = μ−
i (

vΛ).

Thus, taking iterated mutations
w(v)Λ ∼= EndvΛ(μ

−
in
· · ·μ−

i1
(vΛ))op

where w = sin · · · si1 .
There are following bijections,

WQ
1:1−−−−→ sttiltΠ(Q)

1:1−−−−→ 2siltΠ(Q).

the first is established by Mizuno [14], the second is a consequence of a general result due
to Adachi-Iyama-Reiten [1]
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The weighted mesh relation vρ is central in vΛ(Q) and we have a canonical isomorphism
vΛ(Q)/(vρ) ∼= Π(Q). Applying a general result by Eisele-Janssens-Raedschelders [9], we
obtain bijections

WQ
1:1−−−−→ sttiltvΛ(Q)

1:1−−−−→ 2siltvΛ(Q)

which is given by
w = sin · · · si1 
→ μ+

in
· · ·μ+

i1
(vΛ)

By general criteria due to Aihara-Mizuno [3], we conclude that vΛ(Q) is silting discrete.
As a consequence of the preceding consideration, we obtain the following results which

are analogous to the results for Π(Q) by Aihara-Mizuno [3].

Theorem 18 ([13]). Assume that Q is Dynkin and v is regular.

(1) The algebra vΛ(Q) is silting discrete.
(2) A silting complex T is a tilting complex and

EndvΛ(Q)(T )
op ∼= w(v)Λ(Q)

for some w ∈ WQ.

Theorem 19 ([13]). Let BQ be the braid group of Q. There is a bijection

BQ
1:1−−−→ siltvΛ(Q), b 
→ μb(

vΛ(Q)).
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WALL-AND-CHAMBER STRUCTURES OF STABILITY PARAMETERS
FOR SOME DIMER QUIVERS

YUSUKE NAKAJIMA

Abstract. It is known that any projective crepant resolution of a three-dimensional
Gorenstein toric singularity can be described as the moduli space of representations
of a quiver associated to a dimer model for some stability parameter. The space of
stability parameters has the wall-and-chamber structure and we can track the variations
of projective crepant resolutions by observing such a structure. In this article, we consider
dimer models giving rise to projective crepant resolutions of a toric compound Du Val
singularity. We show that sequences of zigzag paths, which are special paths on a dimer
model, determine the wall-and-chamber structure of the space of stability parameters.

1. Introduction

The moduli space of representations of a quiver, introduced in [10], is defined as the GIT
quotient associated to a stability parameter. For some nice singularities, resolutions of
singularities can be described as moduli spaces of representations of a quiver. For example,
any projective crepant resolution of a three-dimensional Gorenstein quotient singularity
C

3/G defined by the action of a finite subgroup G ⊂ SL(3,C) on C
3 can be described

as the moduli space of representations of the McKay quiver of G (see [2, 14]). Also, any
projective crepant resolution of a three-dimensional Gorenstein toric singularity can be
described as the moduli space of representations of the quiver associated to a dimer model
(see [9]). It is known that the space of stability parameters associated to a quiver has the
wall-and-chamber structure, that is, it is decomposed into chambers separated by walls.
The moduli spaces associated to stability parameters contained in the same chamber
are isomorphic, but a stability parameter contained in another chamber would give a
different moduli space. Thus, it is important to detect the wall-and-chamber structure
of the space of stability parameters to understand the relationships among projective
crepant resolutions of the above singularities. The purpose of this article is to detect the
wall-and-chamber structure for a particular class of three-dimensional Gorenstein toric
singularities called toric compound Du Val (cDV) singularities. In particular, we will see
that the combinatorics of a dimer model associated to a toric cDV singularity control the
wall-and-chamber structure.

2. Preliminaries on dimer models and associated quivers

2.1. Dimer models. We first introduce dimer models and related notions which are
originally derived from theoretical physics (e.g., [4, 6]).

The detailed version of this paper will be submitted for publication elsewhere.

- 58 -



A dimer model Γ on the real two-torus T := R
2/Z2 is a finite bipartite graph on T

inducing a polygonal cell decomposition of T. Since Γ is a bipartite graph, the set Γ0 of
nodes of Γ is divided into two subsets Γ+

0 ,Γ
−
0 , and edges of Γ connect nodes in Γ+

0 with
those in Γ−

0 . We denote by Γ1 the set of edges. We color the nodes in Γ+
0 white, and those

in Γ−
0 black throughout this article. A face of Γ is a connected component of T\Γ1. We

denote by Γ2 the set of faces. In the rest of this article, we assume that any dimer model
satisfies a certain nice condition called the consistency condition, see e.g., [8, Section 6]
for more details. For example, Figure 1 is a consistent dimer model on T, where the outer
frame is a fundamental domain of T.

Figure 1. An example of a dimer model

We say that a path on a dimer model is a zigzag path if it makes a maximum turn to
the right on a black node and a maximum turn to the left on a white node. For example,
the paths (displayed in thick lines) in Figure 2 are all zigzag paths on the dimer model
given in Figure 1.

Figure 2. Zigzag paths on the dimer model given in Figure 1

We fix two 1-cycles on T generating the homology group H1(T), and take a fundamental
domain of T along such two cycles. Since we can consider a zigzag path z on Γ as a 1-cycle
on T, we have the homology class [z] ∈ H1(T) ∼= Z

2, which is called the slope of z. Note
that for a consistent dimer model Γ, any edge of Γ is contained in exactly two zigzag
paths and any slope is a primitive element. Then, for a consistent dimer model Γ, we
assign the lattice polygon called the zigzag polygon (cf. [8, Section 12]). Let [z] be the
slope of a zigzag path z on Γ. By normalizing [z] ∈ Z

2, we consider it as an element of the
unit circle S1. Then, the set of slopes has a natural cyclic order along S1. We consider

the sequence
(
[zi]
)k
i=1

of slopes of zigzag paths on Γ such that they are cyclically ordered
starting from [z1], where k is the number of zigzag paths. We note that some slopes may
coincide in general. We set another sequence (wi)

k
i=1 in Z

2 defined as w0 = (0, 0) and

wi+1 = wi + [zi+1]
′ (i = 0, 1, . . . , k − 1).

Here, [zi+1]
′ ∈ Z

2 is the element obtained from [zi+1] by rotating 90 degrees in the anti-
clockwise direction. One can see that wk = (0, 0) since the sum of all slopes is equal to
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zero. We call the convex hull of {wi}ki=1 the zigzag polygon of Γ and denote it by ΔΓ.
Note that there are several choices of an initial zigzag path z1, but the zigzag polygon is
determined uniquely up to unimodular transformations. By definition, we see that the
slope of a zigzag path is an outer normal vector of some side of ΔΓ, and the number
of zigzag paths having the same slope v ∈ Z

2 coincides with the number of primitive
segments of the side of ΔΓ whose outer normal vector is v.

Example 1. We consider the dimer model in Figure 1 and its zigzag paths as in Figure 2.
Then, we have the cyclically ordered sequence of slopes(

(0,−1), (0,−1), (0,−1), (1, 1), (0, 1), (0, 1), (−1, 0)
)
,

where we take a Z-basis of H1(T) ∼= Z
2 along the vertical and horizontal lines of the

fundamental domain of T. Thus, we have the zigzag polygon as in Figure 3.

Figure 3. The zigzag polygon of the dimer model given in Figure 1

On the other hand, any lattice polygon can be described as the zigzag polygon of a
consistent dimer model as follows.

Theorem 2 (see e.g., [5, 8]). For any lattice polygon Δ, there exists a consistent dimer
model Γ such that Δ = ΔΓ.

2.2. Toric rings associated to dimer models. Let Γ be a consistent dimer model.
We next consider the cone σΓ over the zigzag polygon ΔΓ, that is, σΓ is the cone whose
section on the hyperplane at height one is ΔΓ.
Let N := Z

3 be a lattice and M := HomZ(N,Z) be the dual lattice of N. We set NR :=
N⊗ZR and MR := M⊗ZR. We denote the standard inner product by 〈 , 〉 : MR×NR → R.
For the vertices ṽ1, . . . , ṽn ∈ Z

2 of ΔΓ, we let vi := (ṽi, 1) ∈ N (i = 1, . . . , n). The cone σΓ

over ΔΓ is defined as
σΓ := R≥0v1 + · · ·+ R≥0vn ⊂ NR.

Then, we consider the dual cone

σ∨
Γ := {x ∈ MR | 〈x, vi〉 ≥ 0 for any i = 1, . . . , n}.

Using this cone, we can define the toric ring (toric singularity) RΓ associated to Γ as

RΓ := C[σ∨
Γ ∩M] = C[ta11 ta22 ta33 | (a1, a2, a3) ∈ σ∨

Γ ∩M],

which is Gorenstein in dimension three. We note that any three-dimensional Gorenstein
toric ring can be described with this form. Precisely, let σ be a strongly convex rational
polyhedral cone in NR which defines a three-dimensional Gorenstein toric ring R. Then,
it is known that, after applying an appropriate unimodular transformation (which does
not change the associated toric ring up to isomorphism) to σ, the cone σ can be described
as the cone over a certain lattice polygon ΔR. We call the lattice polygon ΔR the toric
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diagram of R. By Theorem 2, there exists a consistent dimer model Γ such that ΔΓ = ΔR

for any three-dimensional Gorenstein toric ring R, in which case we have R = RΓ.

2.3. Quivers associated to dimer models. Let Γ be a dimer model. As the dual of Γ,
we obtain the quiver QΓ associated to Γ, which is embedded in T, as follows. We assign a
vertex dual to each face in Γ2 and an arrow dual to each edge in Γ1. We fix the orientation
of any arrow so that the white node is on the right of the arrow. For example, Figure 4 is
the quiver associated to the dimer model in Figure 1. We simply denote the quiver QΓ by
Q unless it causes any confusion. Let Q = (Q0, Q1) be the quiver associated to a dimer
model, where Q0 is the set of vertices and Q1 is the set of arrows. Let hd(a), tl(a) ∈ Q0

be respectively the head and tail of an arrow a ∈ Q1. A path of length r ≥ 1 is a finite
sequence of arrows γ = a1 · · · ar with hd(ai) = tl(ai+1) for i = 1, . . . , r − 1. We define
tl(a) = tl(a1), hd(a) = hd(ar) for a path γ = a1 · · · ar. A relation in Q is a C-linear
combination of paths of length at least two having the same head and tail. We especially
consider relations in Q defined as follows. For each arrow a ∈ Q1, there exist two paths
γ+
a , γ

−
a such that hd(γ±

a ) = tl(a), tl(γ±
a ) = hd(a) and γ+

a (resp. γ−
a ) goes around the white

(resp. black) node incident to the edge dual to a clockwise (resp. counterclockwise), see
e.g., [12, Figure 6]. We define the set of relations JQ := {γ+

a − γ−
a | a ∈ Q1} and call the

pair (Q,JQ) the quiver with relations associated to Γ.

0

1 2

3

4

Figure 4. The quiver associated to the dimer model given in Figure 1

We then introduce representations of a quiver with relations. A representation of
(Q,JQ) consists of a set of C-vector spaces {Mv | v ∈ Q0} together with C-linear maps
ϕa : Mtl(a) →Mhd(a) satisfying the relations JQ, that is, ϕγ+

a
= ϕγ−a for any a ∈ Q1. Here,

for a path γ = a1 · · · ar, the map ϕγ is defined as the composite ϕa1 · · ·ϕar of C-linear
maps. (Note that in this article, a composite fg of morphisms means we first apply f then
g.) In the rest of this article, we assume that the dimension vector of any representation
M = ((Mv)v∈Q0 , (ϕa)a∈Q1) of (Q,JQ) is 1 := (1, . . . , 1), that is, 1 = (dimC Mv)v∈Q0 . For
representations M,M ′ of (Q,JQ), a morphism from M to M ′ is a family of C-linear maps
{fv : Mv → M ′

v}v∈Q0 such that ϕafhd(a) = ftl(a)ϕ
′
a for any arrow a ∈ Q1. We say that

representations M and M ′ are isomorphic, if fv is an isomorphism of vector spaces for all
v ∈ Q0. A representation N of (Q,JQ) is called a subrepresentation of M if there is an
injective morphism N →M .

Next, we introduce moduli spaces parametrizing quiver representations satisfying a
certain stability condition. We consider the weight space

Θ(Q) :=
{
θ = (θv)v∈Q0 ∈ Z

Q0 |
∑
v∈Q0

θv = 0
}
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and let Θ(Q)R := Θ(Q)⊗Z R. We call an element θ ∈ Θ(Q)R a stability parameter.
Let M be a representation of (Q,JQ) of dimension vector 1. For a subrepresentation

N of M , we define θ(N) :=
∑

v∈Q0
θv(dimC Nv), and hence θ(M) = 0 in particular. For a

stability parameter θ ∈ Θ(Q)R, we introduce θ-stable representations as follows.

Definition 3 (see [10]). Let θ ∈ Θ(Q)R. We say that a representation M is θ-semistable
(resp. θ-stable) if θ(N) ≥ 0 (resp. θ(N) > 0) for any non-zero proper subrepresentation
N of M . We say that θ is generic if every θ-semistable representation is θ-stable.

By [10, Proposition 5.3], for a generic parameter θ ∈ Θ(Q)R, one can construct the fine
moduli spaceMθ(Q,JQ, 1) parametrizing isomorphism classes of θ-stable representations
of (Q,JQ) with dimension vector 1 as the GIT (geometric invariant theory) quotient.
In the following, we let Mθ = Mθ(Q,JQ, 1) for simplicity. This moduli space gives a
projective crepant resolution of a three-dimensional Gorenstein toric singlarity as follows.

Theorem 4 (see [7, Theorem 6.3 and 6.4], [9, Corollary 1.2]). Let Γ be a consistent dimer
model, and Q be the associated quiver. Let RΓ be the three-dimensional Gorenstein toric
ring associated to Γ. Then, for a generic parameter θ ∈ Θ(Q)R, the moduli space Mθ is
a projective crepant resolution of SpecRΓ. Moreover, any projective crepant resolution of
SpecRΓ can be obtained as the moduli space Mθ for some generic parameter θ ∈ Θ(Q)R.

It is known that the space Θ(Q)R of stability parameters has a wall-and-chamber struc-
ture. Namely, we define an equivalence relation on the set of generic parameters so that
θ ∼ θ′ if and only if any θ-stable representation of (Q,JQ) is also θ′-stable and vice versa,
and this relation gives rise to the decomposition of stability parameters into finitely many
chambers which are separated by walls. Here, a chamber is an open cone in Θ(Q)R con-
sisting of equivalent generic parameters and a wall is a codimension one face of the closure
of a chamber. Note that any generic parameter lies on some chamber (see [9, Lemma 6.1]),
andMθ is unchanged unless a parameter θ moves in the same chamber of Θ(Q)R.

3. Wall-and-chamber structures for toric cDV singularities

In the following, we detect the wall-and-chamber structure of Θ(Q)R for the quiver Q
associated to a dimer model giving rise to projective crepant resolutions of a toric com-
pound Du Val singularity. Compound Du Val (cDV) singularities, which are fundamental
pieces in the minimal model program, are singularities giving rise to Du Val (or Kleinian,
ADE) singularities as hyperplane sections. It is known that toric cDV singularities can
be classified into the following two types (e.g., see [3, footnote (18)]):

(cAa+b−1) : C[x, y, z, w]/(xy − zawb),

(cD4) : C[x, y, z, w]/(xyz − w2),

where a, b are integers with a ≥ 1 and a ≥ b ≥ 0. Note that the former one is a cDV
singularity of type cAa+b−1 and the latter one is of type cD4. Since these are three
dimensional Gorenstein toric rings, they can also be described as the form explained in
Subsection 2.2. In particular, we can take the toric diagram of the toric cDV singularities
of type cAa+b−1 as the trapezoid, which will be denoted by Δ(a, b), whose vertices are
(0, 0), (a, 0), (b, 1), and (0, 1). For example, Figure 3 shows Δ(3, 2). By Theorem 2, there
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exists a consistent dimer model whose zigzag polygon is Δ(a, b), see [11, Subsection 1.2],
[12, Section 5] for the precise construction. In general, such a dimer model is not unique,
thus we choose one of them and denote the chosen one by Γa,b. By construction, the dimer
model Γa,b has n := a+ b faces. We label one of the faces with 0, and label the face right
next to k with k+1 (mod n) for k = 0, 1, . . . , n− 1. Also, we will use these labels as the
names of vertices of the associated quiver Q.

We here focus on the toric cAn−1 singularity Ra,b := C[x, y, z, w]/(xy − zawb) where
n := a + b, and the associated dimer model Γa,b. Let Q be the quiver obtained as
the dual graph of Γa,b. By Theorem 4, the quiver Q gives rise to projective crepant
resolutions of SpecRa,b as moduli spaces. By the definition of the zigzag polygon, we
have the set {u1, . . . , un} of zigzag paths on Γa,b such that [uk] is either (0,−1) or (0, 1)
for k = 1, . . . , n, and a = #{k | [uk] = (0,−1)}, b = #{k | [uk] = (0, 1)}. We rearrange
u1, . . . , un if necessary, and construct the sequence (u1, . . . , un) of the zigzag paths so that
uk consists of the edges shared by the faces k − 1 and k (mod n) for any k = 1, . . . , n.
Also, we define a total order < on {u1, . . . , un} as un < un−1 < · · · < u2 < u1.

By [12, Lemma 5.2], we see that any pair of zigzag paths (ui, uj) on Γa,b divide the
two-torus T into two parts (see Figure 5). We denote the region containing the face 0
by R−(ui, uj), and the other region by R+(ui, uj). By abuse of notation, we also use
the notation R±(ui, uj) for the set of vertices of Q contained in R±(ui, uj). Since we
essentially use one of R±(ui, uj), we let R(ui, uj) := R+(ui, uj).

R
+(ui, uj)R

−(ui, uj) R
−(ui, uj)

ui uj

Figure 5

For the quiver Q associated to Γa,b, any θ ∈ Θ(Q)R satisfies θ0 = −
∑

v 	=0 θv. When we

consider Θ(Q)R, we employ the coordinates θv with v �= 0. Then, the wall-and-chamber
structure of Θ(Q)R can be determined by zigzag paths of the dimer model Γa,b as follows.

Theorem 5 (see [12, Theorems 6.11, 6.12, and Corollary 6.13]). Let the notation be the
same as above. Then, there exists a one-to-one correspondence between the following sets:

(a) the set of chambers in Θ(Q)R,

(b) the set
{
Zω = (uω(1), . . . , uω(n)) | ω ∈ Sn

}
of sequences of zigzag paths,

such that under this correspondence, if a chamber C ⊂ Θ(Q)R corresponds to a sequence
Zω, then for any k = 1, . . . , n− 1, we have the following:

(1) We see that Wk := {θ ∈ Θ(Q)R |
∑

v∈Rk
θv = 0} is a wall of C, where Rk :=

R(uω(k), uω(k+1)) is the region determined by the zigzag paths uω(k), uω(k+1) (see
Figure 5).
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(2) Any parameter θ ∈ C satisfies
∑

v∈Rk
θv > 0 (resp.

∑
v∈Rk

θv < 0) if uω(k) <
uω(k+1) (resp. uω(k+1) < uω(k)).

(3) Suppose that C ′ is the chamber separated from C by the wall Wk. Let θ ∈ C
and θ′ ∈ C ′. If [uω(k)] = −[uω(k+1)], then Mθ and Mθ′ are related by a flop. If
[uω(k)] = [uω(k+1)], then we have Mθ

∼= Mθ′.

(4) The action of the adjacent transposition sk ∈ Sn swapping k and k + 1 on Zω

induces a crossing of the wall Wk in Θ(Q)R. In particular, the chambers in ΘR(Q)
can be identified with the Weyl chambers of type An−1.

For the case cD4, we have similar results as shown in [12, Theorem 8.1], although some
modifications are required. Note that the homological minimal model program [13] also
detects the wall-and-chamber structure of Θ(Q)R, whereas our method provides a more
combinatorial way to observe it.
In addition, it is known that the projective crepant resolution Mθ can also be described

as the toric variety associated to the toric fan induced from a triangulation of Δ(a, b) (see
e.g., [1, Chapter 11]). For the sequence Zω corresponding to a chamber C ⊂ Θ(Q)R, there
is a certain way to obtain the triangulation of Δ(a, b) giving rise to the projective crepant
resolution Mθ with θ ∈ C, see [12, Subsection 6.1] for more details.

Example 6 (The suspended pinch point (cf. [9, Example 12.5])). We consider the dimer
model Γ shown in the left of Figure 6. We can see that the zigzag polygon of Γ is Δ(2, 1).
We also consider the zigzag paths u1, u2, u3 shown in the right of Figure 6. In particular,
the slopes of these zigzag paths are [u1] = [u2] = (0,−1), and [u3] = (0, 1). We fix a total
order u3 < u2 < u1.

0

1

2

0

1

2

u1 u2

u3

Figure 6. The dimer model Γ whose zigzag polygon is Δ(2, 1) (left), the
zigzag paths u1, u2, u3 on Γ (right).

Let Q be the quiver associated to Γ. Then the space of stability parameters is

Θ(Q)R = {θ = (θ0, θ1, θ2) | θ0 + θ1 + θ2 = 0}.
By Theorem 5, we have the wall-and-chamber structure of Θ(Q)R as shown in Figure 7.
For example, the sequence (u3, u2, u1) corresponds to the chamber C described as

C = {θ ∈ Θ(Q)R | θ1 > 0, θ2 > 0}.
Indeed, since R(u3, u2) = {2} and u3 < u2, any parameter in C satisfies the inequality
θ2 > 0. Also, since R(u2, u1) = {1} and u2 < u1, any parameter in C also satisfies the
inequality θ1 > 0. A crossing of the wall θ2 = 0 of C corresponds to a swapping of u3 and
u2. Also, a crossing of the wall θ1 = 0 of C corresponds to a swapping of u2 and u1.
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θ1

θ2

(u3, u2, u1)

(u3, u1, u2)

(u1, u3, u2)

(u1, u2, u3)

(u2, u1, u3)

(u2, u3, u1)

Figure 7
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Abstract. We describe the moduli Mold3,4 of 4-dimensional subalgebras of the full

matrix ring of degree 3. We show that Mold3,4 has three irreducible components, whose

relative dimensions over Z are 5, 2, 2, respectively.
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1. Introduction

Let k be a field. We say that k-subalgebras A and B of M3(k) are equivalent (or A ∼ B)
if P−1AP = B for some P ∈ GL3(k). If k is an algebraically closed field, then there are
26 equivalence classes of k-subalgebras of M3(k) over k ([4]).

Definition 1 ([2, Definition 1.1], [3, Definition 3.1]). We say that a subsheaf A of OX-
algebras of Mn(OX) is a mold of degree n on a scheme X if Mn(OX)/A is a locally free
sheaf. We denote by rankA the rank of A as a locally free sheaf.

Proposition 2 ([2, Definition and Proposition 1.1], [3, Definition and Proposition 3.5]).
The following contravariant functor is representable by a closed subscheme of the Grass-
mann scheme Grass(d, n2):

Moldn,d : (Sch)op → (Sets)
X �→

{
A A is a rank d mold of degree n on X

}
.

We consider the moduli Mold3,d of rank dmolds of degree 3 over Z. For d = 1, 2, 3, 6, 7, 8, 9,
we have the following theorem:

Theorem 3 ([4]). Let n = 3. If d ≤ 3 or d ≥ 6, then

Mold3,1 = SpecZ,

Mold3,2
∼= P

2
Z
× P

2
Z
,

Mold3,3 = Moldreg
3,3 ∪MoldS2

3,3 ∪MoldS3
3,3, where the relative dimensions of

Moldreg
3,3 ,MoldS2

3,3, and MoldS3
3,3 over Z are 6, 4, and 4, respectively,

Mold3,6
∼= Flag3 := GL3/{(aij) ∈ GL3 | aij = 0 for i > j},

Mold3,7
∼= P

2
Z

∐
P
2
Z
,

Mold3,8 = ∅,
Mold3,9 = SpecZ.

The detailed version of this paper will be submitted for publication elsewhere.
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The cases d = 4, 5 remain. In this paper, we describe the moduli Mold3,4 of rank 4
molds of degree 3. We introduce several rank 4 molds of degree 3 on a commutative ring
R.

Definition 4 ([4]). For a commutative ring R, we define

(1) (B2 ×D1)(R) =

⎧⎨⎩
⎛⎝ ∗ ∗ 0

0 ∗ 0
0 0 ∗

⎞⎠ ∈ M3(R)

⎫⎬⎭,

(2) N3(R) =

⎧⎨⎩
⎛⎝ a b c

0 a d
0 0 a

⎞⎠ a, b, c, d ∈ R

⎫⎬⎭,

(3) S6(R) =

⎧⎨⎩
⎛⎝ a c d

0 a 0
0 0 b

⎞⎠ a, b, c, d ∈ R

⎫⎬⎭,

(4) S7(R) =

⎧⎨⎩
⎛⎝ a 0 c

0 a d
0 0 b

⎞⎠ a, b, c, d ∈ R

⎫⎬⎭,

(5) S8(R) =

⎧⎨⎩
⎛⎝ a c d

0 b 0
0 0 b

⎞⎠ a, b, c, d ∈ R

⎫⎬⎭,

(6) S9(R) =

⎧⎨⎩
⎛⎝ a 0 c

0 b d
0 0 b

⎞⎠ a, b, c, d ∈ R

⎫⎬⎭.

There are 6 equivalence classes of 4-dimensional subalgebras of M3(k) over an alge-
braically closed field k: (B2 ×D1)(k), N3(k), S6(k), S7(k), S8(k), and S9(k).

The following theorem is our main result in this paper.

Theorem 5 (Theorem 19, [4]). When d = 4, we have an irreducible decomposition

Mold3,4 = MoldB2×D1
3,4

∐
MoldS7

3,4

∐
MoldS8

3,4

such that irreducible components are all connected components. The relative dimensions

of MoldB2×D1
3,4 , MoldS7

3,4, and MoldS8
3,4 over Z are 5, 2, and 2, respectively. Moreover, both

MoldS7
3,4 and MoldS8

3,4 are isomorphic to P
2
Z
, and

MoldB2×D1
3,4 = MoldB2×D1

3,4 ∪MoldS6
3,4 ∪MoldS9

3,4 ∪MoldN3
3,4

is isomorphic to Flag3 ×P
2
Z

Flag3 ×P
2
Z

Flag3 = {(L1 ⊂ W2, L1 ⊂ W1, L2 ⊂ W1) ∈ Flag3 ×
Flag3 × Flag3}. In particular, Mold3,4 is smooth over Z.

Remark 6 ([1]). We need to say the relation between Moldd,d and the variety Algd of
algebras defined by Gabriel in [1]. Let V = ke1⊕ke2⊕· · ·⊕ked be a d-dimensional vector
space over a field k. For ϕ ∈ Homk(V ⊗k V, V ), put ϕ(ei ⊗ ej) =

∑n
l=1 c

l
ijel. We say that

ϕ determines an algebra structure on V with 1 if the multiplication ei · ej = clijel defines
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an algebra V over k with 1. Then we define the variety Algd of d-dimensional algebras in
the sense of Gabriel by

Algd =

⎧⎨⎩ ϕ ∈ Homk(V ⊗k V, V )
ϕ determines an
algebra structure

on V with 1

⎫⎬⎭ ⊂ A
d3

k .

Then we can define a morphism Ψd : Algd → Moldd,d by

ϕ �→ {ϕ(v ⊗−) ∈ Endk(V ) ∼= Md(k) | v ∈ V }.
If we could prove that Ud = {A ⊂ Md(k) | A is a d-dimensional tame algebra } is open in
Moldd,d for any d, then Ψ−1

d (Ud) = {A | d-dimensional tame algebra } would also be open
in Algd, which gives an affirmative answer to “Tame type is open conjecture”. Hence, we
believe that Moldn,d is an important geometric object. This is one of our motivations to
investigate Moldn,d.

2. Several Tools

In this section, we introduce several tools for describing Mold3,4. Let A be an associative
algebra over a commutative ring R. Assume that A is projective over R. Let Ae = A⊗RA

op

be the enveloping algebra of A. For an A-bimodule M over R, we can regard it as an Ae-
module. We define the i-th Hochschild cohomology group HHi(A,M) of A with coefficients
in M as ExtiAe(A,M).

Let A be the universal mold on Moldn,d. For x ∈ Moldn,d, denote by A(x) = A⊗OMoldn,d

k(x) ⊂ Mn(k(x)) the mold corresponding to x, where k(x) is the residue field of x. As
applications of Hochschild cohomology to the moduli Moldn,d, we have the following tools.

Theorem 7 ([3, Theorem 1.1]). For each point x ∈ Moldn,d,

dimk(x) TMoldn,d/Z,x = dimk(x) HH
1(A(x),Mn(k(x))/A(x)) + n2 − dimk(x) N(A(x)),

where N(A(x)) = {b ∈ Mn(k(x)) | [b, a] = ba− ab ∈ A(x) for any a ∈ A(x)}.

Theorem 8 ([3, Theorem 1.2]). Let x ∈ Moldn,d. If HH2(A(x),Mn(k(x))/A(x)) = 0,
then the canonical morphism Moldn,d → Z is smooth at x.

For a rank d mold A of degree n on a locally noetherian scheme S, we can consider a
PGLn,S-orbit {P−1AP | P ∈ PGLn,S} in Moldn,d ⊗Z S, where PGLn,S = PGLn ⊗Z S.
For x ∈ S, put A(x) = A ⊗OS

k(x), where k(x) is the residue field of x. By using
HH1(A(x),Mn(k(x))/A(x)), we have:

Theorem 9 ([3, Theorem 1.3]). Assume that HH1(A(x),Mn(k(x))/A(x)) = 0 for each
x ∈ S. Then the PGLn,S-orbit {P−1AP | P ∈ PGLn,S} is open in Moldn,d ⊗Z S.

These tools are useful for investigating Mold3,4. For each rank 4 molds of M3(R) over
a commutative ring R, we obtained the following table:
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Table 1. Hochschild cohomology HH∗(A,M3(R)/A) for R-subalgebras A
of M3(R) (cf. [3, Table 2])

A d = rankA H∗ = HH∗(A,M3(R)/A) tA N(A) dimTMold3,d/Z,A

(B2 ×D1)(R) =

⎧⎨⎩
⎛⎝ ∗ ∗ 0

0 ∗ 0
0 0 ∗

⎞⎠⎫⎬⎭ 4 H i = 0 for i ≥ 0 (B2 ×D1)(R) (B2 ×D1)(R) 5

N3(R) =

⎧⎨⎩
⎛⎝ a b c

0 a d
0 0 a

⎞⎠⎫⎬⎭ 4 H i =

{
R2 (i = 0)
Ri+1 (i ≥ 1)

N3(R) B3(R) 5

S6(R) =

⎧⎨⎩
⎛⎝ a c d

0 a 0
0 0 b

⎞⎠⎫⎬⎭ 4 H i = R for i ≥ 0 S9(R) S13(R) 5

S7(R) =

⎧⎨⎩
⎛⎝ a 0 c

0 a d
0 0 b

⎞⎠⎫⎬⎭ 4 H i =

{
R3 (i = 0)
0 (i ≥ 1)

S8(R) P2,1(R) 2

S8(R) =

⎧⎨⎩
⎛⎝ a c d

0 b 0
0 0 b

⎞⎠⎫⎬⎭ 4 H i =

{
R3 (i = 0)
0 (i ≥ 1)

S7(R) P1,2(R) 2

S9(R) =

⎧⎨⎩
⎛⎝ a 0 c

0 b d
0 0 b

⎞⎠⎫⎬⎭ 4 H i = R for i ≥ 0 S6(R) S14(R) 5

3. Description of Mold3,4

In this section, we describe Mold3,4. Let V be a free module of rank 3 over Z. Fix a
canonical basis {e1, e2, e3} of V over Z. We define schemes P

∗(V ), P∗(V ), and Flag(V )
over Z as contravariant functors from the category of schemes to the category of sets in
the following way:

P
∗(V )(X) =

{
W W is a rank 2 subbundle of OX ⊗Z V on X

}
,

P∗(V )(X) =
{
L L is a rank 1 subbundle of OX ⊗Z V on X

}
,

Flag(V )(X) =
{
(L,W ) ∈ (P∗(V )× P

∗(V ))(X) L ⊂ W
}

for a scheme X.

Remark 10. If we consider the case over a field k, then P
∗(V ), P∗(V ), and Flag over k are

regarded as

P
∗(V ) = {W ⊂ V | W is a 2-dimensional subspace of V },

P∗(V ) = {L ⊂ V | L is a 1-dimensional subspace of V },
Flag(V ) = {(L,W ) ∈ P∗(V )× P

∗(V ) | 0 ⊂ L ⊂ W ⊂ V },

respectively.

Let us consider rank 4 molds

(B2 ×D1)(Z) =

⎧⎨⎩
⎛⎝ ∗ ∗ 0

0 ∗ 0
0 0 ∗

⎞⎠ ∈ M3(Z)

⎫⎬⎭ ,
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S7(Z) =

⎧⎨⎩
⎛⎝ a 0 c

0 a d
0 0 b

⎞⎠ a, b, c, d ∈ Z

⎫⎬⎭ ,

S8(Z) =

⎧⎨⎩
⎛⎝ a c d

0 b 0
0 0 b

⎞⎠ a, b, c, d ∈ Z

⎫⎬⎭
over Z. Let A = B2 ×D1, S7, or S8. Then HH1(A(k),M3(k)/A(k)) = 0 for any field k by
Table 1. The image of the morphism φA : PGL3 → Mold3,4 defined by P �→ P−1A(Z)P
is open by Theorem 9.

Definition 11 ([4]). We define open subschemes of Mold3,4 by

MoldB2×D1
3,4 = ImφB2×D1 ,

MoldS7
3,4 = ImφS7 ,

MoldS8
3,4 = ImφS8 .

Remark 12. Let A = B2 × D1, S7, or S8. Then HH2(A(k),M3(k)/A(k)) = 0 for any field
k by Table 1. By [3], the canonical morphism MoldA

3,4 → Z is smooth.

Theorem 13 ([4]). The subschemes MoldS7
3,4 and MoldS8

3,4 are open and closed in Mold3,4.

Moreover, MoldS7
3,4

∼= P
∗(V ) and MoldS8

3,4
∼= P∗(V ).

Outline of proof. For simplicity, here we only consider the case over a field k. For
W ∈ P

∗(V ), set

AW = {f ∈ Endk(V ) ∼= M3(k) | f(W ) ⊆ W and f |W is scalar } ⊂ M3(k).

Let us define a morphism

ψS7 : P
∗(V ) → MoldS7

3,4

W �→ AW .

We can verify that ψS7 is an isomorphism.
For L ∈ P∗(V ), set

AL = {f ∈ Endk(V ) ∼= M3(k) | f(L) ⊆ L and f : V/L → V/L is scalar }.
Let us define a morphism

ψS8 : P∗(V ) → MoldS8
3,4

L �→ AL.

We can verify that ψS8 is an isomorphism. �

Definition 14. We define

Q(V ) = Flag(V )×P∗(V ) Flag(V )×P∗(V ) Flag(V )

= {(L1,W2;L1,W1;L2,W1) | dimk Li = 1, dimk Wi = 2}
= {(L1, L2,W1,W2) | L1 ⊂ W1, L1 ⊂ W2, L2 ⊂ W1}.
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Let us define the projection π : Q(V ) → Flag(V ) by

(L1, L2,W1,W2) �→ (L1,W1).

We can verify that π is a fiber bundle with fiber P1 × P
1.

For (L1, L2,W1,W2) ∈ Q(V ), set

A(L1,L2,W1,W2) =

{
f ∈ M3(k)

f(Li) ⊂ Li, f(Wi) ⊂ Wi (i = 1, 2), and
L2

∼= W1/L1
∼= V/W2 as k[f ]-modules

}
.

Let us define a morphism

ψB2×D1 : Q(V ) → Mold3,4

(L1, L2,W1,W2) �→ A(L1,L2,W1,W2).

Theorem 15 ([4]). The image of ψB2×D1 is open and closed in Mold3,4. Moreover, ψB2×D1

gives an isomorphism between Q(V ) and the closure MoldB2×D1
3,4 of MoldB2×D1

3,4 .

Outline of proof. It can be verified that ψB2×D1 is a monomorphism. By a long discus-
sion, we can also prove that ψB2×D1 is formally étale. Hence, ψB2×D1 gives an isomorphism

between Q(V ) and an open subscheme of Mold3,4 which coincides with MoldB2×D1
3,4 . �

Definition 16 ([4]). Let A = N3, S6, or S9. We define

MoldA
3,4 = {x ∈ Mold3,4 | A(x)⊗k(x) k(x) ∼ A(k(x))},

where k(x) is an algebraic closure of k(x).

We can also prove the following theorems.

Theorem 17 ([4]). For the closure MoldB2×D1
3,4 of MoldB2×D1

3,4 , we obtain

MoldB2×D1
3,4 = MoldB2×D1

3,4

∐
MoldS6

3,4

∐
MoldS9

3,4

∐
MoldN3

3,4.

Theorem 18 ([4]). By the isomorphism MoldB2×D1
3,4

∼= Q(V ), we have

MoldB2×D1
3,4 = {(L1, L2,W1,W2) ∈ Q(V ) | L1 �= L2,W1 �= W2},

MoldS6
3,4 = {(L1, L2,W1,W2) ∈ Q(V ) | L1 = L2,W1 �= W2},

MoldS9
3,4 = {(L1, L2,W1,W2) ∈ Q(V ) | L1 �= L2,W1 = W2},

MoldN3
3,4 = {(L1, L2,W1,W2) ∈ Q(V ) | L1 = L2,W1 = W2}.

By using Theorem 18, let us describe a deformation of 4-dimensional subalgebras of

M3. We define a 2-dimensional closed subscheme Qst(V ) of Q(V ) ∼= MoldB2×D1
3,4 .

For simplicity, let us consider the case over a field k. Set Lst
1 = ke1 and W st

1 = ke1⊕ke2.
Put ∗ = (Lst

1 ,W
st
1 ) ∈ Flag(V ). Then we have the following fiber product:

Qst(V ) → Q(V )
↓ ↓
∗ → Flag(V ).
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Note that Qst(V ) ∼= P
1
k × P

1
k.

Let L2(s1) =

〈⎡⎣ 1
−s1
0

⎤⎦〉 and W2(s2) =

〈⎡⎣ 1
0
0

⎤⎦ ,

⎡⎣ 0
1
s2

⎤⎦〉. Then

{(s1, s2) ∈ A
2
k} ∼= (P1

k \ {∞})× (P1
k \ {∞})

gives an affine open subscheme of Qst(V ) by considering (Lst
1 , L2(s1),W

st
1 ,W2(s2)). We

write

A(s1, s2) =

⎧⎨⎩
⎡⎣ a+ s1b b c

0 a d
0 0 a+ s2d

⎤⎦ a, b, c, d ∈ k

⎫⎬⎭
for ψB2×D1(s1, s2) ∈ MoldB2×D1

3,4 .
Note that

A(s1, s2) : B2 ×D1 type if s1 �= 0, s2 �= 0,

A(0, s2) : S6 type if s2 �= 0,

A(s1, 0) : S9 type if s1 �= 0,

A(0, 0) : N3 type.

Summarizing the discussions above, we obtain the main theorem.

Theorem 19 ([4]). We have an irreducible decomposition

Mold3,4 = MoldB2×D1
3,4

∐
MoldS7

3,4

∐
MoldS8

3,4,

whose irreducible components are all connected components. Moreover, MoldB2×D1
3,4

∼=
Q(V ), MoldS7

3,4
∼= P

2
Z
, and MoldS8

3,4
∼= P

2
Z
over Z.

By considering the PGL3-orbits in Mold3,4 over a field k, we have:

Corollary 20 ([4]). Let k be an arbitrary field. Then there exist 6 equivalence classes of
4-dimensional subalgebras of M3(k) over k: (B2×D1)(k), N3(k), S6(k), S7(k), S8(k), and
S9(k).

Remark 21. Let S be a 4-dimensional subalgebra of M3(k) over a field k. Let A be one
of (B2 × D1)(k), N3(k), S6(k), S7(k), S8(k), or S9(k). If S ⊗k K is equivalent to A ⊗k K
for an extension field K of k, then S is equivalent to A over k by Corollary 20.

References

[1] P. Gabriel, Finite representation type is open, Proceedings of the International Conference on

Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Paper No. 10, 23 pp. Carleton

Math. Lecture Notes, No. 9, Carleton Univ., Ottawa, Ont., 1974.

[2] K. Nakamoto, The moduli of representations with Borel mold, Internat. J. Math. 25 (2014), no.7,

1450067, 31 pp.

[3] K. Nakamoto and T. Torii, Applications of Hochschild cohomology to the moduli of subalgebras of the
full matrix ring, J. Pure Appl. Algebra 227 (2023), no.11, Paper No. 107426, 59 pp.

[4] , On the classification of subalgebras of the full matrix ring of degree 3, in preparation.

- 72 -



Center for Medical Education and Sciences

Faculty of Medicine

University of Yamanashi

1110 Shimokato, Chuo, Yamanashi 409-3898, Japan

Email address : nakamoto@yamanashi.ac.jp

Department of Mathematics

Okayama University

Okayama 700-8530 JAPAN

Email address : torii@math.okayama-u.ac.jp

- 73 -



GOVOROV–LAZARD TYPE THEOREMS, BIG COHEN–MACAULAY
MODULES, AND COHEN–MACAULAY HEARTS

TSUTOMU NAKAMURA

Abstract. Let R be a Cohen–Macaulay local ring with a canonical module and let A
be an R-order. We report that a Govorov–Lazard type theorem holds for the category
of weak (balanced) big Cohen–Macaulay modules over A. This theorem, which is a
generalization of a result due to Holm for the case R = A, enables us to show that
every complete pure-injective big Cohen–Macaulay A-module is a direct summand of a
direct product of finitely generated CM A-modules, provided that R is complete. This
fact is well known if R is artinian. We also study big Cohen–Macaulay modules over a
non-Cohen–Macaulay local ring R, using the Cohen–Macaulay heart of R.

1. Introduction

Let A be a ring and denote by ModA (resp. modA) the category of (right) A-modules
(resp. finitely presented A-modules). Let C be an additive subcategory of ModA closed
under direct limits. It is a delicate problem in general whether every module in C can
be presented as a direct limit of modules in C ∩modA. If this is possible, we say that a
Govorov–Lazard type theorem holds for C , and write

lim−→(C ∩modA) = C .
For example, it is well known that lim−→modA = ModA. Govorov [3] and Lazard [4]

independently proved that lim−→ projA = FlatA, where FlatA (resp. projA) denotes the cat-
egory of flat (resp. finitely generated projective) A-modules. Moreover, for an Iwanaga–
Gorenstein ring A, Enochs and Jenda [2] showed that a Govorov–Lazard type theorem
holds for the category GFlatA of Gorenstein-flat A-modules, where (GFlatA) ∩ modA
coincides with the category of finitely generated Gorenstein-projective A-modules. If A is
not Iwanaga–Gorenstein, a Govorov–Lazard type theorem may not hold for GFlatA; this
is due to Holm and Jørgensen [6].

2. Results

Let R be a commutative noetherian local ring. An R-module M is called (balanced) big
CM (=Cohen–Macaulay) if every system of parameters of R is anM -regular sequence. We
call an R-moduleM a weak big CM if every system of parameters of R is a weakM -regular
sequence (cf. [5]). We denote by WCMR the category of weak big CM modules. Then
WCMR ∩ modR = CMR, where the right-hand side denotes the category of (maximal)
CM modules. Holm [5] showed that lim−→CMR = WCMR holds for any CM local ring R
with a canonical module. Our first result extends this to orders over a CM local ring R

This is a partial summary of [8]. The detailed version of this paper will be submitted for publication
elsewhere.
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with a canonical module. Recall that a (possibly noncommutative) R-algebra A is said
to be an R-order if A is CM as an R-module. We denote by CMA (resp. WCMA) the
category of A-modules being CM (resp. weak big CM) as R-modules.

Theorem 1. Let R be a CM local ring with a canonical module and let A be an R-order.
Then we have

lim−→CMA = WCMA.

If R is artinian, then A is an Artin R-algebra, and then It is well known that every pure-
injective module over a A is a direct summand of a direct product of finitely generated A-
modules. Using the above theorem, we can extend this fact to an order A over a complete
CM local ring R. Note that a CM (resp. big CM ) A-module means an A-module which
is CM (resp. big CM) as an R-module.

Corollary 2. Let R be a complete CM local ring and let A be an R-order. Then every
pure-injective complete big CM module is a direct summand of a direct product of CM
A-modules.

By André’ noble work [1], every commutative noetherian local ring R admits a big
Cohen–Macaulay module. On the other hand, it is still an open question if every complete
noetherian local ring R admits a (finitely generated) CM R-module. This question is
known as the small CM conjecture. Then there might be little hope that we could have
lim−→CMR = WCMR in general. So we would like to give another formulation.

Assume thatR is a homomorphic image of a CM local ring. We use the Cohen–Macaulay
heart HCM of R introduced in [7]. This is the heart of some compactly generated generated
t-structure in the (unbounded) derived category D (R). There are several remarkable
facts: HCM is a locally coherent Grothendieck category and derived equivalent to ModR.
Furthermore, we have

HCM ∩ModR = WCMR.

Denote by fp(HCM) the subcategory of finitely presented objects in HCM . The locally
coherence of HCM implies that a Govorov–Lazard type theorem holds for HCM , that is,
each object in HCM is a direct limit of objects in fp(HCM):

lim−→ fp(HCM ) = HCM.

Hence we have:

Proposition 3. Let R be a homomorphic image of a CM local ring. Then every weak big
CM module is a direct limit of finitely presented objects in HCM .

Remark 4. When R admits a dualizing complex D (such that inf{i | H i(D) �= 0} = 0),
there is an equivalence

RHom R(−, D) : (modR)op
∼−→ fp(HCM ).
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[1] Y. André, La conjecture du facteur direct, Publ. Math. Inst. Hautes Études Sci. 127 (2018), 71–93.
[2] E. E. Enochs and O. M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathe-

matics, vol. 30, Walter de Gruyter & Co., Berlin, 2000.
[3] V. E. Govorov, On flat modules (in Russian), Sibirsk. Mat. Žh. 6 (1965), 300–304
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K0 OF WEAK WALDHAUSEN EXTRIANGULATED CATEGORIES

YASUAKI OGAWA

Abstract. We modify the axiom of the Waldhausen structure so that it matches better
with extriangulated categories. It enables us to define an abelian group K0(C) of a weak
Waldhausen category C which generalizes that of an extriangulated category. As one
might expect, it behaves nicely in the context of Quillen’s localization and resolution
theorems. We obtain two applications: the first one generalizes exact sequences of the
Grothendieck groups associated with the Serre/Verdier localization to some types of
“one-sided” exact localizations; the second one reveals close relations between Quillen’s
theorems and Palu’s index.

1. Introduction

The higher algebraic K-theory for an exact category C was introduced by Quillen,
which is now called Quillen’s Q-construction [18]. Such a construction makes C to be the
simplicial category BC by inverting certain morphisms and the K-theory is defined via its
geometric realization |BC|. The first foundational result in [18] is the localization theorem
which extracts a long exact sequence of K-groups from the Serre quotient. The second
one is the resolution theorem which shows that if we can identify a suitable subcategory X

of an exact category C, then K(C) ∼= K(X). However, not all K-groups can be recovered
as those of some abelian/exact categories. It turned out that Quillen’s K-theory for
exact categories does not possess satisfactory generality that K-theorists had in mind,
where triangulated categories come in. To tackle this problem, Waldhausen introduced a
generalization of exact categories, now called the Waldhausen category, in whichK-theory
still exists [21]. As applications of his abstract localization theorem, Thomason-Trobaugh
established a K-theory of the derived categories [20] and Schlichting generalized it to any
algebraic triangulated category [19].
On one hand, the notion of extriangulated category was introduced by Nakaoka-Palu

[13] as a simultaneous generalization of exact categories and triangulated categories. A
localization theory of them was also developed in [12] which contains many quotient pro-
cesses in algebraic contexts as well as the Serre/Verdier quotient. In this article, focusing
only on the Grothendieck groups, we generalize a part of the Waldhausen theory on exact
categories to the extriangulated case, more specifically, we define the weak Waldhausen
extriangulated category (C,C,W) together with its Grothendieck group K0(C,C,W).

First, as a benefit of introducing the weak Waldhausen structure, we obtain an exact se-
quence of Grothendieck groups associated with some localizations such as the Serre/Vedier

This article is a part of ongoing joint work with Amit Shah (Aarhus University). Some parts of
this article has been already appeared in [15]. The detailed version of this paper will be submitted for
publication elsewhere.
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quotient (Theorem 12), which contains an extriangulated counter part of Quillen’s local-
ization theorem. The above assertion for the Serre/Verdier quotient goes back to Heller
and Grothendieck, respectively. Furthermore, it can apply to abelian localizations of tri-
angulated categories which can be traced back to hearts of t-structures in the sense of [2].
Since then, abelian localizations have been found using cluster tilting subcategories [10].
These constructions were unified in [1] and placed in an extriangulated context in [11].
A generalization from cluster tilting to rigid subcategories was initiated in [3, 4], and has
been further developed in the literature.
Our second aim is to reveal a close relation between the resolution theorem and abelian

localization. To this end, we establish the extriangulated version (Theorem 14) and it
provides a slight generalization and a better understanding for Palu’s index which was
introduced in connection with the Caldero-Chapoton map [16]. Let triangulated category
C and a 2-cluster tilting subcategory X ⊆ C be given. For each object C ∈ C, Palu’s index
indX(C) of C with respect to X is defined as an element of the split Grothendieck group
Ksp

0 (X). Recently, it is interpreted and generalized via a certain relative extriangulated
structure of C naturally defined by a given subcategory X [17, 9]. We prove that such
results indeed come from the resolution theorem.

Notation and convention. All categories and functors in this article are always assumed
to be additive, and subcategories will always be full. For a category C, we denote the
class of all morphisms in C by Mor C, and modC is the category of finitely presented
contravariant functors from C to the abelian category Ab of abelian groups.

2. Localization of extriangulated categories

This section is devoted to recall the localization theory of extriangulated category
by a suitable thick subcategory, which was introduced in the pursuit of unifying the
Serre/Verdier quotient [12]. We also recall a specific case, namely, a localization of trian-
gulated category by an extension-closed subcategory [14].
Nakaoka-Palu’s extriangulated category is defined to be an additive category C equipped

with

• a biadditive functor E : Cop×C→ Ab, where Ab is the category of abelian groups,
and

• a correspondence s that associates an equivalence class s(δ) = [A
f−→ B

g−→ C]

of a sequence A
f−→ B

g−→ C in C to each element δ ∈ E(C,A) for any A,C ∈ C,

where the triplet (C,E, s) satisfies some axioms. We refer the reader to [13] for an in-
depth treatment, see also [15, §2,3]. It turns out that an extriangulated category (C,E, s)

is equipped with the class of sequences of the form A
f−→ B

g−→ C which is called an
s-conflation. The pair of an s-conflation and the corresponding element δ ∈ E(C,A)

is called an s-triangle and denoted by A
f−→ B

g−→ C
δ���. In contrast to triangu-

lated/exact categories, if we state the axiom for extriangulated category, the realization
s is indispensable.
Let us introduce an exact sequence of extriangulated categories as a generalization of

the Serre/Verdier quotient. We denote by ET the category of extriangulated categories
and exact functors.
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Definition 1. A sequence (N,E′, s′)
(F,φ)−→ (C,E, s)

(Q,μ)−→ (D,F, t) in ET is called an exact
sequence of extriangulated categories, if the following conditions are fulfilled.

(1) F is fully faithful.
(2) ImF = KerQ holds.
(3) For any map (G,ψ) : (C,E, s) → (D′,F′, t′) in ET with G ◦ F = 0, there uniquely

exists an exact functor (G′, ψ′) : (D,F, t)→ (D′,F′, t′) such that (G,ψ) = (G′, ψ′)◦
(Q, μ).

Let us remind a construction of the Verdier quotient: given a triangulated category C

and a thick subcategory N ⊆ C, we associate the class SN of morphisms in C to N, namely,
SN := {s ∈ MorC | ∃A s−→ B → N → A[1] with N ∈ N}. Then the Verdier quotient C/N is
defined to be the Gabriel-Zisman localization C[S−1

N ] and it gives rise to an exact sequence
N→ C→ C/N in the category of triangulated categories and exact functors.

Similarly to the case of the Verdier quotient, we associate the class SN to the pair (C,N)
of an extriangulated category C and a thick subcategory N ⊆ C. The following is a basic
machinery to establish an exact sequence in ET, see [12, Thm. 3.5] for a detailed setup.

Theorem 2. Let (C,E, s) be an extriangulated category with a thick subcategory N. Sup-
pose SN satisfies conditions (MR1)–(MR4) in [12, Thm. 3.5]. Then there is an extriangu-

lated category (C/N, Ẽ, s̃) together with an exact functor (Q, μ) : (C,E, s) → (C/N, Ẽ, s̃).
Furthermore, the following natural sequence forms an exact sequence in ET.

(2.1) (N,E|N, s|N) (C,E, s) (C/N, Ẽ, s̃)
inc ��

(Q,μ)
��

Unfortunately, it is not easy to check the conditions (MR1)–(MR4). Except for the
Verdier/Serre quotient, just a few examples of subcategories which yields (2.1) are know,
e.g. biresolving subcategories [12, §§4.3] and percolating subcategories [12, §§4.4].
We now specialize to the case when (C,E, s) corresponds to a triangulated category and

recall the localization theory from [14] that we need.

Setup 3. We fix a triangulated category C (with suspension [1]) and an extension-closed
subcategory N ⊆ C that is closed under direct summands. We denote by (C,E, s) the
extriangulated category corresponding to the triangulated category C.

As an application of the relative theory for extriangulated categories [8], we know any
extension-closed subcategory N determines relative structures on C. As pointed out in [5,
Prop. A.4], these relative structures are natural from the viewpoint of constructing exact
substructures of an exact category.

Proposition 4. [14, Prop. 2.1] For A,C ∈ C, define subsets of E(C,A) = C(C,A[1]) as
follows.

E
L
N(C,A) := {h : C → A[1] | ∀x : N → C with N ∈ N, we have hx ∈ [N[1] ]}

E
R
N(C,A) := {h : C → A[1] | ∀y : A→ N with N ∈ N, we have y ◦ h[−1] ∈ [N[−1] ]}

Then both E
L
N and E

R
N give rise to closed subfunctors of E. In particular, putting EN :=

E
L
N ∩ E

R
N, we obtain extriangulated structures

CL
N := (C,EL

N, s
L
N), CR

N := (C,ER
N, s

R
N), CN := (C,EN, sN),
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all relative to the triangulated structure (C,E, s).

With respect to the relative structure CN, the pair (C,N) yields a class SN of morphisms
in C satisfying the needed conditions to obtain an exact sequence in ET.

Theorem 5. [14, Thm. A, Lem. 2.4, Cor. 2.11] We have an exact sequence (N,E, s)
inc−→

(C,EN, sN)
(Q,μ)−→ (C/N, ẼN, s̃N) in ET. Furthermore, if Cone(N,N) = C holds in the trian-

gulated category (C,E, s), the following are true.

(1) The quotient category C/N := (C/N, ẼN, s̃N) is abelian.
(2) The quotient functor (Q, μ) induces a right exact functor Q : (C,ER

N, s
R
N) → C/N

and a left exact functor Q : (C,EL
N, s

L
N)→ C/N. In addition, it induces a cohomo-

logical functor Q : (C,E, s)→ C/N.

We call the case Cone(N,N) = C in which we have the resulting abelian category C/N the
abelian localization of C by N.

We can think of hearts of t-structures in the sense of [2] as a prototypical example of
the abelian localization. Since then, it has been found and generalized via cluster tilting
subcategories [10], rigid subcategories [4, 3] and cotorsion pairs [1]. In turn, Theorem 5
can apply to these phenomenon. To clarify our point of focus, we record the following
immediate result.

Example 6. Let (C,E, s) be a triangulated category and X ⊆ C be a contravariantly
finite rigid subcategory. We consider an extension closed subcategory N := X⊥0 = {C ∈
C | (X, C) = 0}. Since Cone(N,N) = C is true, Theorem 5 provides a right exact functor
Q : CR

N → C/N. Furthermore, we can verify that there exists a natural exact equivalence
C/N ∼= modX. Thus we have a right exact functor Q ∼= (X,−) with the kernel N as
below.

(2.2) (N,E|N, s|N) (C,ER
N, s

R
N) modX

inc �� Q ��

Note that this sequence does not sit in ET any more.

3. Weak Waldhausen categories

We introduce the notion of weak Waldhausen category. This is a simultaneous gener-
alization of the (classical) Waldhausen category and extriangulated category. Also, we
define its Grothendieck group.

Definition 7. Let C be an additive category equipped with a class Seq of distinguished
sequences of the form

(3.1) A B C
f �� g ��

in C, and a class W of morphisms in C. Denote by C (resp. F) the class of morphisms f
(resp. g) appearing in a distinguished sequence (3.1). The morphisms in C (resp. F) are
called cofibrations (resp. fibrations) and denoted by � (resp. �). The morphisms in W
are called weak equivalences and are denoted by

∼−→.

(1) The triplet (C, Seq,W) is called a weak Waldhausen (additive) category if the
following axioms are satisfied.
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(WC0) The class C is closed under composition and contains all isomorphisms.
(WC1) Seq contains all split exact sequences and is closed under isomorphism. Any

distinguished sequence (3.1) is a weak cokernel sequence.

(WC2) Any pair (f, c) of a cofibration A
f
� B and a morphism A

c−→ C yields

a cofibration A

(
f
−c

)

−−−→ B ⊕ C. Furthermore, the associated distinguished

sequences of the form A

(
f
−c

)

−−−→ B ⊕ C
( c′ f ′ )−−−−→ D satisfy that f ′ belongs to C.

(WW0) The class W is closed under composition and contains all isomorphisms.
(WW1) (Gluing axiom) Consider a commutative diagram of the form

(3.2) C A B

C ′ A′ B′

c�� �� f ��

c′�� �� f ′
��

∼
��

∼
��

∼
��

in which all vertical arrows are weak equivalences and the feathered arrows
are cofibrations. Then from a distinguished weak cokernel of

(
f
−c

)
to a distin-

guished weak cokernel of
(

f ′
−c′

)
, there is an induced morphism that is also a

weak equivalence.
(2) The triplet (C, Seq,W) is called a weak coWaldhausen category if the triplet (Cop, Seqop,Wop)

is a weak Waldhausen additive category.
(3) The triplet (C, Seq,W) is called a weak biWaldhausen category if (C, Seq,W) is

both weak Waldhausen and weak coWaldhausen.

Example 8. Let (C,E, s) be an extriangulated category. Define Seqs to be the class of
all s-conflations, and Ws to be the class of all isomorphisms in C. Then (C, Seqs,Ws) is a
weak biWaldhausen category.

We introduce some concepts for weak Waldhausen categories by analogy to the classical
theory.

Definition 9. Let (C, Seq,W) and (C′, Seq′,W′) be weak Waldhausen categories.

(1) An additive functor F : C → C′ is called an exact functor if it preserves distin-
guished sequences and weak equivalences, namely, F (Seq) ⊆ Seq′ and F (W) ⊆ W′

hold.
(2) Suppose (C, Seq,V) is a weak Waldhausen category with V ⊆ W. Then the identity

functor idC : (C, Seq,V) → (C, Seq,W) is exact. An object C ∈ C is W-acyclic if
the zero map 0 � C belongs to W. We denote by NW the full subcategory of all
W-acyclic objects in (C, Seq,V). In this case, the subcategory admits a natural
weak Waldhausen structure (NW, Seq′,V′) which is a restriction of (C, Seq,V).

We denote by wWald the category of weak Waldhausen categories and exact functors.
Analogously to the case of extriangulated category, we introduce their exact sequence.

Definition 10. The natural sequence

(3.3) (NW, Seq′,V′) inc−→ (C, Seq,V)
id−→ (C, Seq,W)

- 81 -



in Definition 9(2) is called a localization sequence. Moreover it is called an exact sequence

in wWald if the functor (C, Seq,V)
idC−→ (C, Seq,W) is universal among exact functors

F : (C, Seq,V)→ (D, Seq′,W′) with F |NW = 0, where (D, Seq′,W′) is a weak Waldhausen
category satisfying the saturation and extension axioms (see [21, p. 327]).

The Grothendieck group for weak Waldhausen categories is defined as follows.

Definition 11. Assume that (C,C,W) is a weak Waldhausen category. The Grothendieck
group K0(C) := K0(C,C,W) is defined to be the abelian group freely generated by the set
of isomorphism classes [C] of each object C ∈ C, modulo to the relations:

• [C] = [C ′] for each weak equivalence C
∼−→ C ′; and

• [B] = [A] + [C] for each distinguished sequence A � B � C.

To state our abstract localization theorem we define subclasses of MorC:

• Lac := C∩W; Rac := F∩W; and
• Rac

ret := {g ∈ Mor C|g is a retraction and Ker g ∈ N}.
The first result can be regarded as a version of Shclichting’s theorem [19, Thm. 11].

Theorem 12 (Localization Theorem). Consider a localization sequence of weak Wald-
hausen categories as (3.3). If we assume that

(1) W consists of finite compositions of morphisms from Lac ∪Rac
ret ∪ V; or

(2) W consists of finite compositions of morphisms from Lac∪Rac∪V and C is a weak
biWaldhausen,

then it becomes an exact sequence in wWald which induces a right exact sequence in Ab
as follows.

(3.4) K0(N
W, Seq′,V′) K0(C, Seq,V) K0(C, Seq,W) 0

K0(inc) ��
K0(id) �� ��

The second one is an extriangulated version of Quillen’s resolution theorem at the level
of K0, see [15, Thm. 4.5] for more details.

Definition 13. Let (C,E, s) be an extriangulated category, let X ⊆ C be a subcategory
and fix an object C ∈ C. A finite X-resolution (in C) of C is defined to be a complex

(3.5) Xn
fn−1−→ · · · g2f1−→ X1

g1f0−→ X0
g0−→ C,

where Xi ∈ X for each 0 ≤ i ≤ n, and Ci+1
fi−→ Xi

gi−→ Ci is an s-conflation for each
0 ≤ i ≤ n − 1 with (C0, Cn) := (C,Xn). In this case, we say that the X-resolution is of
length n.

Theorem 14 (Resolution Theorem). Let (C,E, s) be an extriangulated category. Suppose
X is an extension-closed subcategory of (C,E, s), such that X is closed under taking cocones
of s-deflations in (C,E, s). If any object C ∈ C admits a finite X-resolution, then we have
an isomorphism

K0(C,E, s)
∼=−→ K0(X,E|X, s|X)

[C] −→
n∑

i=0

(−1)i[Xi]
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where we consider an X-resolution (3.5) of C ∈ C.

4. Applications

Lastly we demonstrate some usages of our localization and resolution theorem. As
expected, an exact sequence in ET induces an exact sequence in wWald. In such a case,
we may apply the localization theorem to get a right exact sequence of the Grothendieck
groups in Ab, recovering Enomoto-Saito’s extriangulated localization theorem [6, Cor.
4.32]. A benefit of weak Waldhausen structures sits in the fact that such a construc-
tion still holds for the abelian localization in the sense of Theorem 5. Exact sequences
appearing in this article are related to each other as summarized below.

Verdier quotient Serre quotient

Exact sequence of
extriangulated categories

Abelian localization of
triangulated categories

Exact sequence of
Waldhausen categories

Exact sequence of
weak Waldhausen categories

Right exact sequence of
Grothendieck groups

[12] [12]

Thm. 12

Thus, although the “right exact” sequence (2.2) does not exsist in ET, it induces a

natural exact sequences (NW, Seq′,V′) inc−→ (C, Seq,V)
id−→ (C, Seq,W) in wWald to which

Theorem 12 can apply. Thus, like the case of Enomoto-Saito’s theorem, it also induces a
right exact sequence in Ab as below.

K0(N,E|N, s|N) K0(C,E
R
N, s

R
N) K0(C, Seq,W) 0

K0(inc) ��
K0(id) �� ��

Furthermore, thanks to the assumption Cone(N,N) = C in Theorem 5, (the dual of) the
resolution theorem applies to the inclusion N ⊆ (C,ER

N, s
R
N). It shows the leftmost arrow

is an isomorphism K0(N,E|N, s|N)
∼=−→ K0(C,E

R
N, s

R
N). This isomorphism has been already

appeared in the literature, which we now describe.

Example 15. (cf. Example 6) Let (C,E, s) be a triangulated category and X ⊆ C a 2-
cluster tilting subcategory. Put N := X[1] = X⊥0 . Then the aforementioned isomorphism
can be described as follows,

K0(C,E
R
N, s

R
N)

∼=−→ Ksp
0 (X)

[C] −→ [X0]− [X1]

where we consider a triangle X1 → X0 → C → X1[1] comming from the defining cotorsion
pair (X,X). This isomorphism is known as the index isomorphism [17]. In the case of
X = X[1], by a closer look at this isomorphism, Fedele interpreted the Grothendieck group
K0(C) of the triangulated category as that of the 4-angulated category X [7, Thm. C].
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Due to the very generality of our abstract theorems, we expand their results to wider
setup containing the n-cluster tilting subcategory case.
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EMBEDDINGS INTO MODULES OF FINITE PROJECTIVE
DIMENSIONS AND THE n-TORSIONFREENESS OF SYZYGIES

YUYA OTAKE

Abstract. Let R be a commutative noetherian ring. In this article, we find out close
relationships between the moduleM being embedded in a module of projective dimension
at most n and the (n+1)-torsionfreeness of the nth syzygy of M . As an application, we
consider the n-torsionfreeness of syzygies of the residue field k over a local ring R.

Key Words: n-torsionfree module, n-syzygy module, projective dimension, Goren-
stein ring.

2000 Mathematics Subject Classification: 13D02, 13D07.

1. Introduction

Throughout this article, let R be a commutative noetherian ring. We assume that
all modules are finitely generated ones. It is a natural and classical question to ask
when a given R-module can be embedded in an R-module of finite projective dimension.
Auslander and Buchweitz [2] proved that over a Gorenstein local ring any module admits
a finite projective hull, which is a dual notion of a Cohen–Macaulay approximation.

Theorem 1 (Auslander–Buchweitz). Let R be a Gorenstein local ring and M an R-
module. Then there exists an exact sequence 0 → M → Y M → XM → 0 of R-modules
such that Y M has finite projective dimension and XM is maximal Cohen-Macaulay.

In particular, every module over a Gorenstein local ring can be embedded in a module of
finite projective dimension. Conversely, Foxby [5] proved that if R is a Cohen–Macaulay
local ring and every R-module can be embedded in an R-module of finite projective
dimension, then R is Gorenstein. Takahashi, Yassemi and Yoshino [13] succeeded in
removing from Foxby’s theorem the assumption of Cohen–Macaulayness of the ring R.

Theorem 2 (Foxby, Takahashi–Yassemi–Yoshino). Let R be a local ring of depth t. Let
k be the residue field of R. Then the following are equivalent.

(1) The ring R is Gorenstein.
(2) Any R-module can be embedded in an R-module of finite projective dimension.
(3) The module TrΩtk can be embedded in an R-module of finite projective dimension.

Here, we denote by Tr(−) and Ωn(−) the (Auslander–Bridger) transpose and n-th
syzygy, respectively. In the present article, for a fixed integer n, we consider embedding a
given module in a module of projective dimension at most n. Our answer to this question
is Theorem 3, which says that the question is closely related to the (n+1)-torsionfreeness
of nth syzygies. The notion of n-torsionfree modules was introduced by Auslander and

The detailed version [11] of this article has been submitted for publication elsewhere.
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Bridger [1] as a generalization of the notion of torsionfree modules over integral domains:
An R-module M is called n-torsionfree if ExtiR(TrM,R) = 0 for all 1 ≤ i ≤ n. Various
studies on the n-torsionfreeness have been done so far; see [1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13].
As an application of Theorem 3, we can recover Theorems 1 and 2.
Next, let us consider the case where R is local with residue field k, and has depth

t. Recently, Dey and Takahashi [3] studied the torsionfreeness of syzygies of k. They
especially proved in [3, Theorems 4.1(2) and 4.5(1)] that Ωtk is (t + 1)-torsionfree, and
it is a (t + 2)nd syzygy if and only if the local ring R has type one. Motivated by their
results, as another application of our main theorem, we consider the n-torsionfreeness of
syzygies of the residue field k.

2. Modules embedded in modules of finite projective dimension

The following theorem is the first main result of this article. The following theorem
gives an answer to the question of when a given R-module can be embedded in an R-
module of projective dimension at most n, under the assumption that the given module is
locally of finite Gorenstein dimension. Let M be an R-module. We denote by GdimR M
the Gorenstein dimension of M ; see [1] for details.

Theorem 3. Let M be an R-module and n a nonnegative integer. Consider the following
conditions.

(1) The module ΩnM is (n+ 1)-torsionfree.
(2) There exists an exact sequence 0→ M → Y → X → 0 of R-modules such that Y

has projective dimension at most n and ExtiR(X,R) = 0 for all 1 ≤ i ≤ n+ 1.
(3) The module M can be embedded in an R-module of projective dimension at most

n.

Then the implications (1) ⇐⇒ (2) =⇒ (3) hold. If GdimRp Mp < ∞ for all prime ideals
p of R with depthRp < n, then all the three conditions are equivalent.

Let us consider an application of the above theorem. We can deduce Theorem 2 due
to Foxby [5] and Takahashi, Yassemi and Yoshino [13] directly from Theorem 3.

Proof of Theorem 2. Assume that R is Gorenstein. Then for any R-module M the tth
syzygy ΩtM is maximal Cohen–Macaulay, in particular, (t + 1)-torsionfree. The impli-
cation (1) ⇒ (2) follows from Theorem 3. The implication (2) ⇒ (3) is clear. Suppose
that TrΩtk is a submodule of an R-module of finite projective dimension. It follows from
Theorem 3 that Ωt TrΩtk is (t + 1)-torsionfree. In particular, Ext1(Ωt TrΩt TrΩtk,R) =
Extt+1(TrΩt TrΩtk,R) = 0. Since Ext1(Ωtk,R) is a direct summand of
Ext1(Ωt TrΩt TrΩtk,R), we have Extt+1(k,R) = Ext1(Ωtk,R) = 0 and the implication
(3)⇒ (1) holds. �

Grades of Ext modules are one of the main subjects of the theory of Auslander and
Bridger; see [1, Chapters 2 and 4]. Recall that the grade of an R-module M is defined to
be the infimum of integers i such that ExtiR(M,R) �= 0, and denoted by gradeR M . We
state the relationship between Theorem 3 and the grade condition given by Auslander
and Bridger.
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Corollary 4. Let n ≥ 0 be an integer and M an R-module. If ΩnM is (n+1)-torsionfree,
then gradeR ExtiR(M,R) ≥ i for all integers 1 ≤ i ≤ n.

3. The n-torsionfreeness of syzygies of the residue field of local rings

Let M and N be R-modules. By M ≈ N we mean that there are projective modules
P and Q such that M ⊕ P ∼= N ⊕Q.
The following corollary is necessary to prove Theorem 7, which is one of the main

theorems in this article. For a local ring (R,m, k) we denote by r(R) the type of R, that

is, r(R) is the dimension of the vector space ExtdepthR
R (k,R) over the residue field k of R.

Corollary 5. Suppose that R is local and with depth t. Let k be the residue field of R.
Then the following hold.

(1) [3, Theorem 4.1(2)] The module Ωtk is (t+ 1)-torsionfree.
(2) There exists an exact sequence 0 → k → Y k → Xk → 0 such that Y k has

projective dimension t and Xk ≈ TrΩt+1 TrΩtk. Moreover, if t > 0, then Y k ≈
TrΩt−1(k⊕ r(R)).

Proof. We note that the residue field k can be embedded in a module of finite projective
dimension. Hence, by Theorem 3, the module Ωtk is (t + 1)-torsionfree, and there exists
an exact sequence 0 → k → Y k → Xk → 0 such that Y k has projective dimension at
most t and Xk ≈ TrΩt+1 TrΩtk. We assume that t is positive. Then since Exti(k,R) =
0 = Exti(Xk, R) for all 1 ≤ i ≤ t − 1, so does Y k. Also, we have Extt(Y k, R) ∼=
Extt(k,R) ∼= k⊕ r(R). By the following lemma, we obtain that Y k ≈ TrΩt−1 Extt(Y k, R) ∼=
TrΩt−1(k⊕ r(R)). �
Lemma 6. [9, Theorem 2.7] Let Y be an R-module and s > 0 an integer. If ExtiR(Y,R) =
0 for all 1 ≤ i < s and Y has projective dimension at most s, then Y ≈ TrΩs−1 ExtsR(Y,R).

Theorem 7. Let (R,m, k) be local and with depth t. The following hold.

(1) The local ring R has type one if and only if the module Ωtk is (t+ 2)-torsionfree.
(2) The local ring R is Gorenstein if and only if the module Ωtk is (t+3)-torsionfree,

if and only if one has ExtiR(TrΩ
tk,R) = 0 for some integer i ≥ t+ 3

Proof. We only need to prove the case where t > 0. In this case, by Corollary 5, there exists
an exact sequence 0 → TrXk → TrY k → Tr k → 0, and we have TrXk ≈ Ωt+1 TrΩtk
and TrY k ≈ Ωt−1(k⊕ r(R)). So we obtain the long exact sequence

0→ Ext1(Tr k,R)→ Ext1(TrY k, R)→ Ext1(TrXk, R)→ Ext2(Tr k,R)→ · · · .
Since the module Tr k has projective dimension one, the assertions follow. �
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associated graded ring of m-primary ideals in the case where the first Euler characteristic
attains almost minimal value in a Cohen-Macaulay local ring.

Key Words: commutative ring, Cohen-Macaulay local ring, associated graded ring,
first Euler characteristic, Hilbert function, Hilbert coefficient, stretched ideal.

2020 Mathematics Subject Classification: Primary 13H10; Secondary 13D40.

1. Introduction

Throughout this report, let A be a Cohen-Macaulay local ring with maximal ideal m
and d = dimA > 0. For simplicity, we may assume the residue class field A/m is infinite.
Let I be an m-primary ideal in A and let

R = R(I) := A[It] ⊆ A[t] and R′ = R′(I) := A[It, t−1] ⊆ A[t, t−1]

denote, respectively, the Rees algebra and the extended Rees algebra of I. Let

G = G(I) := R′/t−1R′ ∼=
⊕
n≥0

In/In+1

denotes the associated graded ring of I. Let M = mG+G+ be the graded maximal ideal
in G. Let �A(N) denote, for an A-module N , the length of N .
Let Q = (a1, a2, · · · , ad) ⊆ I be a parameter ideal in A which forms a reduction of I.

Then, we set

χ1(a1t, a2t, . . . , adt;G) := �(G/(a1t, a2t, . . . , adt)G)− e(a1t, a2t, . . . , adt;GM)

and call it the first Euler characteristic of G relative to a1t, a2t, . . . , adt (c.f. [1, 2, 11]),
where e(a1t, a2t, . . . , adt;GM) denotes the multiplicity of GM with respect to a1t, a2t, . . . , adt.
It is well-known that χ1(a1t, a2t, . . . , adt;G) ≥ 0 holds true, and the equality

χ1(a1t, a2t, . . . , adt : G) = 0

holds true if and only if the associated graded ring G is Cohen-Macaulay. The aim of this
talk is to explore the structure of the associated graded ring G with χ1(a1t, a2t, . . . , adt;G) =
1 and, in particular, we prove that depthG = d− 1.

The detailed version of this paper will be submitted for publication elsewhere.
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In this report we will also study the Hilbert series and coefficients of m-primary ideals.
We set the power series

HSI(z) =
∞∑
n=0

�A(I
n/In+1)zn

and call it the Hilbert series of I. It is also well known that this series is rational and
that there exists a polynomial hI(z) with integer coefficients such that hI(1) �= 0 and

HSI(z) =
hI(z)

(1− z)d
.

As is well known, for a given m-primary ideal I, there exist integers {ek(I)}0≤k≤d such
that the equality

�A(A/I
n+1) = e0(I)

(
n+ d

d

)
− e1(I)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded(I)

holds true for all integers n � 0. For each 0 ≤ k ≤ d, ek(I) is called the k-th Hilbert
coefficient of I.
The main result of this report is the following.

Theorem 1. The following conditions are equivalent to each other.

(1) χ1(a1t, a2t, · · · , adt;G) = 1,
(2) e0(I) = �A(A/I) +

∑
n≥1 �A(I

n/QIn−1 + In+1)− 1,
(3) the Hilbert series HSI(z) of I is given by

HSI(z) =
�A(A/I) +

∑rI
n=1 �A(I

n/QIn−1 + In+1)zn − zs

(1− z)d

for some s > 0.

When this is the case we have the following.

(i) s = min{n ≥ 1 | QIn−1 ∩ In+1 �= QIn},

(ii) ek(I) =

rI∑
n=k

(
n

k

)
�A(I

n/QIn−1 + In+1)−
(
s

k

)
for 1 ≤ k ≤ d,

(iii) ad−1(G) := sup{n ∈ Z | [Hd−1
M (G)]n �= (0)} = s− d, and �A([H

d−1
M (G)]s−d) = 1,

(iv) depthG = d− 1.

We can get the following result as a corollary of Theorem 1.

Corollary 2. Suppose that χ1(a1t, a2t, . . . , adt;G) ≤ 1, then depthG ≥ d− 1.

2. The structure of Sally modules

In this report we need the notion of Sally modules which was introduced by W. V.
Vasconcelos [12]. The purpose of this section is to summarize some results and techniques
on the Sally modules which we need throughout this report. Remark that in this section
m-primary ideals I are not necessarily stretched.
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Let T = R(Q) = A[Qt] ⊆ A[t] denotes the Rees algebra of Q. Following Vasconcelos
[12], we consider

S = SQ(I) = IR/IT ∼=
⊕
n≥1

In+1/QnI

the Sally module of I with respect to Q.
We give one remark about Sally modules. See [5, 12] for further information.

Remark 3 ([5, 12]). We notice that S is a finitely generated graded T -module and mnS =
(0) for all n � 0. We have AssT S ⊆ {mT} so that dimT S = d if S �= (0).

From now on, let us introduce some techniques, being inspired by [3, 4], which plays
a crucial role throughout this report. See [7, Section 3] (also [6, Section 2] for the case
where I = m) for the detailed proofs.
We denote by E(m), for a graded module E and each m ∈ Z, the graded module whose

grading is given by [E(m)]n = Em+n for all n ∈ Z.
We have an exact sequence

0 → K(−1) → F
ϕ−1→ G → R/IR + T → 0 (†−1)

of graded T -modules induced by tensoring the canonical exact sequence

0 → T
i
↪→ R → R/T → 0

of graded T -modules with A/I where ϕ−1 = A/I ⊗ i, K(−1) = Kerϕ−1, and F = T/IT ∼=
(A/I)[X1, X2, · · · , Xd] is a polynomial ring with d indeterminates over the residue class
ring A/I.

Lemma 4. ([7]) There exists an exact sequence

0 → K(0)(−1) → ([R/IR + T ]1 ⊗ F )(−1)
ϕ0→ R/IR + T → S/IS(−1) → 0 (†0)

of graded T -modules where K(0) = Kerϕ0.

Notice that AssT K(m) ⊆ {mT} for all m = −1, 0, because F ∼= (A/I)[X1, X2, · · · , Xd]
is a polynomial ring over the residue ring A/I and [R/IR+ T ]1 ⊗F is a maximal Cohen-
Macaulay module over F .
We then have the following proposition by the exact sequences (†−1) and (†0).

Proposition 5. ([7, Lemma 3.3]) We have

�A(I
n/In+1) = �A(A/[I

2 +Q])

(
n+ d− 1

d− 1

)
− �A(I/[I

2 +Q])

(
n+ d− 2

d− 2

)
+ �A([S/IS]n−1)− �A(K

(−1)
n )− �A(K

(0)
n−1)

for all n ≥ 0.

We also need the notion of filtration of the Sally module which was introduced by M.
Vaz Pinto [13] as follows.

Definition 6. ([13]) We set, for each m ≥ 1,

S(m) = Imtm−1R/Imtm−1T (∼= ImR/ImT (−m+ 1)).
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We notice that S(1) = S, and S(m) are finitely generated graded T -modules for all
m ≥ 1, since R is a module-finite extension of the graded ring T .
The following lemma follows by the definition of the graded module S(m).

Lemma 7. Let m ≥ 1 be an integer. Then the following assertions hold true.

(1) mnS(m) = (0) for integers n � 0; hence dimTS
(m) ≤ d.

(2) The homogeneous components {S(m)
n }n∈Z of the graded T -module S(m) are given

by

S(m)
n

∼=
{

(0) if n ≤ m− 1,
In+1/Qn−m+1Im if n ≥ m.

Let L(m) = TS
(m)
m be a graded T -submodule of S(m) generated by S

(m)
m and

D(m) = (Im+1/QIm)⊗ (A/AnnA(I
m+1/QIm))[X1, X2, · · · , Xd]

∼= (Im+1/QIm)[X1, X2, · · · , Xd]

for m ≥ 1 (c.f. [13, Section 2]).
We then have the following lemma.

Lemma 8. ([13, Section 2]) The following assertions hold true for m ≥ 1.

(1) S(m)/L(m) ∼= S(m+1) so that the sequence

0 → L(m) → S(m) → S(m+1) → 0

is exact as graded T -modules.
(2) There is a surjective homomorphism θm : D(m)(−m) → L(m) graded T -modules.

For each m ≥ 1, tensoring the exact sequence

0 → L(m) → S(m) → S(m+1) → 0

and the surjective homomorphism θm : D(m)(−m) → L(m) of graded T -modules with A/I,
we get the exact sequence

0 → K(m)(−m) → D(m)/ID(m)(−m)
ϕm→ S(m)/IS(m) → S(m+1)/IS(m+1) → 0 (†m)

of graded F -modules where K(m) = Kerϕm.
Notice here that, for all m ≥ 1, we have AssT K(m) ⊆ {mT} because D(m)/ID(m) ∼=

(Im+1/QIm + Im+2)[X1, X2, · · · , Xd] is a maximal Cohen-Macaulay module over F .
We then have the following result by Proposition 5 and exact sequences (†m) for m ≥ 1.

Proposition 9. The following assertions hold true:

(1) We have

�A(I
n/In+1) = {�A(A/I2 +Q) +

rI−1∑
m=1

�A(I
m+1/QIm + Im+2)}

(
n+ d− 1

d− 1

)

+

rI∑
k=1

(−1)k

{
rI−1∑

m=k−1

(
m+ 1

k

)
�A(I

m+1/QIm + Im+2)

}(
n+ d− k − 1

d− k − 1

)

−
rI−1∑
m=−1

�A(K
(m)
n−m−1)
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for all n ≥ max{0, rI − d+ 1}.

(2) e0(I) = �A(A/I
2+Q)+

rI−1∑
m=1

�A(I
m+1/QIm+Im+2)−

rI−1∑
m=−1

�TP (K
(m)
P ) where P = mT .

3. Proof of Main Theorem

In this section, let us introduce a proof of Theorem 1.
Let us begin with the following remark, where e(a1t, a2t, · · · , adt;G) denotes the mul-

tiplicity of G with respect to a1t, a2t, · · · , adt, and
χ1(a1t, a2t, · · · , adt;G) = �A(G/(a1t, a2t, · · · , adt)G)− e(a1t, a2t, · · · , adt;G) ≥ 0

is called the first Euler characteristic of G with respect to a1t, a2t, · · · , adt.
Remark 10. We have, by Proposition 9,

χ1(a1t, a2t, · · · , adt;G) =
∑
m≥−1

�TP (K
(m)
P )

because e(a1t, a2t, · · · , adt;G) = e0(I) and [G/(a1t, a2t, · · · , adt)G]n ∼= In/QIn−1 + In+1

for all n ≥ 1.

The following corollary seems well known by the basic properties of Cohen-Macaulay
rings.

Corollary 11. The following conditions are equivalent to each other;

(1) χ1(a1t, a2t, · · · , adt;G) = 0,
(2) e0(I) = �A(A/I) +

∑
n≥1 �A(I

n/QIn−1 + In+1),
(3) the Hilbert series HSI(z) of I is given by

HSI(z) =
�A(A/I) +

∑rI
n=1 �A(I

n/QIn−1 + In+1)zn

(1− z)d
,

(4) G is Cohen-Macaulay.

Let B = T/mT ∼= (A/m)[X1, X2, · · · , Xd] which is a polynomial ring with d indetermi-
nates over the field A/m.
The following proposition plays an important role for our proof of Theorem 1.

Proposition 12. The following conditions are equivalent to each other, where s = min{n ≥
1 | QIn−1 ∩ In+1 �= QIn}.

(1) χ1(a1t, a2t, · · · , adt;G) = 1,
(2) K(m) ∼= B(−u) as graded T -modules for some −1 ≤ m ≤ s − 2 and 1 ≤ u ≤ s,

and K(n) = (0) for all n �= m.

When this is the case we have the following.

(i) ek(I) =

rI∑
n=k

(
n

k

)
�A(I

n/QIn−1 + In+1)−
(
s

k

)
for 1 ≤ k ≤ d,

(ii) the Hilbert series HSI(z) of I is given by

HSI(z) =
�A(A/I) +

∑rI
n=1 �A(I

n/QIn−1 + In+1)zn − zs

(1− z)d
,
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(iii) ad−1(G) = s− d, and �A([H
d−1
M (G)]s−d) = 1,

(iv) depthG = d− 1.

4. Applications for stretched ideals

In this section let us introduce some applications of Theorem 1 for stretched ideals.
The notion of stretched Cohen-Macaulay local rings was introduced by J. Sally to extend

the rings of minimal or almost minimal multiplicity.
We say that the ring A is stretched if �A(m

2 +Q/m3 +Q) = 1 holds true, i.e. the ideal
(m/Q)2 is principal, for some parameter ideal Q in A which forms a reduction of m ([10]).
We note here that this condition depends on the choice of a reduction Q (see [9, Example
2.3]).
In 2001, Rossi and Valla [9] gave the notion of stretched m-primary ideals. We say that

the m-primary ideal I is stretched if the following two conditions

(1) Q ∩ I2 = QI and
(2) �A(I

2 +Q/I3 +Q) = 1

hold true for some parameter ideal Q in A which forms a reduction of I. We notice that
the first condition is naturally satisfied if I = m so that this extends the classical definition
of stretched local rings given in [10].
The following lemma which was essentially given by Rossi and Valla.

Lemma 13. ([9, Lemma 2.4]) Suppose that I is stretched. Then we have the following.

(1) There exists x, y ∈ I\Q such that In+1 = QIn + (xny) holds true for all n ≥ 1.
(2) The map

In+1/QIn
x̂→ In+2/QIn+1

is surjective for all n ≥ 1. Therefore αn ≥ αn+1 for all n ≥ 1.
(3) mxny ⊆ QIn + In+2 and hence �A(I

n/QIn−1 + In+1) ≤ 1 for all n ≥ 1.

We set

Λ := ΛI = ΛQ(I) = {n ≥ 1 | QIn−1 ∩ In+1/QIn �= (0)}
and |Λ| denotes the cardinality of the set Λ. Let

nI = nQ(I) = min{n ≥ 0 | In+1 ⊆ Q}.
It is easy to see that the inequality rI ≥ nI holds true.

Then the following proposition is satisfied.

Proposition 14. Suppose that I is stretched. Then χ1(a1t, a2t, · · · , adt;G) = |Λ| =
rI − nI .

The following result was essentially given by Sally and Rossi-Valla.

Corollary 15. ([9, 10]) Suppose that I is stretched, then the following conditions are
equivalent to each other.

(1) rI = nI ,
(2) Λ = ∅,
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(3) the Hilbert series HSI(z) of I is given by

HSI(z) =
�A(A/I) + {e0(I)− �A(A/I)− nI + 1}z +∑

2≤n≤rI
zn

(1− z)d

(4) G is Cohen-Macaulay.

We can get the following corollary for the case where the reduction number rI attains
almost minimal value nI + 1.

Corollary 16. ([8, Theorem 1.1]) Suppose that I is stretched, then the following condi-
tions are equivalent to each other.

(1) rI = nI + 1,
(2) |Λ| = 1,
(3) the Hilbert series HSI(z) of I is given by

HSI(z) =
�A(A/I) + {e0(I)− �A(A/I)− nI + 1}z +∑

2≤n≤rI ,n �=s z
n

(1− z)d

for some s > 0.

When this is the case, the following conditions also hold true.

(i) Λ = {s},
(ii) e1(I) = e0(I)− �A(A/I) +

(
nI+1

2

)
− s+ 1,

(iii) ek(I) =
(
nI+2
k+1

)
−
(
s
k

)
for all 2 ≤ k ≤ d,

(iv) ad−1(G) = s− d and �A([H
d−1
M (G)]s−d) = 1, and

(v) depthG = d− 1.

Corollary 17. ([8, Corollary 1.2]) Suppose that I is stretched and assume that rI ≤ nI+1.
Then depthG ≥ d− 1.
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[11] J.-P. Serre, Algèbre Locale. Multiplicités, Lecture Notes in Mathematics 11, Springer, Berlin, (1965).
[12] W. V. Vasconcelos, Hilbert Functions, Analytic Spread, and Koszul Homology, Contemporary Math-

ematics, Vol 159 (1994) 410–422.
[13] M. Vaz Pinto, Hilbert functions and Sally modules, J. Algebra, 192 (1996) 504–523.

- 95 -



Department of Mathematics

College of Humanities and Sciences

Nihon University

3-25-40 Sakurajyousui Setagaya-ku Tokyo 156-8550 JAPAN

Email address : ozeki.kazuho@nihon-u.ac.jp

- 96 -



CLASSIFYING SEVERAL SUBCATEGORIES OF THE CATEGORY OF
MAXIMAL COHEN-MACAULAY MODULES

SHUNYA SAITO

Abstract. In this summary, we introduce the classification of several subcategories of a
torsion-free class of the module category over a commutative noetherian ring. More pre-
cisely, we classify Serre subcategories and torsion(-free) classes of a torsion-free class in
the sense of exact categories. This result extends Gabriel’s classification of Serre subcat-
egories of the module category to torsionfree classes. As an immediate consequence, we
classify the Serre subcategories and the torsion(-free) classes of the category of maximal
Cohen-Macaulay modules over a one-dimensional Cohen-Macaulay ring.

Key Words: torsion-free classes; exact categories; Cohen-Macaulay modules.
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部分圏の分類問題は，傾理論やスキームの圏論的復元問題など様々な分野との関連から
長い間研究されてきた．特に可換ネーター環の場合には，Gabrielによる Serre部分圏の
分類 [2]や，高橋によるトーション・フリー類の分類 [7]を筆頭に，これまで様々な部分圏
が分類されてきた．本稿では [4]と [5]に基づいて，これらの部分圏の分類の完全圏への拡
張を紹介する．
第 1節では，アーベル圏の様々な部分圏とその分類に関する先行研究を紹介する．第 2

節では，前節で述べたアーベル圏における部分圏の分類の，トーション・フリー類や極大
Cohen-Macaulay加群の圏 cmRといった完全圏への拡張を紹介する．
本稿において，任意の部分圏は充満部分圏であり同型で閉じているとする．またネー

ター環Λに対してmodΛで有限生成 (右)Λ加群の圏を表す．可換環Rに対して，SpecRで
Rの素イデアルの集合を表す．またR上の加群Mに対して，SuppMでMの台 (support)
を表し，AssM でM の素因子の集合を表す．

1. アーベル圏の様々な部分圏
この節では，本稿の主な考察対象であるアーベル圏の様々な部分圏とその分類を紹介

する．アーベル圏では，短完全列による拡大や，射の核，余核，像を取るなどの操作があ
る．まずはこれらの操作で閉じるような部分圏を導入する．

Definition 1. アーベル圏Aの加法部分圏X を考える．
(1) X が拡大で閉じるとは，任意のAの短完全列 0 → A → B → C → 0に対して

A,C ∈ X ならばB ∈ X となるときに言う．
(2) X が部分対象で閉じるとは，任意のAの短完全列 0 → A → B → C → 0に対し
てB ∈ X ならばA ∈ X となるときに言う．

(3) X が商で閉じるとは，任意のAの短完全列 0 → A → B → C → 0に対してB ∈ X
ならばC ∈ X となるときに言う．

The detailed version of this paper will be submitted for publication elsewhere.
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(4) X が核で閉じるとは，任意の Aの射 f : X → Y に対して，X,Y ∈ X ならば
Ker f ∈ X となるときに言う．

(5) X が余核で閉じるとは，任意の Aの射 f : X → Y に対して，X,Y ∈ X ならば
Cok f ∈ X となるときに言う．

(6) X が像で閉じるとは，任意の Aの射 f : X → Y に対して，X,Y ∈ X ならば
Im f ∈ X となるときに言う．

これらの性質を組み合わせることで様々なアーベル圏の部分圏を定義することができる．
Definition 2. アーベル圏Aの加法部分圏X を考える．

(1) X が Serre部分圏であるとは，拡大と部分対象，商で閉じるときに言う．
(2) X がトーション・フリー類であるとは，拡大と部分対象で閉じるときに言う．
(3) X がトーション類であるとは，拡大と商で閉じるときに言う．
(4) X がワイド部分圏（あるいはCKE閉部分圏）であるとは，余核と核，拡大で閉
じるときに言う．

(5) X が IKE閉部分圏であるとは，像と核，拡大で閉じるときに言う．
(6) X が ICE閉部分圏であるとは，像と余核，拡大で閉じるときに言う．
(7) X が IE閉部分圏であるとは，像と拡大で閉じるときに言う．
(8) X がKE閉部分圏であるとは，核と拡大で閉じるときに言う．
(9) X がCE閉部分圏であるとは，余核と拡大で閉じるときに言う．
これらの部分圏の関係は次のように図示できる：

Serre

トーション・フリー類 ワイド トーション類

IKE閉 ICE閉

KE閉 IE閉 CE閉

拡大で閉じる .

可換ネーター環R上の有限生成加群の圏modRに関しては，これらの部分圏の多くが
分類されてきた．
Theorem 3 ([2]). Rを可換ネーター環とする．このとき対応

X → SuppX :=
⋃
X∈X

SuppX, Z → modZ R := {M ∈ modR | SuppM ⊆ Z}

は次の集合の間に互いに逆な全単射対応を与える：
• modRの Serre部分圏の集合．
• SpecRの特殊化閉部分集合の集合．ここで部分集合Z ⊆ SpecRが特殊化閉(specialization-
closed)であるとは，任意の p, q ∈ SpecRに対して p ∈ Zかつ p ⊆ q ならば q ∈ Z
となるときに言う．
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つまりmodRの Serre部分圏は SpecRの特殊化閉部分集合で分類される．
Theorem 4 ([7]). Rを可換ネーター環とする．このとき対応

X → AssX :=
⋃
X∈X

AssX, Φ → modassΦ R := {M ∈ modR | AssM ⊆ Φ}

は次の集合の間に互いに逆な全単射対応を与える：
• アーベル圏modRのトーション・フリー類の集合．
• SpecRのべき集合．

つまりmodRのトーション・フリー類は SpecRの部分集合で分類される．
Theorem 5 ([1, 6, 7]). Rを可換ネーター環とする．

(1) modRの加法部分圏X に対して次は同値である．
• X は Serre部分圏である．
• X はトーション類である．
• X はワイド部分圏である．
• X は ICE閉部分圏である．
• X はCE閉部分圏である．

つまり，上記の部分圏は SpecRの特殊化閉部分集合で分類される．
(2) modRの加法部分圏X に対して次は同値である．

• X はトーション・フリー類である．
• X は IKE閉部分圏である．
• X は IE閉部分圏である．

つまり，上記の部分圏は SpecRの部分集合で分類される．
つまりmodRの部分圏のクラスは次のように分けられる：

Serre

トーション・フリー類 トーション類

ワイド

IKE閉 ICE閉

IE閉

KE閉 CE閉

拡大で閉じる

これが可換ネーター環R上の加群圏modRの部分圏の分類に関する先行研究である．次
節では，これらの分類のトーション・フリー類への拡張を紹介する．これらの部分圏の分
類のネーター代数やスキームへの拡張に関してはそれぞれ [3]と [4]を見よ．
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2. 完全圏の部分圏の分類
前節までは，加群圏modRなどのアーベル圏の部分圏について論じていたのに対して，

この節では，極大Cohen-Macaulay加群の圏 cmRなどの完全圏（＝アーベル圏の拡大で
閉じた部分圏）の部分圏について論じたい．そのためにまず次の概念を導入する．

Definition 6. アーベル圏Aの拡大で閉じた部分圏X を考える．このときX の許容短完
全列とは，Aの短完全列 0 → A → B → C → 0であってA,B,C ∈ X となるものである．
許容短完全列を考えることで，X の中でアーベル圏のようなホモロジー代数的議論を

行うことができるようになる．とくにアーベル圏の短完全列をX の許容短完全列に置き
換えることで，X の Serre部分圏やトーション（・フリー）類を考えることが出来る．

Definition 7. アーベル圏Aの拡大で閉じた部分圏X とX の加法部分圏 Sを考える．
(1) S が拡大で閉じるとは，任意のX の許容短完全列 0 → X → Y → Z → 0に対し
てX,Z ∈ Sならば Y ∈ Sとなるときに言う．

(2) Sが許容部分対象で閉じるとは，任意のX の許容短完全列 0 → X → Y → Z → 0
に対して Y ∈ SならばX ∈ Sとなるときに言う．

(3) X が許容商で閉じるとは，任意のX の許容短完全列 0 → X → Y → Z → 0に対
して Y ∈ SならばZ ∈ Sとなるときに言う．

(4) SがX の Serre部分圏であるとは，拡大と許容部分対象，許容商で閉じるときに
言う．

(5) SがX のトーション・フリー類であるとは，拡大と許容部分対象で閉じるときに
言う．

(6) SがX のトーション類であるとは，拡大と許容商で閉じるときに言う．
この節で紹介する主結果は，可換ネーター環R上の加群圏modRのトーション・フリー

類の部分圏の分類である．まず定理 4よりmodRのトーション・フリー類は，SpecRの
部分集合Φを用いて次のような形で記述されたことを思い出そう：

modassΦ R := {M ∈ modR | AssM ⊆ Φ}.
実は完全圏modassΦ Rの Serre部分圏やトーション・フリー類はΦのある部分集合を用いて
記述することができる．

Theorem 8 ([4]). Rを可換ネーター環とし，Φを SpecRの部分集合とする．このとき
対応

X → AssX :=
⋃
X∈X

AssX, Ψ → modassΨ R

は次の集合の間に互いに逆な全単射対応を与える：
• modassΦ Rの Serre部分圏の集合．
• Φの特殊化閉部分集合の集合．ここで部分集合Ψ ⊆ Φが特殊化閉(specialization-
closed)であるとは，任意の p, q ∈ Φに対して p ∈ Ψかつ p ⊆ q ならば q ∈ Ψと
なるときに言う．

つまり完全圏modassΦ Rの Serre部分圏はΦの特殊化閉部分集合で分類される．

この定理においてΦ = SpecRとすれば，定理 3が復元される．この意味でこの定理は，
定理 3の完全圏への拡張だと思える．
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Theorem 9 ([5]). Rを可換ネーター環とし，Φを SpecRの部分集合とする．このとき
modassΦ Rの中で Serre部分圏とトーション類は一致する．とくに完全圏 modassΦ Rのトー
ション類はΦの特殊化閉部分集合で分類される．
Theorem 10 ([5]). Rを 1次元可換ネーター環とし，Φを SpecRの部分集合とする．こ
のとき対応

X → AssX :=
⋃
X∈X

AssX, Ψ → modassΨ R

は次の集合の間に互いに逆な全単射対応を与える：
• modassΦ Rのトーション・フリー類の集合．
• Φのべき集合．

つまり完全圏modassΦ Rのトーション・フリー類はΦの部分集合で分類される．
この定理においてΦ = SpecRとすれば，1次元の場合の定理 4が復元される．この意

味でこの定理は，定理 4の完全圏への拡張だと思える．次元が 2以上の可換ネーター環に
関しては，この定理の反例が存在する．

1次元 Cohen-Macaulay環に対しては，極大 Cohen-Macaulay加群の圏 cmRはmodR
のトーション・フリー類となり，cmR = modassMinR Rとなる．ここでMinRはRの極小素
イデアルの集合である．よってここまでの定理を合わせることで次を得る．
Corollary 11. Rを 1次元Cohen-Macaulay環とする．このとき完全圏 cmRの中で Serre
部分圏，トーション類およびトーション・フリー類は一致する．またこれらの部分圏は
MinRの部分集合で分類される．
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A CLASSIFICATION OF T -STRUCTURES BY A LATTICE OF
TORSION CLASSES

ARASHI SAKAI (酒井 嵐士)

Abstract. We introduce the notion of ICE sequences to investigate t-structures on
the bounded derived category of the module categories modΛ over a finite dimensional
algebra Λ. We give a correspondence between bounded t-structures and ICE sequences.
Moreover we give a description of ICE sequences in modΛ in terms of the lattice consisting
of torsion classes in modΛ.

1. Introduction

Let Λ be a finite dimensional algebra over a field k. We denote by modΛ the category of
finitely generated right Λ-modules and Db(modΛ) the bounded derived category of modΛ.
It is one of the main subjects of representation theory of finite dimensional algebras to
study subcategories of modΛ and Db(modΛ). For example, torsion classes are studied
actively, and correspond to intermediate t-structures on Db(modΛ) bijectively [6]. In this
note, we always assume that all subcategories are full and closed under isomorphisms.
We focus on t-structures on Db(modΛ). For subcategories U and V of Db(modΛ), we

denote by U ∗ V the subcategory of Db(modΛ) consisting of objects X such that there
exists an exact triangle U → X → V → ΣU in Db(modΛ) with U ∈ U and V ∈ V .
Definition 1. [2, Définition 1.3.1] A pair of subcategories (U ,V) of Db(modΛ) is a t-
structure on Db(modΛ) if it satisfies the following conditions:

(1) Hom(U ,V) = 0.
(2) Db(modΛ) = U ∗ V .
(3) ΣU ⊆ U .
We call U an aisle. A t-structure (U ,V) is bounded if it satisfies⋃

n∈Z
Σ−nU = Db(modΛ) =

⋃
n∈Z

ΣnV .

For a t-structure (U ,V) on Db(modΛ), we have U = ⊥V , therefore a t-structure is
determined by its aisle. Hence we focus on aisles, and we call a subcategory of Db(modΛ)
an aisle if it is an aisle of a certain t-structure.
A subcategory X of Db(modΛ) is closed under extensions if it satisfies X ∗ X ⊆ X .

Definition 2. A subcategory U of Db(modΛ) is a preaisle if U is closed under extensions
and positive shifts.

It is easy to check that an aisle of a t-structure is a preaisle. Actually, aisles are exactly
contravariantly finite preaisles:

The detailed version of this paper will be submitted for publication elsewhere.
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Proposition 3. [8, Proposition 1.3] The following are equivalent for a subcategory U of
Db(modΛ).

(1) U is an aisle.
(2) U is a coreflective preaisle, that is, U is a preaisle and the inclusion U → Db(modΛ)

has a right adjoint functor.
(3) U is a contravariantly finite preaisle closed under direct summands.

Proof. (1) ⇔ (2): This is well-known.
(2) ⇔ (2): This follows from [3, Corollary 4.5]. �

At first, we deel with preaisles. In [10], homology-determined preaisles are classified by
narrow sequences. We denote by Hk the k-th cohomology functor.

Definition 4. A preaisle U ofDb(modΛ) is homology-determined if for anyX ∈ Db(modΛ),
we have X ∈ U if and only if Σ−k(HkX) ∈ U for any k ∈ Z.

Note that if Λ is hereditary, then every aisle is homology-determined since every complex
X in Db(modΛ) is isomorphic to a direct sum ⊕Σ−k(HkX). For homology-determined
preaisle U of Db(modΛ), we can consider a sequence {HkU}k∈Z of subcategories of modΛ.
In the next section, we give a characterization of the sequence.

2. Aisles and ICE sequences

In this section, we introduce ICE sequences to study preaisles. We recall basic defini-
tions of subcategories of an abelian category.

Definition 5. Let A be an abelian category and C a subcategory of A.

(1) C is closed under extensions if for every short exact sequence

0 → L → M → N → 0

in A with L,N ∈ C, we have M ∈ C.
(2) C is closed under quotients (resp. subobjects) in A if, for every object C ∈ C, every

quotient (resp. subobject) of C in A belongs to C.
(3) C is a torsion class (resp. torsion-free class) in A if C is closed under extensions

and quotients in A (resp. extensions and subobjects).
(4) C is closed under images (resp. kernels, cokernels) if, for every map ϕ : C1 → C2

with C1, C2 ∈ C, we have Imϕ ∈ C (resp. Kerϕ ∈ C, Cokerϕ ∈ C).
(5) C is a wide subcategory of A if C is closed under kernels, cokernels, and extensions.
(6) C is an ICE-closed subcategory of A if C is closed under images, cokernels and

extensions.

It is easy to check that torsion classes and wide subcategories are ICE-closed sub-
categories. Moreover, every torsion class in a wide subcategory (viewed as an abelian
category) is ICE-closed, see [5, Lemma 2.2]. In [7], Ingalls and Thomas introduced an
operation α which associates to a torsion class a wide subcategory. In [4, Proposition
4.2], the operation was generalized to ICE-closed subcategories. The following is shown
by the same argument of [7, Proposition 2.12].
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Proposition 6. Let C be an ICE-closed subcategory of A. Define a subcategory of C by

αC = {A ∈ C | ∀(f : C → A) ∈ C, ker f ∈ C}.
Then αC is a wide subcategory of A.

Next we give a definition of ICE sequences. This is the key notion in this note.

Definition 7. A sequence {C(k)}k∈Z of subcategories of modΛ is an ICE sequence if for
any k, the subcategory C(k) is an ICE-closed subcategory of modΛ and the subcategory
C(k + 1) is a torsion class in α(C(k)).
Clealy, we have C(k + 1) ⊆ C(k) for any k ∈ Z. Actually, ICE sequnces are the same

notion of narrow sequences introduced in [10, Definition 4.1], see [9, Proposition 4.2].
Combining this fact and the result [10, Theorem 4.11], we obtain the following result.

Theorem 8. [9, Theorem 4.5] There exist mutually bijective correspondences between

(1) the set of homology-determined preaisles in Db(modΛ).
(2) the set of ICE sequences in modΛ,

The map from (1) to (2) is given by U → {HkU}k∈Z. The converse is given by {C(k)}k∈Z →
{X ∈ Db(modΛ) | HkX ∈ C(k) for any k}.
Finally, we restrict the above result to aisles of bounded t-structures.

Definition 9. Let {C(k)}k∈Z be an ICE sequence in modΛ.

(1) {C(k)}k∈Z is contravariantly finite if C(k) is contravariantly finite in modΛ for any
k ∈ Z.

(2) {C(k)}k∈Z is full if there exist integers m ≤ n such that C(m) = 0 and C(n) =
modΛ.

(3) For a positive integer n, we say that {C(k)}k∈Z is of length n+1 if we have C(1) = 0
and C(−n) = modΛ.

Note that an ICE-closed subcategory of modΛ is contravariantly finite if and only if it is
coreflective by [3, Corollary 7.2]. If Λ is τ -tilting finite, then every ICE-closed subcategory
of modΛ is contravariantly finite, see [5, Proposition 4.20].

The following is the main result in this section.

Theorem 10. [9, Theorem 5.5, Corollary 5.6] There exist bijective correspondences be-
tween

(1) the set of contravariantly finite full ICE sequences in modΛ,
(2) the set of bounded t-structures on Db(modΛ) whose aisles are homology-determined.

Let n be a positive integer. Then the above restrict to the following.

(1) the set of contravariantly finite ICE sequences in modΛ of length n+ 1,
(2) the set of (n+1)-intermediate t-structures on Db(modΛ) whose aisles are homology-

determined.

Thus we can construct t-structures on Db(modΛ) from ICE sequences in modΛ. In the
next section, we give a description of ICE sequences by a lattice-theoretical notion.
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3. A Lattice of torsion classes

In this section, we fix a positive integer n, and focus on (n+1)-intermediate t-structures.
We give a description of ICE sequences of length n+ 1 in modΛ from the viewpoint of a
lattice consisting of torsion classes in modΛ. We denote by torsΛ the set of torsion classes
in modΛ, which forms a partially ordered set by inclusion. Moreover torsΛ is a complete
lattice since there are arbitrary intersections. We collect some definitions and results.

Definition 11. To T ,U ∈ torsΛ, we associate the set

[U , T ] := {C ∈ torsΛ | U ⊆ C ⊆ T }
called an interval in torsΛ. To an interval [U , T ], we associate a subcategory H[U ,T ] =
T ∩ U⊥ called the heart of [U , T ]. We call an interval [U , T ] a wide interval if the heart
is a wide subcategory of modΛ. We denote by Hasse(torsΛ) the Hasse quiver of torsΛ,
the quiver whose vertex set is torsΛ, and there is an arrow T → U in torsΛ if and only if
U � T holds and there is no C ∈ torsΛ satisfying U � C � T .

Wide intervals are characterized as a lattice-theoretical property in torsΛ as follows:

Proposition 12. [1, Theorem 5.2] Let [U , T ] be an interval in torsΛ. Then the following
conditions are equivalent:

(1) [U , T ] is a wide interval.
(2) [U , T ] is a meet interval, that is, it holds

U = T
⋂

{C ∈ [U , T ] | there is an arrow T → C in Hasse(torsΛ)}.

The operation α is understood from the viewpoint of wide intervals:

Proposition 13. Let T be a torsion class in modΛ. Then the following statements hold.

(1) [1, Proposition 6.3] αT equals to the heart of the interval [T ∩ ⊥αT , T ].
(2) [5, Proposition 3.3] We set

T − = T
⋂

{C ∈ torsΛ | there is an arrow T → C in Hasse(torsΛ)}.

Then we have T − = T ∩ ⊥αT and H[T −,T ] = αT .

Thus we can understand α in terms of torsΛ. We introduce the following notion.

Definition 14. (1) We call an interval of the form [T −, T ] a maximal meet interval
in torsΛ. More generally, we call an interval [U ′, T ′] contained in a wide interval
[U , T ] in torsΛ a maximal meet interval in [U , T ] if we have

U ′ = T ′ ⋂{C ∈ [U , T ] | there is an arrow T ′ → C in Hasse(torsΛ)}.
(2) We call a sequence {[Uk, Tk]}nk=1 of intervals in torsΛ a decreasing sequence of

maximal meet intervals in torsΛ provided that [Uk+1, Tk+1] is a maximal meet
interval in [Uk, Tk] for any k = 0, . . . , n − 1 where we set U0 = 0 and T0 = modΛ.
We call n the length of the sequence.

Now we obtain a classification of (n + 1)-intermediate t-structures whose aisles are
homology-determined via ICE sequences and the lattice of torsion classes:
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Theorem 15. Let Λ be a τ -tilting finite algebra and torsΛ the lattice consisting of torsion
classes in modΛ. Then there are one-to-one correspondences between

(1) the set of (n+1)-intermediate t-structures on Db(modΛ) whose aisles are homology-
determined,

(2) the set of ICE sequences in modΛ of length n+ 1,
(3) the set of decreasing sequences of maximal meet intervals in torsΛ of length n,
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RESOLVING SUBCATEGORIES OF DERIVED CATEGORIES

RYO TAKAHASHI

Abstract. Let R be a commutative noetherian ring. Denote by Db(R) the bounded
derived category of finitely generated R-modules. In this article we classify the preaisles
of Db(R) containing R and closed under direct summands, when R is a complete intersec-
tion. This classification includes as restrictions the classification of thick subcategories
of the singularity category due to Stevenson, and the classification of resolving subcate-
gories of the module category due to Dao and Takahashi.

1. Main result

Throughout this article, we assume that all subcategories are strictly full. First of all,
we introduce a setup to explain our main result.

Setup 1. Let (R, V ) be a pair, where R and V satisfy either of the following two condi-
tions.

(1) R is a commutative noetherian ring which is locally a hypersurface, and V is the
singular locus of R.

(2) R is a quotient ring of the form S/(a) where S is a regular ring of finite Krull dimension
and a = a1, . . . , ac is a regular sequence, and V is the singular locus of the zero
subscheme of a1x1 + · · ·+ acxc ∈ Γ(X,OX(1)) where X = P

c−1
S = Proj(S[x1, . . . , xc]).

Here, a commutative noetherian ring R is said to be locally a hypersurface if the local
ring Rp is a hypersurface for every prime ideal p of R. When R is a local ring with

maximal ideal m, we say that R is a hypersurface if the m-adic completion R̂ of R is a
quotient of a regular local ring by a principal ideal. A regular sequence on R is a sequence
x = x1, . . . , xn of elements of R such that the residue class of xi in R/(x1, . . . , xi−1) is a
non-zerodivisor for each i = 1, . . . , n and that (x1, . . . , xn) is not a unit ideal of R.
For a commutative noetherian ring R, we denote by modR the category of finitely

generated R-modules, by Db(R) the bounded derived category of modR, by Dperf(R)
the subcategory of Db(R) consisting of perfect complexes, and by Dsg(R) the singularity
category of R, i.e.,

Dsg(R) = Db(R)/Dperf(R).

Recall that a thick subcategory of a triangulated category is by definition a triangulated
subcategory closed under direct summands. Under the above setup, Stevenson [2] proved
the following classification theorem of thick subcategories.

The detailed version [3] of this article has been submitted for publication elsewhere.
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Theorem 2 (Stevenson). Let (R, V ) be as in Setup 1. Then there are one-to-one corre-
spondences ⎧⎨⎩ thick

subcategories
of Dsg(R)

⎫⎬⎭ ∼=

⎧⎪⎪⎨⎪⎪⎩
thick

subcategories
of Db(R)

containing R

⎫⎪⎪⎬⎪⎪⎭
(a)∼=

⎧⎨⎩specialization-
closed

subsets of V

⎫⎬⎭.

Recall that a resolving subcategory of modR is defined to be a subcategory of modR
containing R and closed under direct summands, extensions and kernels of epimorphisms.
Dao and Takahashi [1] gave a complete classification of the resolving subcategories of
modR under the setup introduced above.

Theorem 3 (Dao–Takahashi). Let (R, V ) be as in Setup 1. Then there is a one-to-one
correspondence ⎧⎨⎩ resolving

subcategories
of modR

⎫⎬⎭ (b)∼=

⎧⎪⎪⎨⎪⎪⎩
grade-

consistent
functions
on SpecR

⎫⎪⎪⎬⎪⎪⎭×

⎧⎨⎩specialization-
closed

subsets of V

⎫⎬⎭.

Here, a grade-consistent function on SpecR is defined as an order-preserving map f :
SpecR → N which satisfies the inequality f(p) � grade p for each p ∈ SpecR, where

grade p = inf{i ∈ N | ExtiR(R/p, R) �= 0}.
Recall that a preaisle (resp. precoaisle) of a triangulated category is defined as a sub-

category closed under extensions and positive (resp. negative) shifts. Mimicking the
definition of a resolving subcategory of modR, we define a resolving subcategory of Db(R)
as a subcategory of Db(R) containing R and closed under direct summands, extensions
and cocones.
The main result of this article is the following theorem. This theorem provides a

classification of preaisles of Db(R) that satisfy some mild and natural conditions. Also,
the theorem includes both the classification of thick subcategories by Stevenson and the
classification of resolving subcategories by Dao and Takahashi.

Theorem 4. Let (R, V ) be a pair as in Setup 1. Then there are one-to-one correspon-
dences⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

preaisles
of Db(R)
containing

R and closed
under direct
summands

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
∼=

⎧⎨⎩ resolving
subcategories
of Db(R)

⎫⎬⎭ (∗)∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
order-

preserving
maps

from SpecR
to N ∪ {∞}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
×

⎧⎨⎩specialization-
closed

subsets of V

⎫⎬⎭.

The restriction of the bijection (∗) to the thick subcategories of Db(R) containing R is
identified with the bijection (a) in Theorem 2. The composition of the bijection (∗) with
the map

X → resDb(R) X
coincides with the bijection (b) in Theorem 3.
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Here, resDb(R) X stands for the resolving closure of X in Db(R), that is, the smallest

resolving subcategory of Db(R) containing X .

2. Outline

This section is devoted to (roughly) explaining how to deduce Theorem 4.
We say that R is locally a Gorenstein ring if the local ring Rp is Gorenstein for every

prime ideal p of R. When R is a local ring, we say that R is Gorenstein if R has finite
injective dimension as an R-module.
The following proposition is immediately obtained by using the fact that the functor

RHomR(−, R) gives a duality of Db(R) if R is locally a Gorenstein ring, and comparing
the definitions of a resolving subcategory and a precoaisle.

Proposition 5. Let R be a commutative noetherian ring. Suppose that R is locally a
Gorenstein ring. Assigning to each subcategory X of Db(R) the subcategory

RHomR(X , R) = {RHomR(X,R) | X ∈ X}
of Db(R), one obtains a one-to-one correspondence⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

preaisles
of Db(R)
containing

R and closed
under direct
summands

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
∼=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

precoaisles
of Db(R)
containing

R and closed
under direct
summands

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎧⎨⎩ resolving
subcategories
of Db(R)

⎫⎬⎭.

We say that R is locally a complete intersection if the local ring Rp is a complete inter-
section for every prime ideal p of R. When R is a local ring with maximal ideal m, we

say that R is a complete intersection if the m-adic completion R̂ of R is a quotient of a
regular local ring by an ideal generated by a regular sequence. Denote by DCM(R) the sub-
category of Db(R) consisting of maximal Cohen–Macaulay complexes, that is, complexes
C ∈ Db(R) such that

depthRp
Cp � dimRp

for all prime ideals p of R, where dim denotes Krull dimension. When R is a local ring
with residue field k, for each X ∈ Db(R) we set

depthR X = inf{i ∈ Z | ExtiR(k,X) �= 0}.
The following two theorems are the most essential parts of our work. In the first

theorem, thickDb(R) X stands for the thick closure of X in Db(R), that is, the smallest thick

subcategory of Db(R) containing X . The assumption of locally a complete intersection in
the first theorem is necessary to deduce that each resolving subcategory of Db(R) contained
in DCM(R) is closed under exact triangles of maximal Cohen–Macaulay complexes. The
proof of the second theorem uses subtle arguments on Koszul complexes, and the notion
of an NE-locus, which is a certain Zariski-closed subset of SpecR.

Theorem 6. Let R be a commutative noetherian ring. Suppose that R is locally a complete
intersection.
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(1) There are mutually inverse bijections

⎧⎨⎩ resolving
subcategories
of Db(R)

⎫⎬⎭ φ ��

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
resolving

subcategories
of Db(R)
contained
in Dperf(R)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
resolving

subcategories
of Db(R)
contained
in DCM(R)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

ψ
��

where the maps φ, ψ are given by

φ(X ) = (X ∩ Dperf(R),X ∩ DCM(R))

for each element X of the left-hand side, and

ψ(Y ,Z) = resDb(R)(Y ∪ Z)

for each element (Y ,Z) of the right-hand side.
(2) There are mutually inverse bijections⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

resolving
subcategories
of Db(R)
contained
in DCM(R)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
φ ��

⎧⎪⎪⎨⎪⎪⎩
thick

subcategories
of Db(R)

containing R

⎫⎪⎪⎬⎪⎪⎭ ∼=

⎧⎨⎩ thick
subcategories
of Dsg(R)

⎫⎬⎭.
ψ

��

where the maps φ, ψ are given by

φ(X ) = thickDb(R) X
for each element X of the left-hand side, and

ψ(Y) = Y ∩ DCM(R)

for each element Y of the right-hand side.

Theorem 7. Let R be any commutative noetherian ring. Then there are mutually inverse
bijections ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

resolving
subcategories
of Db(R)
contained
in Dperf(R)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
φ ��

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
order-

preserving
maps from
SpecR to
N ∪ {∞}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

ψ
��

where the maps φ, ψ are given by

φ(X )(p) = sup
X∈X

{pdRp
Xp}

for each element X of the left-hand side and each prime ideal p of R, and

ψ(f) = {X ∈ Db(R) | pdRp
Xp � f(p) for all p ∈ SpecR}

for each element f of the right-hand side.
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Here, pd stands for projective dimension.
Taking the combination of Proposition 5 with Theorems 6 and 7, we obtain the following

theorem.

Theorem 8. Let R be a commutative noetherian ring which is locally a complete inter-
section. Then there are one-to-one correspondences⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

preaisles
of Db(R)
containing

R and closed
under direct
summands

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
∼=

⎧⎨⎩ resolving
subcategories
of Db(R)

⎫⎬⎭ ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
order-

preserving
maps from
SpecR to
N ∪ {∞}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
×

⎧⎨⎩ thick
subcategories
of Dsg(R)

⎫⎬⎭.

Finally, combining Theorem 8 with Theorems 2 and 3 completes the proof of Theorem
4.
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PERIODIC DIMENSIONS OF MODULES AND ALGEBRAS

SATOSHI USUI

Abstract. For an eventually periodic module, we obtain the degree n and the period p
of its first periodic syzygy. In this note, in order to study the degree n, we introduce the
notion of the periodic dimension of a module and report results on periodic dimensions
obtained so far.

1. Introduction

Throughout this note, let k be a field, and we assume that all rings are left Noetherian
semiperfect rings (that are associative and unital). By a module, we mean a finitely
generated left module.
Homological algebra [7] has been playing an important role in the representation theory

of rings, and one of the fundamental tools is a projective resolution of a module. So it is
natural to study the behavior of projective resolutions. In this note, we are concerned with
eventually periodic modules (i.e., modules whose minimal projective resolutions become
periodic in sufficiently large degrees) and study when their minimal projective resolutions
become periodic. For this, we will introduce the notion of the periodic dimension of a
module. From the definition, a module M is of finite periodic dimension if and only if
M is eventually periodic. In this case, the value of the periodic dimension equals the
degree of the first periodic syzygy of M . We first provide some of the basic properties of
periodic dimensions and then investigate the relationship between Gorenstein and periodic
dimensions. Moreover, motivated by a recent result of Dotsenko-Gélinas-Tamaroff [9], we
determine the bimodule periodic dimension of a finite dimensional eventually periodic
Gorenstein algebra.

2. Eventually periodic modules

This section recalls the definition of eventually periodic modules and some related
results. Let R be a ring. For an R-module M and an integer i ≥ 0, we denote by Ωi

R(M)
the i-th syzygy of the R-module M . It is understood that Ω0

R(M) = M .

Definition 1. An R-module M is called periodic if there exists an integer p > 0 such that
Ωp

R(M) ∼= M as R-modules. The smallest p > 0 with this property is called the period
of M . We call M eventually periodic if there exists an integer n ≥ 0 such that Ωn

R(M) is
periodic.

We say that an R-module M is (n, p)-eventually periodic if M is eventually periodic
over R and satisfies that its n-th syzygy is the first periodic syzygy of period p. We call
a (0, p)-eventually periodic module a p-periodic module.

The detailed version of this paper will be submitted for publication elsewhere.

- 112 -



Modules of finite projective dimension n are (n+1, 1)-eventually periodic. The following
example exhibits (n, p)-eventually periodic modules (with infinite projective dimension).

Example 2. Fix two integers n ≥ 0 and p > 0, and consider the finite dimensional radical
square zero algebra Λ = kQ/R2

Q, where Q is the following quiver:

n �� n− 1 �� · · · �� 1 �� 0 �� −1 �� · · · �� −p+ 1
��

and RQ is the arrow ideal of the path algebra kQ. We denote by Si the simple Λ-module
associated with the vertex i. A direct calculation shows that Si is (i, p)-eventually periodic
if 1 ≤ i ≤ n and is p-periodic if −p + 1 ≤ i ≤ 0. In particular, Sn is (n, p)-eventually
periodic.

The integers n and p associated with an (n, p)-eventually periodic module are studied
in the literature, for example [3, 6, 8, 10, 11]. We recall the following result of Avramov
[3].

Theorem 3 ([3, Theorem 7.3.1]). Let R be a commutative local ring, and let M be an
R-module of finite complete intersection dimension. Then the following conditions are
equivalent.

(1) M is (n, p)-eventually periodic with n ≤ depthR− depthRM + 1 and p = 1 or 2.

(2) M has bounded Betti numbers.

Using [2, Lemma 1.2.6], one can check that any (n, p)-eventually periodic module M
over a commutative local ring R satisfies that depthR − depthRM ≤ n. Thus, for any
(n, p)-eventually periodic R-modules satisfying the assumption of Theorem 3, we obtain
the following formula

depthR− depthRM ≤ n ≤ depthR− depthRM + 1.(2.1)

3. Periodic dimensions

In this section, we will introduce the notion of the periodic dimension of a module and
provide our main results. Throughout this section, let R denote a ring.
Observe that if M is a periodic module, then all its syzygies are periodic and have the

same period as M . Thus it is natural to introduce the following notion.

Definition 4. Let M be an R-module. Then we define the periodic dimension of M by

per.dimRM := inf {n ≥ 0 | Ωn
R(M) is periodic } .

By definition, M is eventually periodic if and only if per.dimRM < ∞. In this case,
per.dimRM equals the degree n of the first periodic syzygy Ωn

R(M) of M . For instance,
if M has finite projective dimension, then per.dimRM = proj.dimRM + 1. Also, if M is
of finite periodic dimension n, then we have

per.dimRΩ
i
R(M) =

{
n− i if 0 ≤ i ≤ n,

0 if i > n .
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Recall from [1, 4] that an R-module X, where R is an arbitrary ring, is called totally
reflexive if X ∼= X∗∗ and ExtiR(X,R) = 0 = ExtiRop(X∗, R) for all i > 0, where we set
(−)∗ := HomR(−, R). The Gorenstein dimension G-dimRM of an R-module M is defined
to be the infimum of the length n of an exact sequence of R-modules

0→ Xn → · · · → X1 → X0 →M → 0

with each Xi totally reflexive. The following proposition states the property of periodic
dimensions with respect to direct sums.

Proposition 5. For any finite family {RMi}i∈I of R-modules, we have

per.dimR

⊕
i∈I Mi ≤ sup{ per.dimRMi | i ∈ I }

The equality holds if R is left artin, and G-dimRMi <∞ for all i ∈ I.

The following is our first main result.

Theorem 6. Let M be an (n, p)-eventually periodic R-module of finite Gorenstein dimen-
sion r. Then we have r ≤ n ≤ r + 1. If, furthermore, R is left artin, then the following
assertions hold.

(1) n = r if and only if Ωr
R(M) has no non-zero projective direct summand.

(2) If Ωn−1
R (M) = X ⊕ Q for some R-module X without non-zero projective direct

summand and some projective R-module Q, then r = n − 1 if and only if X ∼=
Ωn+p−1

R (M) as R-modules.

Remark 7. (1) Let M be an (n, p)-eventually periodic R-module of finite complete
intersection dimension, where R is a commutative local ring. Then, since we know
from [3, Theorems 8.7 and 8.8] that depthR−depthRM = G-dimRM , the obtained
bounds r ≤ n ≤ r + 1 in this case are noting but (2.1).

(2) If R is a CM-finite Gorenstein artin algebra, then any R-modules satisfy the as-
sumption of the theorem. Here, CM-finite [5] means that there are only finitely
many pairwise non-isomorphic indecomposable totally reflexive R-modules, and
Gorenstein [4] means that the injective dimension of R is finite as a left and as a
right R-module.

In what follows, let Λ be a finite dimensional algebra over the filed k. We say that
Λ is eventually periodic if Ωn

Λ⊗kΛop(Λ) is eventually periodic as a Λ ⊗k Λop-module for
some n ≥ 0. In case n = 0, we call Λ a periodic algebra. The following is a result of
Dotsenko-Gélinas-Tamaroff [9].

Theorem 8 ([9, the proof of Theorem 6.3]). Let Λ be a monomial Gorenstein algebra.
Then per.dimΛ⊗kΛopΛ is finite and at most inj.dimΛΛ+1, where inj.dimΛΛ stands for the
injective dimension of the regular Λ-module Λ.

Motivated by the theorem, we first obtain the following observation.

Proposition 9. The following statements hold for a finite dimensional algebra Λ.

(1) If Λ is eventually periodic, then G-dimΛ⊗kΛopΛ <∞ if and only if Λ is Gorenstein.
(2) If Λ is Gorenstein, then G-dimΛ⊗kΛopΛ = inj.dimΛΛ.
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As a consequence of Theorem 6, we then have the following second main result of this
note.

Theorem 10. Let Λ be a finite dimensional eventually periodic Gorenstein algebra. Then
we have

inj.dimΛΛ ≤ per.dimΛ⊗kΛopΛ ≤ inj.dimΛΛ + 1.

Moreover, per.dimΛ⊗kΛopΛ = inj.dimΛΛ if and only if Ω
inj.dimΛΛ
Λ⊗kΛop (Λ) has no non-zero pro-

jective direct summand.

We end this section by explaining that the bounds given in the theorem are the best
possible.

Proposition 11 ([12, Proposition 4.3]). Let Λ and Γ be finite dimensional algebras.
Assume that Λ is periodic and Γ has finite global dimension d. Then the tensor product
A = Λ⊗k Γ is a Gorenstein algebra with per.dimA⊗kAopA = inj.dimAA.

Example 12. Let Λ be the finite dimensional monomial algebra given by the following
quiver with relations:

dβ ��
αd �� d− 1

αd−1 �� · · · �� 1
α1 �� 0 β2, αi−1αi for 2 ≤ i ≤ d.

A direct calculation shows that Λ is a Gorenstein algebra with per.dimΛ⊗kΛopΛ = inj.dimΛΛ+
1.
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