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Abstract. We construct a two-sided tilting complex that corresponds to a Membrillo-
Hernández’s tree-to-star tilting complex for a generalized Brauer tree algebra. This
complex is a generalization of a Kozakai–Kunugi’s two-sided tilting complex that corre-
sponds to a Rickard’s tree-to-star tilting complex for a Brauer tree algebra.

1. Introduction

Rickard [9] and Keller [3] showed that there exists a two-sided tilting complex that
corresponds to an arbitrary tilting complex for a finite dimensional algebra. Constructing
such a two-sided tilting complex is difficult for practical calculations. Therefore, Kozakai–
Kunugi [4] provided an explicit description of a two-sided tilting complex that corresponds
to a Rickard’s tree-to-star tilting complex built in [8] for a Brauer tree algebra. Since
Rickard’s complexes for Brauer tree algebras are generalized to Membrilio-Hernández’s
complexes for generalized Brauer tree algebras, we anticipate that we can construct a
two-sided tilting complex that corresponds to a Membrilio-Hernández’s complex. In this
paper, we explicitly construct a two-sided tilting complex that corresponds to a Membrilio-
Hernández’s tree-to-star tilting complex for generalized Brauer tree algebras. This note
is based on [2].

The strategy to construct the two-sided tilting complex is the same as the one used
in Kozakai–Kunugi [4], as follows: taking an indecomposable bimodule inducing a stable
equivalence of Morita type that corresponds to the Membrilio-Hernández’s tree-to-star
tilting complex, taking a minimal projective resolution of the bimodule, and deleting
some direct summands of each term of the resolution.

However, it does not work in parallel to prove that a constructed complex is indeed
a two-sided tilting complex. The second syzygy of a simple module is a simple module
for an endomorphism algebra of a Rickard’s tilting complex for a Brauer tree algebra,
but is not for an endomorphism algebra of a Membrillo-Hernández’s tilting complex for
a generalized Brauer tree algebra in general. Then we use perverse equivalences to show
that the constructed complex is indeed a two-sided tilting complex.

In the paper, let k be an algebraically closed field, Γ and Λ finitely generated symmetric
k-algebras, Db(Γ) := Db(modΓ) the bounded derived category of finitely generated right
Γ-modules, Kb(proj Γ) the bounded homotopy category of finitely generated projective
right Γ-modules, and mod Γ the stable module category. We assume that modules are
finitely generated right modules unless otherwise stated.

The detailed version of this paper will be submitted for publication elsewhere.



Definition 1. We say that a bounded complex T of projective Γ-modules is a tilting
complex if the following conditions are satisfied:

• HomDb(Γ)(T, T [n]) = 0 for any non-zero integer n.
• The algebra Γ is obtained by applying a finite sequence of operations, including
taking direct sums, direct summands, mapping cones, and shifts of T .

The following theorem by Rickard ties tilting complexes with derived equivalences.

Theorem 2 ([7]). The following conditions are equivalent.

• The bounded categories Db(Γ) and Db(Λ) are equivalent as triangulated categories.
• There exists a tilting complex T over the algebra Γ such that its endomorphism
algebra is isomorphic to the algebra Λ.

Definition 3 ([9]). Let C be a bounded complex of (Λ,Γ)-bimodules which are projective
as Λ

op
-modules and Γ-modules and D a bounded complex of (Γ,Λ)-bimodules which are

projective as Γ
op
-modules and Λ-modules. We say that C is a two-sided tilting complex

if the following hold.

D ⊗L
Λ C ∼= Γ in Db (Γ

op ⊗k Γ) and C ⊗L
Γ D

∼= Λ in Db (Λ
op ⊗k Λ).

Rickard and Keller showed that we can construct a two-sided tilting complex from a
tilting complex theoretically.

Theorem 4 ([9, 3]). If T is a tilting complex of Γ-modules such that EndDb(Γ)(T ) ∼= Λ,
then there exists a two-sided tilting complex C of (Λ,Γ)-bimodules whose restriction to Γ
is isomorphic to T in Db(Γ).

In [4], they construct a two-sided tilting complex over a Brauer tree algebra that corre-
sponds to a Rickard tilting complex by lifting the stable equivalence of Morita type. We
recall the definition of the equivalence introduced by Broué.

Definition 5. We say that Γ and Λ are stably equivalent of Morita type if there exist
a (Λ,Γ)-bimodule M and a (Γ,Λ)-bimodule N such that the following conditions are
satisfied.

• The bimodules M and N are projective as left modules and right modules.
• N ⊗Λ M ∼= Γ⊕ P as (Γ,Γ)-bimodules for some projective (Γ,Γ)-bimodule P .
• M ⊗Γ N ∼= Λ⊕Q as (Λ,Λ)-bimodules for some projective (Λ,Λ)-bimodule Q.

We say that M induces a stable equivalence of Morita type.

The following lemma implicates that if two symmetric algebras are derived equivalent
then they are stably equivalent of Morita type.

Proposition 6 ([9, 5]). If F : Db(Γ) → Db(Λ) is a derived equivalence, then there is
an indecomposable (Λ,Γ)-bimodule M inducing a stable equivalence of Morita type which



commutes with the following diagram.

Db(Λ) Db(Γ)

Db(Λ)/Kb(proj Λ) Db(Γ)/Kb(proj Γ)

modΛ modΓ

F−1

∼= ∼=

−⊗ΛM

.

We remark that the existence of a module M satisfying the conditions in the above
proposition follows from [9, Corollary 5.5] and its indecomposability follows from [5,
Proposition 2.4].

The following proposition gives some expression of a projective cover of a bimodule.

Proposition 7 ([10]). Let M be a (Λ,Γ)-bimodule, which is projective as a Λ
op
-module

and a Γ-module. Then a projective cover of M is isomorphic to⊕
V ∈S′

Q(V )∗ ⊗k P (V ⊗Λ M),

where P (−) (resp. Q(−)) denotes a projective cover of a Γ (resp. Λ)-module, −∗ a k-dual
of a module, and S ′ a complete set of representatives of isomorphism classes of simple
Λ-modules.

Since the kernel of a projective cover of M is ΩM , projective as a Λ
op
-module and a

Γ-module, we can express each term of a minimal projective resolution of M .

2. Perverse equivalences

Perverse equivalences are special derived equivalences introduced by Chuang–Rouquier
in [1]. In this chapter, we recall the notion of perverse equivalences. Let Γ and Λ be
symmetric k-algebras. Let S be a complete set of representatives of isomorphism classes
of simple Γ-modules, r a positive integer, q : {0, . . . , r−1} → Z a map, and S• a filtration
of S satisfying

∅ = S−1 ⊆ S0 ⊆ S1 ⊆ · · · ⊆ Sr−1 = S.
Similarly, let S ′ be a complete set of representatives of isomorphism classes of simple
Λ-modules and S ′

• a filtration of S ′ satisfying

∅ = S ′
−1 ⊆ S ′

0 ⊆ S ′
1 ⊆ · · · ⊆ S ′

r−1 = S ′.

Definition 8. An equivalence F : Db(Γ) → Db(Λ) is perverse relative to (S•,S ′
•, q) if for

every i, the following hold:

• For S ∈ Si −Si−1 and ℓ 6= −q(i), all composition factors of the ℓth cohomology of
F (S), denoted by Hℓ(F (S)) are in S ′

i−1.

• There exist submodules ∃L1 ≤ ∃L2 ≤ H−q(i)(F (S)) such that all composition
factors of L1 and H−q(i)(F (S))/L2 are in S ′

i−1 and L2/L1 ∈ S ′
i − S ′

i−1.

• The map S 7→ L2/L1 induces a bijection Si − Si−1 → S ′
i − S ′

i−1.



We remark that the definition of perverse equivalences above is equivalent to the one
established by Chuang–Rouquier, as supported by [1, Lemma 4.19]. The following propo-
sition holds.

Proposition 9 ([1]). Let S•, S ′
• and S ′′

• denote filtrations of sets of representatives of iso-
morphism classes of simple Γ, Γ′, and Γ′′-modules, respectively, having a common length.
Let q and q′ be maps from the indices of filtrations to integers. Let F : Db(Γ) Db(Γ′)∼

and G : Db(Γ′) Db(Γ′′)∼ be perverse equivalences relative to (S•,S ′
•, q) and (S ′

•,S ′′
• , q

′),
respectively. The following hold:

(1) F−1 is perverse relative to (S ′
•,S•,−q).

(2) G ◦ F is perverse relative to (S•,S ′′
• , q + q′).

(3) If q = 0, then F restricts to a Morita equivalence from Γ to Γ′.

For symmetric algebras, Chuang–Rouquier provided decreasing perversities, the com-
putational framework for perverse equivalences relative to (S•,S ′

•, q) satisfying q(i) = −i
and established images of simple modules through the equivalences. We can describe how
to construct such derived equivalences and the images of simple modules by the following
way [1].

For i ∈ {0, . . . , r− 1} and S ∈ Si −Si−1, we construct TS = (T ℓ
S, d

ℓ)ℓ∈Z a complex with
zero terms in degrees other than −r + 1, . . . ,−i, as follows. Put T−i

S = P (S). Having
constructed T u

S and du for all u ∈ {−j, . . . ,−i} for j ∈ {i, . . . , r − 2}, let M−j be the
smallest submodule of K−j := Ker(d−j : T−j

S → T 1−j
S ) such that all composition factors

of K−j/M−j lie in Sj. Define d−j−1 : T−j−1
S → T−j

S to be the composition of a projective

cover T−j−1
S → M−j with the inclusion of M−j into T−j

S . Then the following proposition
holds.

Proposition 10 ([1, Proposition 5.7]). The complex T =
⊕

S∈S TS is a tilting complex
and the equivalence F = Hom•

Γ(T,−) : Db(Γ) → Db(EndKb(proj Γ)(T )) is perverse relative
to (S•,S ′

•, q), where q is given by q(i) = −i.

Let Λ = EndKb(proj Γ)(T ). Given S ∈ S, then F (TS) is isomorphic to an indecomposable
projective Λ-module whose simple quotient we denote by S ′. For S ∈ Si − Si−1, we
construct a complex YS = (Y ℓ

S , d
ℓ)ℓ∈Z with zero terms in degrees other than −i, . . . , 0. If

i = 0, we put YS = S. Otherwise we start by putting Y −i
S = P (S). If i = 1, we define

d−i : Y −i
S → Y 1−i

S to be the quotient map from P (S) to P (S)/N1−i, where we define N1−i

to be the largest submodule of P (S) such that all composition factors of N1−i/S are in
Si−1. Otherwise, we define d−i : Y −i

S → Y 1−i
S to be the composition of the quotient map

P (S) → P (S)/N1−i with an injective hull P (S)/N1−i → Y 1−i
S .

Having constructed Y u
S and d−1+u

S for all u ∈ {−i, . . . ,−j} for −j ∈ {1 − i, . . . ,−1},
let N1−j be the largest quotient of C1−j:=Coker(d−1−j : Y −1−j

S → Y −j
S ) such that all

composition factor of Ker(C1−j → N1−j) are in Sj−1. Then let d−j : Y −j
S → Y 1−j

S

be the composition of the canonical epimorphism Y −j
S → N1−j with an injective hull

N1−j → Y 1−j
S . When j = 1, the constructions of C1−j and N1−j are the same, but

d−j : Y −j
S → Y 1−j

S is the canonical epimorphism Y −j
S → N1−j = Y 1−j

S . The following
proposition holds:

Proposition 11 ([1, Lemma 5.9.]). We have YS
∼= F−1(S ′) for S ∈ S.



3. Generalized Brauer tree algebras

In this section, we recall a generalized Brauer tree algebra.

Definition 12. A generalized Brauer tree T consists of a quadruple (V,E,m, ρ), where
V is a finite set, E is a subset of the set consisting just two elements of the power set of
V such that (V,E) is a connected tree, m is a function from V to positive integers, and
ρv is a cyclic order on the set {e ∈ E | v ∈ e} for v ∈ V . We remark that when the set
{e ∈ E | v ∈ e} consists of a unique element e0, we do not define the cyclic order for v if
the multiplicity of v is 1, on the other hand, we define the cyclic order on v as e0 < e0 if
the multiplicity of v is greater than 1. We call an element of V a vertex, an element of E
an edge, and an image of v ∈ E by m denoted by mv the multiplicity of v.

Let T = (V,E,m, ρ) be a generalized Brauer tree, Q = (Q0, Q1) be a quiver and I
a relation ideal of path algebra kQ. A bound quiver algebra A ∼= kQ/I is a generalized
Brauer tree algebra associated to T if the following hold.

The set Q0 is the set of edges E. For e, e′ ∈ E, we draw a unique arrow in Q1 from e
to e′ if and only if there exists a vertex v such that e′ is the following edge of e respective
to the cyclic order ρv. For α ∈ Q1 from e to e′, we denote π(α) to be a unique vertex
v ∈ V such that e′ is the following edge of e respective to the cyclic order ρv. The ideal
I is generated by

• αβ if π(α) 6= π(β) for α, β ∈ Q1.
• α1α2 . . . αsαs+1 for π(αi) = v for all 1 ≤ i ≤ s and s = mv|{e ∈ E | v ∈ e}|.
• α1α2 . . . αs − β1β2 . . . βt for π(αi) = v for all 1 ≤ i ≤ s and for π(βj) = w for all
1 ≤ j ≤ t and s = mv|{e ∈ E | v ∈ e}| and t = mw|{e ∈ E | w ∈ e}| if {v, w} ∈ E
and the sources of α1 and β1 are equivalent to the edge {v, w} .

Remark 13. Generalized Brauer tree algebras are Brauer graph algebras associated to
tree-shaped Brauer graphs and indecomposable symmetric special biserial algebras of tame
representation type. Moreover, a generalized Brauer tree algebra is of finite representation
type if and only if it is a Brauer tree algebra.

4. Previous work

Let T = (V,E,m, ρ) be a generalized Brauer tree and A a generalized Brauer tree
algebra associated to T . We denote an indecomposable projective A-module associated
to an edge n by Pn and simple module by Sn. We fix a vertex v0 of T . For each edge n,
we take the path starting from n and ending at v0 as

(p0n, p
1
n, . . ., p

d(n)−2
n , pd(n)−1

n ),

where we denote the length of path from n to v0 by d(n). We also denote the maximum
of d(n) for n ∈ E by r. Let Tn denote a bounded complex of A-modules:

(−r + 1)st (−r + 2)nd (−r + d(n))th

P
p
d(n)−1
n

P
p
d(n)−2
n

· · · Pp1n
Pp0n

,

where each differential morphism of the complex is right minimal. Put T =
⊕

n∈E Tn.
Membrillo-Hernández showed that the complex T is a tilting complex for a generalized



Brauer tree algebra which is a generalization of a Rickard’s tilting complex for a Brauer
tree algebra.

Theorem 14 ([6]). The complex T is a tilting complex. The endomorphism algebra
B = End(T ) is a generalized Brauer tree algebra associated to a star-shaped generalized
Brauer tree.

For Brauer tree algebras, Kozakai–Kunugi constructed a two-sided tilting complex cor-
responding to T by lifting a bimodule inducing a stable equivalence of Morita type. In
the following section we see the same holds for generalized Brauer tree algebras.

5. Main results

We use the hypotheses and notation made in Section 4. Let S denote the set {Sn | n ∈
E}. The set Si = {Sn ∈ S | d(n) ≥ r − i} gives a filtration of the simple A-modules.

S• : ∅ = S−1 ⊆ S0 ⊆ S1 ⊆ · · · ⊆ Sr−1 = S

Let Vn denote a simple B-module that corresponds to the indecomposable projective
module Hom(T, Tn) for an edge n of T , and S ′ the set {Vn | n ∈ E}. The set S ′

i = {Vn ∈
S ′ | Sn ∈ Si} gives a filtration of the set S ′.

S ′
• : ∅ = S ′

−1 ⊆ S ′
0 ⊆ S ′

1 ⊆ · · · ⊆ S ′
r−1 = S ′

By applying the construction method of tilting complex described before Proposition
10 and the induction on the index of simple filtrations, we have the following lemma:

Lemma 15 ([2]). The derived equivalence F induced by the Membrillo-Hernández’s tilting
complex T is perverse equivalence relative to (S•,S ′

•, q) for q(i) = −i.

For each edge n ∈ E, we denote the source of the path starting from n and ending at
v0 ∈ V by vn. We denote the following edge of n associated to the cyclic order ρvn around
vn by n′. We denote the smallest length uniserial module to have Sn for the bottom and
Sn′ for the top by Ln. By applying the construction method described before Proposition
11 and the induction on the index of simple filtrations, we have the following lemma:

Lemma 16 ([2]). For each edge n of T , the (r−d(n))-shift of the module Ln is isomorphic
to a complex of A-modules F−1(Vn) in the bounded derived A-module category.

We denote an indecomposable projective B-module Hom(T, Tn) by Qn for each edge n.
We denote by P (−) a projective cover of a module and by Ω(−) a syzygy of a module.
We denote an indecomposable (B,A)-bimodule giving stable equivalence of Morita type
induced by F−1 by M . By Proposition 6, we have Vn ⊗B M is isomorphic to Ωd(n)−r Ln

in modA.
Let P • be a minimal projective resolution of B

op ⊗k A-module M . By Proposition 7,
we can express each term of P • as follows.

P−t =


M (t = 0),⊕

n∈E Q∗
n ⊗k P (Ωt−1+d(n)−r Ln) (t > 0),

0 (t < 0).



We delete some direct summands of each term and get a subcomplex C of P • as follows.

C−t =


M (t = 0),⊕

n∈E, d(n)≤r−t Q
∗
n ⊗k P (Ωt−1+d(n)−r Ln) (t > 0),

0 (t < 0).

Each differential map of C is restriction of the differential map of P •.

Theorem 17 ([2]). Let A be a generalized Brauer tree k-algebra, T a tilting complex of
A-modules given in [6], B := End(T ) denote the generalized Brauer star algebra, M an in-
decomposable B

op ⊗kA-module inducing a stable equivalence of Morita type corresponding
to T , and C a complex given by deleting some direct summands of a minimal projective
resolution of M as above. Then following statements hold.

(1) The complex C is a two-sided tilting complex of B
op ⊗k A-modules.

(2) The restriction of the complex C of B
op ⊗k A-modules to A-modules is isomorphic

to the tilting complex T in Db(A).

Sketch of proof. Since Vn ⊗B Q∗
ℓ = HomB(Qℓ, Vn) = δn,ℓk for n, ℓ ∈ E, where δ means

Kronecker’s delta, we have

Vn ⊗B C−t =


Vn ⊗B M ∼= Ωd(n)−r Ln (t = 0),

P (Ωt−1+d(n)−r Ln) (t > 0 and d(n) ≤ r − t),

0 (t < 0 and d(n) > r − t).

Since each differential map of C from C−t to C−t+1 for d(n) − r ≤ −t < 0 is minimal
and the cohomology at the 0th term of Vn ⊗B C is 0, the complex Vn ⊗B C is isomorphic
to the (r − d(n))-shift of a minimal projective resolution of Ln. Therefore Vn ⊗B C is
isomorphic to Ln[r− d(n)] in the bounded derived A-module category. By Lemma 16, we
have Vn ⊗B C ∼= F−1(Vn). Hence, the following isomorphisms hold for n, ℓ ∈ E and u an
integer.

HomDb(B
op⊗kB)(C ⊗A C∗, V ∗

n ⊗k Vℓ[−u])
∼=HomDb(A)(Vn ⊗B C, Vℓ ⊗B C[−u])

∼=HomDb(A)(F
−1(Vn), F

−1(Vℓ)[−u])
∼=HomDb(B)(Vn, Vℓ[−u])
∼=δnℓδu0k.

Therefore, for i 6= 0, C ⊗A C∗ has no cohomology in the ith term. Since the ith term
of C ⊗A C∗ is projective, C ⊗A C∗ is homotopy equivalent to the 0th term. By [11,
Lemma 10.2.5], the 0th cohomology of C ⊗A C∗ has a direct summand B. Therefore,
we have C ⊗A C∗ is homotopy equivalent to B. By [11, Lemma 10.2.4], the complex C
is a two-sided tilting complex. Hence we have C is a two-sided tilting complex and (1)
holds. Moreover, −⊗B C is perverse equivalence with respect to (S ′

•,S•, q) for a perverse
function q(i) = i. Since F (− ⊗B C) induces a Morita equivalence by Proposition 9, we
have

F (B ⊗B C) ∼= B ∼= F (T ).

By applying the functor F−1, we have (2). □



This theorem generalizes a Kozakai–Kunugi’s two-sided tilting complex that corre-
sponds to a Rickard’s tilting complex for a Brauer tree algebra to a two-sided tilting
complex that corresponds to a Membrillo-Hernández’s tilting complex for a generalized
Brauer tree algebra.

They used the concept of perverse equivalences to show that the restriction of a con-
structed two-sided tilting complex is equivalent to the Rickard’s tilting complex. On
the other hand, we used perverse equivalences to show that not only the restriction of a
constructed two-sided tilting complex is equivalent to the Membrillo-Hernández’s tilting
complex but also the constructed complex is indeed a two-sided tilting complex.
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