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Abstract. We describe the moduli Mold3,5 of 5-dimensional subalgebras of the full
matrix ring of degree 3. We show that Mold3,5 has three irreducible components, whose
relative dimensions over Z are all 4.
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1. Introduction

Let k be a field. We say that k-subalgebras A and B of Mn(k) are equivalent (or A ∼ B)
if P−1AP = B for some P ∈ GLn(k). If k is an algebraically closed field, then there are
26 equivalence classes of k-subalgebras of M3(k) over k ([5]).

Definition 1 ([2, Definition 1.1], [3, Definition 3.1]). We say that a subsheaf A of OX-
algebras of Mn(OX) is a mold of degree n on a scheme X if Mn(OX)/A is a locally free
sheaf. We denote by rankA the rank of A as a locally free sheaf.

Proposition 2 ([2, Definition and Proposition 1.1], [3, Definition and Proposition 3.5]).
The following contravariant functor is representable by a closed subscheme of the Grass-
mann scheme Grass(d, n2):

Moldn,d : (Sch)op → (Sets)
X 7→

{
A A is a rank d mold of degree n on X

}
.

We consider the moduli Mold3,d of rank d molds of degree 3 over Z. In the case d 6= 5,
we have the following theorem:

Theorem 3 ([5]). Let n = 3. If d ≤ 4 or d ≥ 6, then

Mold3,1 = SpecZ,
Mold3,2

∼= P2
Z × P2

Z,

Mold3,3 = Moldreg
3,3 ∪MoldS2

3,3 ∪MoldS3
3,3, where the relative dimensions of

Moldreg
3,3 ,MoldS2

3,3, and MoldS3
3,3 over Z are 6, 4, and 4, respectively,

Mold3,4
∼= Q(V )

⨿
P2
Z

⨿
P2
Z, where the relative dimension of Q(V ) over Z is 5,

Mold3,6
∼= Flag3 := GL3/{(aij) ∈ GL3 | aij = 0 for i > j},

Mold3,7
∼= P2

Z

⨿
P2
Z,
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Mold3,8 = ∅,
Mold3,9 = SpecZ.

Remark 4 ([4, Definition 14]). The scheme Q(V ) is a smooth scheme over Z defined by

Q(V ) = Flag(V )×P∗(V ) Flag(V )×P∗(V ) Flag(V )

= {(L1,W2;L1,W1;L2,W1) | dimk Li = 1, dimk Wi = 2}
= {(L1, L2,W1,W2) | L1 ⊂ W1, L1 ⊂ W2, L2 ⊂ W1}.

The case d = 5 remains. In this paper, we describe the moduli Mold3,5 of rank 5 molds
of degree 3. We introduce several rank 5 molds of degree 3 on a commutative ring R.

Definition 5 ([5]). For a commutative ring R, we define

(1) (M2 ×D1)(R) =


 ∗ ∗ 0

∗ ∗ 0
0 0 ∗

 ∈ M3(R)

,

(2) S10(R) =


 a b c

0 a d
0 0 e

 a, b, c, d, e ∈ R

,

(3) S11(R) =


 a b c

0 e d
0 0 a

 a, b, c, d, e ∈ R

,

(4) S12(R) =


 a b c

0 e d
0 0 e

 a, b, c, d, e ∈ R

,

(5) S13(R) =


 ∗ ∗ ∗

0 ∗ 0
0 0 ∗

 ∈ M3(R)

,

(6) S14(R) =


 ∗ 0 ∗

0 ∗ ∗
0 0 ∗

 ∈ M3(R)

.

There are 6 equivalence classes of 5-dimensional subalgebras of M3(k) over an alge-
braically closed field k: (M2 ×D1)(k), S10(k), S11(k), S12(k), S13(k), and S14(k).

The following theorem is our main result in this paper.

Theorem 6 (Theorem 19). When d = 5, we have an irreducible decomposition

Mold3,5 = MoldM2×D1
3,5

⨿
MoldS13

3,5

⨿
MoldS14

3,5 ,

whose irreducible components are all connected components. The relative dimensions of

MoldM2×D1
3,5 , MoldS13

3,5 , and MoldS14
3,5 over Z are all 4. Moreover,

MoldM2×D1
3,5 = MoldM2×D1

3,5 ∪MoldS11
3,5 ,

MoldS13
3,5 = MoldS13

3,5 ∪MoldS12
3,5 ,



MoldS14
3,5 = MoldS14

3,5 ∪MoldS10
3,5 .

Remark 7 ([1]). We need to say the relation between Moldd,d and the variety Algd of
algebras defined by Gabriel in [1]. Let V = ke1⊕ke2⊕· · ·⊕ked be a d-dimensional vector
space over a field k. For φ ∈ Homk(V ⊗k V, V ), put φ(ei ⊗ ej) =

∑n
l=1 c

l
ijel. We say that

φ determines an algebra structure on V with 1 if the multiplication ei · ej = clijel defines
an algebra V over k with 1. Then we define the variety Algd of d-dimensional algebras in
the sense of Gabriel by

Algd =

 φ ∈ Homk(V ⊗k V, V )
φ determines an
algebra structure

on V with 1

 ⊂ Ad3

k .

Then we can define a morphism Ψd : Algd → Moldd,d by

φ 7→ {φ(v ⊗−) ∈ Endk(V ) ∼= Md(k) | v ∈ V }.
If we could prove that Ud = {A ⊂ Md(k) | A is a d-dimensional tame algebra } is open in
Moldd,d for any d, then Ψ−1

d (Ud) = {A | d-dimensional tame algebra } would also be open
in Algd, which gives an affirmative answer to “Tame type is open conjecture”. Hence, we
believe that Moldn,d is an important geometric object. This is one of our motivations to
investigate Moldn,d.

2. Several Tools

In this section, we introduce several tools for describing Mold3,5. Let A be an associative
algebra over a commutative ring R. Assume that A is projective over R. Let Ae = A⊗RA

op

be the enveloping algebra of A. For an A-bimodule M over R, we can regard it as an Ae-
module. We define the i-th Hochschild cohomology group HHi(A,M) of A with coefficients
in M as ExtiAe(A,M).

Let A be the universal mold on Moldn,d. For x ∈ Moldn,d, denote by A(x) = A⊗OMoldn,d

k(x) ⊂ Mn(k(x)) the mold corresponding to x, where k(x) is the residue field of x. As
applications of Hochschild cohomology to the moduli Moldn,d, we have the following tools.

Theorem 8 ([3, Theorem 1.1]). For each point x ∈ Moldn,d, the dimension of the tangent
space TMoldn,d/Z,x of Moldn,d at x is given by

dimk(x) TMoldn,d/Z,x = dimk(x) HH
1(A(x),Mn(k(x))/A(x)) + n2 − dimk(x) N(A(x)),

where N(A(x)) = {b ∈ Mn(k(x)) | [b, a] = ba− ab ∈ A(x) for any a ∈ A(x)}.

Theorem 9 ([3, Theorem 1.2]). Let x ∈ Moldn,d. If HH2(A(x),Mn(k(x))/A(x)) = 0,
then the canonical morphism Moldn,d → Z is smooth at x.

For a rank d mold A of degree n on a locally noetherian scheme S, we can consider a
PGLn,S-orbit {P−1AP | P ∈ PGLn,S} in Moldn,d ⊗Z S, where PGLn,S = PGLn ⊗Z S.
For x ∈ S, put A(x) = A ⊗OS

k(x), where k(x) is the residue field of x. By using
HH1(A(x),Mn(k(x))/A(x)), we have:



Theorem 10 ([3, Theorem 1.3]). Assume that HH1(A(x),Mn(k(x))/A(x)) = 0 for each
x ∈ S. Then the PGLn,S-orbit {P−1AP | P ∈ PGLn,S} is open in Moldn,d ⊗Z S.

These tools are useful for investigating Mold3,5. For each rank 5 molds of M3(R) over
a commutative ring R, we obtained the following table:

Table 1. Hochschild cohomology H∗(A,M3(R)/A) for R-subalgebras A of M3(R)

A d = rankA H∗ = H∗(A,M3(R)/A) tA N(A) dimTMold3,d/Z,A

(M2 ×D1)(R) =


 ∗ ∗ 0

∗ ∗ 0
0 0 ∗

 5 H i = 0 for i ≥ 0 (M2 ×D1)(R) (M2 ×D1)(R) 4

S10(R) =


 a b c

0 a d
0 0 e

 5 H i ∼=
{

R⊕ Ann(2) (i : even)
R⊕ (R/2R) (i : odd)

S12(R)


 ∗ ∗ ∗

a ∗ ∗
0 0 ∗

 2a = 0

 4

S11(R) =


 a b c

0 e d
0 0 a

 5 H i ∼=
{

R (i = 0, 1)
0 (i ≥ 2)

S11(R) B3(R) 4

S12(R) =


 a b c

0 e d
0 0 e

 5 H i ∼=
{

R⊕ Ann(2) (i : even)
R⊕ (R/2R) (i : odd)

S10(R)


 ∗ ∗ ∗

0 ∗ ∗
0 a ∗

 2a = 0

 4

S13(R) =


 ∗ ∗ ∗

0 ∗ 0
0 0 ∗

 5 H i = 0 for i ≥ 0 S14(R) S13(R) 4

S14(R) =


 ∗ 0 ∗

0 ∗ ∗
0 0 ∗

 5 H i = 0 for i ≥ 0 S13(R) S14(R) 4

3. Description of Mold3,5

In this section, we describe Mold3,5. Let V be a free module of rank 3 over Z. Fix a
canonical basis {e1, e2, e3} of V over Z. We define schemes P∗(V ), P∗(V ), and Flag(V )
over Z as contravariant functors from the category of schemes to the category of sets in
the following way:

P∗(V )(X) =
{
W W is a rank 2 subbundle of OX ⊗Z V on X

}
,

P∗(V )(X) =
{
L L is a rank 1 subbundle of OX ⊗Z V on X

}
,

Flag(V )(X) =
{
(L,W ) ∈ (P∗(V )× P∗(V ))(X) L ⊂ W

}
for a scheme X.

Remark 11. If we consider the case over a field k, then P∗(V ), P∗(V ), and Flag(V ) over
k are regarded as

P∗(V ) = {W ⊂ V | W is a 2-dimensional subspace of V },
P∗(V ) = {L ⊂ V | L is a 1-dimensional subspace of V },

Flag(V ) = {(L,W ) ∈ P∗(V )× P∗(V ) | 0 ⊂ L ⊂ W ⊂ V },
respectively.

Definition 12. Let A = M2 ×D1, S10, S11, S12, S13, or S14. We define

MoldA
3,5 = {x ∈ Mold3,5 | A(x)⊗k(x) k(x) ∼ A(k(x))},

where k(x) is an algebraic closure of k(x).



Definition 13. Let us define morphisms

Φ2,2 : Mold2,2 → Mold3,5

A 7→

 ∗ ∗ ∗
0
0

A


and

Φ′
2,2 : Mold2,2 → Mold3,5

A 7→

 A
∗
∗

0 0 ∗

 .

Example 14. Recall that

P(M2/〈I2〉) ∼= P2
Z → Mold2,2

[A] 7→ 〈A〉

is an isomorphism.

There are two types of rank 2 molds of degree 2:

D2 =

{(
∗ 0
0 ∗

)}
, N2 =

{(
a b
0 a

)}
.

By the isomorphism above, we have:

MoldD2
2,2

∼= {[A] ∈ P2
Z | tr(A)2 − 4 det(A) 6= 0},

MoldN2
2,2

∼= {[A] ∈ P2
Z | tr(A)2 − 4 det(A) = 0}.

Note that GL2 acts on Mold2,2 by A 7→ PAP−1. Set

P1,2 =


 ∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗

 ∈ GL3

 , P2,1 =


 ∗ ∗ ∗

∗ ∗ ∗
0 0 ∗

 ∈ GL3

 .

We define the action of P1,2 (or P2,1) on Mold2,2 by ∗ ∗ ∗
0
0

P ′

 · A = P ′AP ′−1

 or

 P ′ ∗
∗

0 0 ∗

 · A = P ′AP ′−1, respectively

, where P ′ ∈ GL2.

Let us consider GL3 ×P1,2 Mold2,2 and GL3 ×P2,1 Mold2,2. For example, GL3 ×P1,2

Mold2,2 = {(g, A) | g ∈ GL3, A ∈ Mold2,2}/ ∼, where (g, A) ∼ (gb−1, bAb−1) for b ∈ P1,2.



Definition 15. The morphisms Φ2,2 and Φ′
2,2 induce Ψ2,2 and Ψ′

2,2, respectively:

Ψ2,2 : GL3 ×P1,2 Mold2,2 → Mold3,5

(g, A) 7→ g

 ∗ ∗ ∗
0
0

A

 g−1

and
Ψ′

2,2 : GL3 ×P2,1 Mold2,2 → Mold3,5

(g, A) 7→ g

 A
∗
∗

0 0 ∗

 g−1.

Theorem 16. The morphism Ψ2,2 : GL3×P1,2Mold2,2 → Mold3,5 induces an isomorphism

between GL3 ×P1,2 Mold2,2 and MoldS13
3,5 . Moreover, we have the following correspondences

as sets:

MoldS13
3,5

∼= GL3 ×P1,2 MoldD2
2,2,

MoldS12
3,5

∼= GL3 ×P1,2 MoldN2
2,2.

Theorem 17. The morphism Ψ′
2,2 : GL3×P2,1Mold2,2 → Mold3,5 induces an isomorphism

between GL3 ×P2,1 Mold2,2 and MoldS14
3,5 . Moreover, we have the following correspondences

as sets:

MoldS14
3,5

∼= GL3 ×P2,1 MoldD2
2,2,

MoldS10
3,5

∼= GL3 ×P2,1 MoldN2
2,2.

For (L,W ) ∈ P∗(V )× P∗(V ), set

A(L,W ) =

{
f ∈ End(V ) ∼= M3(k)

f(L) ⊂ L, f(W ) ⊂ W such that
L ∼= V/W as k[f ]-modules

}
.

Let us define a morphism

ΦM2×D1 : P∗(V )× P∗(V ) → Mold3,5

(L,W ) 7→ A(L,W ).

Theorem 18. The image of ΦM2×D1 is open and closed in Mold3,5. Moreover, ΦM2×D1

gives an isomorphism between P∗(V )× P∗(V ) and the closure MoldM2×D1
3,5 of MoldM2×D1

3,5 .
Moreover, we have the following correspondences as sets:

MoldM2×D1
3,5

∼= {(L,W ) ∈ P∗(V )× P∗(V ) | L 6⊂ W},
MoldS11

3,5
∼= Flag3 = {(L,W ) ∈ P∗(V )× P∗(V ) | L ⊂ W}.

By the results above, we have:



Theorem 19 ([5]). We have an irreducible decomposition

Mold3,5 = MoldM2×D1
3,5

⨿
MoldS13

3,5

⨿
MoldS14

3,5 ,

whose irreducible components are all connected components. The relative dimensions of

MoldM2×D1
3,4 , MoldS13

3,4 , and MoldS14
3,4 over Z are all 4. Moreover,

MoldM2×D1
3,5 = MoldM2×D1

3,5 ∪MoldS11
3,5 ,

MoldS13
3,5 = MoldS13

3,5 ∪MoldS12
3,5 ,

MoldS14
3,5 = MoldS14

3,5 ∪MoldS10
3,5 .

Summarizing the results on Mold3,d (1 ≤ d ≤ 9), we obtain the following corollary.

Theorem 20. Let A and B be d-dimensional subalgebras of M3(k) over an arbitrary field
k. Assume that d 6= 3, 5. If A⊗k k ∼ B ⊗k k, then A ∼ B.

Theorem 20 does not hold in the case d = 3 or 5, as shown by the following examples.

Example 21 (The case d = 5). Let A =

(
0 −1
1 −1

)
∈ M2(F2). Note that the charac-

teristic polynomial det(xI2 − A) of A is x2 + x + 1 whose smallest splitting field is F4.
Set

A1 =


 ∗ ∗ ∗

0
0

X

 ∈ M3(F2) X ∈ F2I2 + F2A

 ,

A2 =


 ∗ ∗ ∗

0 ∗ 0
0 0 ∗

 ∈ M3(F2)

 .

Then A1 6∼ A2, while A1 ⊗F2 F4 ∼ A2 ⊗F2 F4.

Example 22 (The case d = 3). Let A =

 0 0 −c3
1 0 −c2
0 1 −c1

 ∈ M3(k) over a field k. Assume

that the characteristic polynomial det(xI3 −A) = x3 + c1x
2 + c2x+ c3 of A is irreducible

over k and has distinct roots. Set

A1 = kI3 + kA+ kA2,

A2 =


 ∗ 0 0

0 ∗ 0
0 0 ∗

 ∈ M3(k)

 .

Then A1 6∼ A2, while A1 ⊗k k ∼ A2 ⊗k k.
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