THE STABLE CATEGORY OF GORENSTEIN-PROJECTIVE MODULES OVER A MONOMIAL ALGEBRA

TAKAHIRO HONMA AND SATOSHI USUI

ABSTRACT. Let Λ be an arbitrary monomial algebra. We investigate the stable category $\underline{\operatorname{Gproj}}^{\mathbb{Z}}\Lambda$ of graded Gorenstein-projective Λ -modules and the orbit category $\underline{\operatorname{Gproj}}^{\mathbb{Z}}\Lambda/(1)$ induced by $\underline{\operatorname{Gproj}}^{\mathbb{Z}}\Lambda$ and the degree shift functor (1). We prove that $\underline{\operatorname{Gproj}}^{\mathbb{Z}}\Lambda$ is triangle equivalent to the bounded derived category of a path algebra of Dynkin type Λ and that $\underline{\operatorname{Gproj}}^{\mathbb{Z}}\Lambda/(1)$ is triangle equivalent to the stable module category of a self-injective Nakayama algebra. The latter result provides an explicit description of the stable category of (ungraded) Gorenstein-projective Λ -modules.

1. INTRODUCTION

Throughout this paper, let K be a field. By an algebra, we mean a finite dimensional associative K-algebra with a unit (except when considering the path algebra KQ of a finite quiver Q that contains a cycle). Further, a module means a finitely generated right module. For a Krull-Schmidt category C, we denote by ind C the set of indecomposable objects of C up to isomorphism. We always assume that any full subcategory of an additive category is closed under isomorphisms.

The notion of Gorenstein-projective Λ -modules was originally introduced by Auslander and Bridger [2], and it is well known that the stable category <u>Gproj</u> Λ of Gorensteinprojective Λ -modules carries a structure of a triangulated category. Many authors work with Iwanaga-Gorenstein algebras because of a theorem of Buchweitz [4, Theorem 4.4.1] and Happel [10, 4.6], which says that if Λ is an Iwanaga-Gorenstein algebra, then <u>Gproj</u> Λ is triangle equivalent to the singularity category $\mathcal{D}_{sg}(\text{mod }\Lambda)$ of Λ .

On the other hand, for more general algebras, Gorenstein-projective modules over monomial algebras Λ have been intensively studied. Indeed, Ringel [14] showed that when Λ is a connected Nakayama algebra without simple projective modules, <u>Gproj</u> Λ is triangle equivalent to the stable module category of some connected self-injective Nakayama algebra. Further, Chen, Shen and Zhou [6] proved that <u>Gproj</u> Λ is triangle equivalent to the stable module category of some radical square zero self-injective Nakayama algebra when Λ is a monomial algebra with a certain condition. Moreover, Kalck [11] and Lu and Zhu [13] obtained a similar result for gentle algebras and 1-Iwanaga-Gorenstein monomial algebras, respectively.

In this paper, we study <u>Gproj</u> Λ for arbitrary monomial algebras $\Lambda = KQ/I$ and, by applying the covering theory developed in [1], we show that <u>Gproj</u> Λ is triangle equivalent to the stable module category of some self-injective Nakayama algebra.

The detailed version of this paper will be submitted for publication elsewhere.

2. Preliminaries

In this section, we recall the definition of Gorenstien-projective modules and related notions and facts used in this paper.

2.1. Gorenstein-projective modules. Throughout this subsection, we let Λ be an algebra. A cochain complex $P^{\bullet}: \cdots \to P^{i-1} \xrightarrow{d^{i-1}} P^i \xrightarrow{d^i} P^{i+1} \to \cdots$ of projective Λ -modules is called *totally acyclic* [3] if both P^{\bullet} and the Hom complex $\operatorname{Hom}_{\Lambda}(P^{\bullet}, \Lambda)$ are acyclic. We say that a Λ -module M is *Gorenstein-projective* [7] if there exists a totally acyclic complex P^{\bullet} such that $\operatorname{Ker} d^0$ is isomorphic to M in mod Λ . We refer to [5] for their basic properties. Let $\operatorname{Gproj} \Lambda$ be the full subcategory of mod Λ consisting of Gorenstein-projective Λ -modules. Since projective modules are Gorenstein-projective, we have that $\operatorname{proj} \Lambda \subseteq \operatorname{Gproj} \Lambda \subseteq \operatorname{mod} \Lambda$. We say that Λ is *CM-free* if $\operatorname{proj} \Lambda = \operatorname{Gproj} \Lambda$. For example, algebras of finite global dimension are CM-free. We say that Λ is *CM-finite* if there are only finitely many pairwise non-isomorphic indecomposable Gorenstein-projective Λ -modules. CM-free algebras and representation-finite algebras are both examples of CM-finite algebras. Also, it is easily seen that $\operatorname{Gproj} \Lambda = \operatorname{mod} \Lambda$ if and only if Λ is self-injective.

Recall that the *stable category* $\underline{\text{mod}}\Lambda$ of $\text{mod}\Lambda$ is defined as the category whose objects are the same as $\text{mod}\Lambda$ and whose morphisms are given by

(2.1)
$$\underline{\operatorname{Hom}}_{\Lambda}(M,N) := \operatorname{Hom}_{\operatorname{mod}\Lambda}(M,N) = \operatorname{Hom}_{\Lambda}(M,N)/\mathcal{P}(M,N)$$

for any M and $N \in \underline{\mathrm{mod}}\Lambda$, where $\mathcal{P}(M, N)$ denotes the space of morphisms from M to N that factor through a projective Λ -module. Let $\underline{\mathrm{Gproj}}\Lambda$ be the full subcategory of $\underline{\mathrm{mod}}\Lambda$ consisting of Gorenstein-projective Λ -modules. The category $\underline{\mathrm{Gproj}}\Lambda$ is known to be a Frobenius exact category whose projective objects are precisely projective Λ -modules, so that the stable category $\underline{\mathrm{Gproj}}\Lambda$ carries a structure of a triangulated category; see [9].

Recall that Λ is called *d-Iwanaga-Gorenstein* (or simply *Iwanaga-Gorenstein*) if both $id_{\Lambda}\Lambda$ and $id_{\Lambda}\Lambda$ are finite and at most d, where $id_{\Lambda}M$ denotes the injective dimension of M in mod Λ . In case Λ is Iwanaga-Gorenstein, there exists a triangle equivalence from the stable category Gproj Λ to the *singularity category* $\mathsf{D}_{sg}(\mathrm{mod}\,\Lambda)$ of Λ , where $\mathsf{D}_{sg}(\mathrm{mod}\,\Lambda)$ is defined to be the Verdier quotient of the bounded derived category $\mathsf{D}^{\mathrm{b}}(\mathrm{mod}\,\Lambda)$ of Λ by the perfect derived category $\mathsf{K}^{\mathrm{b}}(\mathrm{proj}\,\Lambda)$; see [4].

2.2. Monomial algebras and their Gorenstein-projective modules. In this subsection, we review some notations and facts related to monomial algebras, including an explicit description of Gorenstein-projective modules by Chen, Shen and Zhou [6].

Let $Q = (Q_0, Q_1, s, t)$ be a finite quiver. A path of length n in Q is a sequence $p = a_1a_2 \cdots a_n$ of arrows $a_i \in Q_1$ with $t(a_i) = s(a_{i+1})$ for all $1 \leq i \leq n-1$. We define its source $s(p) := s(a_1)$ and its target $t(p) := t(a_n)$. The length of a path p is denoted by l(p). For a vertex v in Q, we associate a trivial path e_v of length zero with $s(e_v) = v = t(e_v)$. We denote by \mathcal{B} the set of paths, by \mathcal{B}_i the set of paths of length i and by $\mathcal{B}_{\geq i}$ the set of paths of length $\geq i$. We put $\mathcal{B}_{>0} := \mathcal{B}_{\geq 1}$. The concatenation of two paths p and q with t(p) = s(q) is denoted by pq. For any p and $q \in \mathcal{B}$, we say that q is a subpath of p if p = p'qp'' for some $p', p'' \in \mathcal{B}$. When p' is trivial, we refer to the subpath q as a right divisor of p. A subpath q of p is called proper if $q \neq p$. A cycle in Q is a path c such that s(c) = t(c).

say that two cycles c and c' are *equivalent* if c coincides with c' up to cyclic permutation. This is equivalent to saying that c is a subpath of $(c')^m$ and c' is a subpath of c^n for some positive integers m, n. Let S be a subset of \mathcal{B} . We say that $p \in S$ is *left minimal in* S if there exists no proper left divisor of p that belongs to S (i.e. there exists no path $s \in S$ such that p = sp' for some $p' \in \mathcal{B}_{>0}$). Dually, one can define right minimal path in S. We say that $p \in S$ is *minimal in* S if there exists no proper subpath of p that belongs to S.

Recall that a bound quiver algebra KQ/I is called *monomial* if the admissible ideal I is generated by paths. In the rest of this section, let $\Lambda = KQ/I$ be a monomial algebra. We denote by \mathbb{F} the set of minimal paths in the set {paths belonging to I}. Note that \mathbb{F} generates I as an ideal of KQ. In particular, \mathbb{F} is a finite set. We say that $p \in \mathcal{B}$ is *non-zero in* Λ if the canonical image p + I in Λ is non-zero, or equivalently, p does not contain any path of \mathbb{F} as a subpath. The non-zero paths form a K-basis of Λ . For each $p \in \mathcal{B}$, we denote the canonical image p + I in Λ by p. We write p = 0 in Λ when p lies in I. For a non-zero non-trivial path p, we define L(p) as the set of right minimal paths in the set {non-zero paths $q \mid t(q) = s(p)$ and qp = 0 in Λ }. Dually, we define R(p) as the set of left minimal paths in the set {non-zero paths $q \mid t(p) = s(q)$ and pq = 0 in Λ }.

Definition 1 (cf. [6, Definitions 3.3 and 3.7]). (1) A pair (p,q) of non-zero paths in Λ is said to be *perfect* if the following conditions are satisfied:

- (P1) p and q are both non-trivial and satisfy t(p) = s(q) and pq = 0 in Λ ;
- (P2) If pq' = 0 for a non-zero path q' with t(p) = s(q'), then q is a left divisor of q' (in other words, $R(p) = \{q\}$);
- (P3) If p'q = 0 for a non-zero path p' with t(p') = s(q), then p is a right divisor of p' (in other words, $L(q) = \{p\}$).
- (2) A sequence $(p_1, \ldots, p_n, p_{n+1} = p_1)$ of non-zero paths in Λ is called a *perfect path* sequence if (p_i, p_{i+1}) is a perfect pair for all $1 \leq i \leq n$. A path appearing in a perfect path sequence is called a *perfect path*.
- (3) A perfect path sequence $(p_1, \ldots, p_n, p_{n+1} = p_1)$ is called *minimal* if $p_i \neq p_j$ for any $1 \leq i \neq j \leq n$.

Let \mathbb{P}_{Λ} denote the set of perfect paths. The following result describes indecomposable non-projective Gorenstein-projective Λ -modules. Note that ind <u>Gproj</u> Λ can be identified with the set of the isomorphism classes of indecomposable non-projective Gorensteinprojective Λ -modules.

Theorem 2 ([6, Theorem 4.1]). Let Λ be a monomial algebra. Then there is a bijection

$$\mathbb{P}_{\Lambda} \xleftarrow{1:1} \operatorname{ind} \underline{\operatorname{Gproj}} \Lambda$$

where a perfect path p is sent to the cyclic Λ -module p Λ .

Remark 3. It follows from the theorem that monomial algebras Λ are always CM-finite. It also follows that Λ is CM-free precisely when \mathbb{P}_{Λ} is empty.

2.3. Positively graded algebras. This subsection is devoted to recalling some basic facts in the representation theory of finite dimensional positively graded algebras from [8, 13]. Throughout this subsection, let $\Lambda = \bigoplus_{i\geq 0} \Lambda_i$ be a positively graded algebra (i.e. a \mathbb{Z} -graded algebra satisfying $\Lambda_i = 0$ for i < 0).

Let $\operatorname{mod}^{\mathbb{Z}} \Lambda$ be the category of graded Λ -modules and $\operatorname{proj}^{\mathbb{Z}} \Lambda$ its full subcategory consisting of graded projective Λ -modules. Recall that the space of morphisms from M to N in $\operatorname{mod}^{\mathbb{Z}} \Lambda$ is defined by

$$\operatorname{Hom}_{\Lambda}^{\mathbb{Z}}(M,N) := \operatorname{Hom}_{\operatorname{mod}^{\mathbb{Z}}\Lambda}(M,N) = \{ f \in \operatorname{Hom}_{\Lambda}(M,N) \mid f(M_i) \subseteq N_i \text{ for all } i \in \mathbb{Z} \}.$$

Let $\underline{\mathrm{mod}}^{\mathbb{Z}}\Lambda$ be the stable category of $\mathrm{mod}^{\mathbb{Z}}\Lambda$, defined in a way similar to the case of $\underline{\mathrm{mod}}\Lambda$. For any $M, N \in \underline{\mathrm{mod}}^{\mathbb{Z}}\Lambda$, we denote $\underline{\mathrm{Hom}}^{\mathbb{Z}}_{\Lambda}(M, N) := \mathrm{Hom}_{\underline{\mathrm{mod}}^{\mathbb{Z}}\Lambda}(M, N)$. For a graded Λ module $M = \bigoplus_{i \in \mathbb{Z}} M_i$ and an integer j, we define the degree shift $M(j) \in \mathrm{mod}^{\mathbb{Z}}\Lambda$ by $M(j)_i = M_{i+j}$ for $i \in \mathbb{Z}$. This operation induces an automorphism $(j) : \mathrm{mod}^{\mathbb{Z}}\Lambda \to \mathrm{mod}^{\mathbb{Z}}\Lambda$.

Replacing mod Λ by mod^Z Λ , one can define the notion of graded Gorenstein-projective Λ -modules. We denote by $\operatorname{Gproj}^{\mathbb{Z}} \Lambda$ (resp. $\operatorname{\underline{Gproj}}^{\mathbb{Z}} \Lambda$) the full subcategory of mod^Z Λ (resp. $\operatorname{\underline{mod}}^{\mathbb{Z}} \Lambda$) consisting of graded Gorenstein-projective Λ -modules. Then we have $\operatorname{proj}^{\mathbb{Z}} \Lambda \subseteq \operatorname{Gproj}^{\mathbb{Z}} \Lambda \subseteq \operatorname{mod}^{\mathbb{Z}} \Lambda$. We say that Λ is graded CM-free if $\operatorname{proj}^{\mathbb{Z}} \Lambda = \operatorname{Gproj}^{\mathbb{Z}} \Lambda$. The algebra Λ is said to be graded CM-finite if the number of the isomorphism classes of indecomposable graded Gorenstein-projective Λ -modules is finite up to degree shift. By definition, graded CM-freeness implies graded CM-finiteness. Let $F : \operatorname{mod}^{\mathbb{Z}} \Lambda \to \operatorname{mod} \Lambda$ be the forgetful functor. It follows from [8, Theorem 3.2] (resp. [8, Theorem 3.3]) that a graded Λ -module M is indecomposable (resp. projective) in $\operatorname{mod}^{\mathbb{Z}} \Lambda$ if and only if FM is indecomposable (resp. projective) in $\operatorname{mod} \Lambda$. Therefore, if Λ is CM-free (resp. CM-finite) as an ungraded algebra, then Λ is graded CM-free (resp. graded CM-finite). On the other hand, as in the ungraded case, $\operatorname{Gproj}^{\mathbb{Z}} \Lambda$ is a Frobenius category whose projective objects are precisely graded projective Λ -modules. Hence, the stable category $\underline{\operatorname{Gproj}}^{\mathbb{Z}} \Lambda$ carries a structure of a triangulated category.

We say that Λ is graded Iwanaga-Gorenstein if $\operatorname{gr.id}_{\Lambda}\Lambda < \infty$ and $\operatorname{gr.id}_{\Lambda}\Lambda < \infty$, where $\operatorname{gr.id}_{\Lambda}M$ denotes the injective dimension of M in $\operatorname{mod}^{\mathbb{Z}}\Lambda$. As mentioned in [13, Section 2.1], the positively graded algebra Λ is graded Iwanaga-Gorenstein if and only if Λ is Iwanaga-Gorenstein as an ungraded algebra. Thus we do not distinguish between being graded Iwanaga-Gorenstein and being Iwanaga-Gorenstein. As in the ungraded case, if Λ is Iwanaga-Gorenstein, then $\operatorname{Gproj}^{\mathbb{Z}}\Lambda$ is triangle equivalent to the graded singularity category $\mathsf{D}_{sg}(\operatorname{mod}^{\mathbb{Z}}\Lambda)$ of Λ , where $\mathsf{D}_{sg}(\operatorname{mod}^{\mathbb{Z}}\Lambda)$ is defined by the Verdier quotient of $\mathsf{D}^{\mathrm{b}}(\operatorname{mod}^{\mathbb{Z}}\Lambda)$ by $\mathsf{K}^{\mathrm{b}}(\operatorname{proj}^{\mathbb{Z}}\Lambda)$.

3. Stable categories of graded Gorenstien-projective modules

In the rest of this paper, let $\Lambda = KQ/I$ be a monomial algebra and \mathbb{F} the set of minimal paths in I. Further, we always think of Λ as a positively graded algebra by setting the degree of each arrow to one. We know from [13, Section 4.1] that ind $\underline{\text{Gproj}}^{\mathbb{Z}}\Lambda = \{p\Lambda(i) \mid p \in \mathbb{P}_{\Lambda}, i \in \mathbb{Z}\}$, where we regard $p\Lambda$ as a graded Λ -module whose top is concentrated in degree l(p). In particular, $p\Lambda = \bigoplus_{i \in \mathbb{Z}} p\Lambda_i$ satisfies that $p\Lambda_i$ is spanned by the non-zero paths of the form px with $x \in \mathcal{B}_{i-l(p)}$ if such non-zero paths exist and otherwise $p\Lambda_i = 0$. In this section, we apply tilting theory to obtain a triangle equivalence between the stable category $\underline{\text{Gproj}}^{\mathbb{Z}}\Lambda$ and the bounded derived category $\mathsf{D}^{\mathrm{b}}(\operatorname{mod} KQ)$ of a path algebra KQ, where Q is a disjoint union of Dynkin quivers of type A.

We need some preparation to proceed. A perfect path sequence $(p_1, \ldots, p_n, p_{n+1} = p_1)$ gives rise to a cycle $p_1 \cdots p_n$. We refer to the shortest cycle c such that $p_1 \cdots p_n = c^l$ for some l > 0 as the underlying cycle associated with the perfect path p_1 and denote it by c_{p_1} . Cyclic permutations define an equivalence relation on the set of underlying cycles. We denote by $\mathcal{C}(\Lambda)$ the set of the equivalence classes of underlying cycles modulo this equivalence relation. On the other hand, for two perfect paths p and q, we write $p \leq q$ if p is a left divisor of q. It is easy to check that the pair $(\mathbb{P}_{\Lambda}, \leq)$ is a partially ordered set, and that the Hasse quiver $H(\mathbb{P}_{\Lambda}, \leq)$ is a disjoint union of linear quivers. We say that a perfect path p is co-elementary if p is a sink in $H(\mathbb{P}_{\Lambda}, \leq)$. The following observation asserts that any underlying cycle is the concatenation of co-elementary paths.

Proposition-Definition 4. For $c \in C(\Lambda)$, there uniquely exist finitely many co-elementary paths r_1, \ldots, r_n such that $c = r_1 \cdots r_n$. We denote |c| := n.

For each underlying cycle $c = r_1 \cdots r_n$ in Λ with each r_i co-elementary, we set

$$\mathbb{P}_{\Lambda}(c) := \{ p \in \mathbb{P}_{\Lambda} \mid r_1 \preceq p \} \text{ and } T_c := \bigoplus_{p \in \mathbb{P}_{\Lambda}(c)} p \Lambda$$

Then we define an object T of $\mathrm{Gproj}^{\mathbb{Z}}\Lambda$ as

$$T := \bigoplus_{c \in \mathcal{C}(\Lambda)} \bigoplus_{0 \le i < l(c)} T_c(i).$$

From the definition, T depends on the choice of underlying cycles and is basic in the sense that any two distinct indecomposable summands of T are non-isomorphic.

Let \mathcal{T} be a triangulated category with suspension functor Σ . We denote by $\mathcal{T}^{(k)}$ a direct product of k copies of \mathcal{T} . For a class \mathcal{X} of objects of \mathcal{T} , we denote by thick_{\mathcal{T}} \mathcal{X} the smallest thick subcategory of \mathcal{T} that contains \mathcal{X} . When \mathcal{X} consists of a single object X, we write thick_{\mathcal{T}} X instead of thick_{\mathcal{T}} $\{X\}$. In what follows, we drop the index \mathcal{T} in thick_{\mathcal{T}} \mathcal{X} when \mathcal{T} is clear from the context. Recall that a object T of \mathcal{T} is called a *tilting object* if the following two conditions are satisfied:

- (i) $\operatorname{Hom}_{\mathcal{T}}(T, \Sigma^i T) = 0$ for all $i \neq 0$.
- (ii) thick $T = \mathcal{T}$.

We are now ready to state the main result of this section is the following.

Theorem 5. The following statements hold.

- (1) The object T is a tilting object of $\text{Gproj}^{\mathbb{Z}}\Lambda$.
- (2) There exists an algebra isomorphism

$$\underline{\operatorname{End}}_{\Lambda}^{\mathbb{Z}}T \cong \prod_{c \in \mathcal{C}(\Lambda)} (K\mathbb{A}_c)^{(l(c))},$$

where \mathbb{A}_c is the following linear quiver

$$\mathbb{A}_c: 1 \to 2 \to \cdots \to |\mathbb{P}_{\Lambda}(c)|,$$

and $(K\mathbb{A}_c)^{(l(c))}$ is the direct product of l(c) copies of the path algebra $K\mathbb{A}_c$.

(3) There exists a triangle equivalence

$$\underline{\operatorname{Gproj}}^{\mathbb{Z}} \Lambda \cong \prod_{c \in \mathcal{C}(\Lambda)} \mathsf{D}^{\mathrm{b}}(\operatorname{mod} K\mathbb{A}_c)^{(l(c))},$$

where $\mathsf{D}^{\mathrm{b}}(\mathrm{mod} \ K\mathbb{A}_c)^{(l(c))}$ is the direct product of l(c) copies of the bounded derived category $\mathsf{D}^{\mathrm{b}}(\mathrm{mod} \ K\mathbb{A}_c)$ of the path algebra $K\mathbb{A}_c$.

Remark 6. The theorem explicitly describes the graded singularity category $\mathsf{D}_{sg}(\mathrm{mod}^{\mathbb{Z}} \Lambda)$ of an Iwanaga-Gorenstein monomial algebra Λ and in particular improves a result of Lu-Zhu [13, Theorem 5.2.2] for Iwanaga-Gorenstein monomial algebras.

4. Stable categories of Gorenstien-projective modules

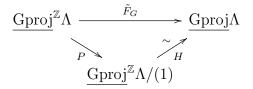
The aim of this section is to realize $\underline{\text{Gproj}}\Lambda$ as the stable module category of a selfinjective Nakayama algebra. For this, we apply the covering theory developed in [1]. We follow the terminologies in [1]. We rely on the following proposition, essentially proved by Lu and Zhu [13, Lemma 4.2.1]. Recall that for any $i \in \mathbb{Z}$, the automorphism $(i) : \mod^{\mathbb{Z}} \Lambda \to \mod^{\mathbb{Z}} \Lambda$ and the forgetful functor $F : \mod^{\mathbb{Z}} \Lambda \to \mod \Lambda$ satisfy that $F = F \circ (i)$.

Proposition 7. The forgetful functor $F : \operatorname{mod}^{\mathbb{Z}} \Lambda \to \operatorname{mod} \Lambda$ induces a G-covering

$$\tilde{F}_G : \underline{\operatorname{Gproj}}^{\mathbb{Z}} \Lambda \to \underline{\operatorname{Gproj}}^{\Lambda}$$

in the sense of [1], where G is the cyclic group generated by the automorphism (1) : $\frac{\text{Gproj}^{\mathbb{Z}}\Lambda \to \text{Gproj}^{\mathbb{Z}}\Lambda, \text{ and the invariance adjuster of } \tilde{F}_G \text{ is given by the induced formula} \\
\tilde{F}_G = \tilde{F}_G \circ (i) \text{ with } i \in \mathbb{Z}.$

By [1, Theorem 2.9], there exists an equivalence $H : \underline{\mathrm{Gproj}}^{\mathbb{Z}}\Lambda/(1) \xrightarrow{\sim} \underline{\mathrm{Gproj}}\Lambda$ of additive categories such that $\tilde{F}_G = HP$ (as *G*-invariant functors), where $P : \underline{\mathrm{Gproj}}^{\mathbb{Z}}\Lambda \to \mathrm{Gproj}^{\mathbb{Z}}\Lambda/(1)$ is the canonical functor:



Thus the orbit category $\underline{\mathrm{Gproj}}^{\mathbb{Z}}\Lambda/(1)$ becomes a triangulated category whose triangulated structure is derived from that of the triangulated category $\underline{\mathrm{Gproj}}\Lambda$ via the equivalence H. Finally, since \tilde{F}_G and H are both triangulated functors, the canonical functor P is also triangulated. On the other hand, we know from Theorem 5 that

$$\underline{\operatorname{Gproj}}^{\mathbb{Z}} \Lambda = \prod_{c \in \mathcal{C}(\Lambda)} \prod_{0 \leq i < l(c)} \operatorname{thick} T_c(i) \quad \text{with } \operatorname{thick} T_c(i) \cong \mathsf{D}^{\mathsf{b}}(\operatorname{mod} K\mathbb{A}_c).$$

For a class \mathcal{X} of objects of $\underline{\mathrm{Gproj}}^{\mathbb{Z}}\Lambda$, we denote by $P(\mathcal{X})$ the full subcategory of $\underline{\mathrm{Gproj}}^{\mathbb{Z}}\Lambda/(1)$ given by $P(\mathcal{X}) = \{P(X) \mid \overline{X \in \mathcal{X}}\}$. Then for $c \in \mathcal{C}(\Lambda)$ and $i \in \mathbb{Z}$, we have

$$P(\operatorname{thick} T_c(i)) = P((\operatorname{thick} T_c)(i)) = P(\operatorname{thick} T_c),$$

so that we obtain a decomposition into additive categories

$$\underline{\operatorname{Gproj}}\Lambda \cong \underline{\operatorname{Gproj}}^{\mathbb{Z}}\Lambda/(1) = \prod_{c \in \mathcal{C}(\Lambda)} \prod_{0 \leq i < l(c)} P(\operatorname{thick} T_c(i)) = \prod_{c \in \mathcal{C}(\Lambda)} P(\operatorname{thick} T_c)$$

This is a decomposition into triangulated categories, since $P(\text{thick } T_c) = \text{thick } P(T_c)$ for all $c \in \mathcal{C}(\Lambda)$ and $i \in \mathbb{Z}$. The following lemma investigates each triangulated subcategory $P(\text{thick } T_c)$.

Proposition 8. We have the following statements.

- (1) For $c \in \mathcal{C}(\Lambda)$ and $i, j \in \mathbb{Z}$, we have that thick $T_c(i) = \text{thick } T_c(j)$ in $\underline{\text{Gproj}}^{\mathbb{Z}}\Lambda$ if and only if $i \equiv j \mod l(c)$.
- (2) For $c \in \mathcal{C}(\Lambda)$, the restriction of the canonical functor $P : \underline{\mathrm{Gproj}}^{\mathbb{Z}}\Lambda \to \underline{\mathrm{Gproj}}^{\mathbb{Z}}\Lambda/(1)$ to thick T_c induces a G_c -covering

$$P_c$$
: thick $T_c \to P(\text{thick } T_c)$

where G_c is the cyclic group generated by the induced automorphism (l(c)): thick $T_c \rightarrow$ thick T_c .

(3) For $c \in \mathcal{C}(\Lambda)$, we have a triangle equivalence

$$P(\operatorname{thick} T_c) \cong \mathsf{D}^{\mathrm{b}}(\operatorname{mod} K\mathbb{A}_c)/\tau^{|c|},$$

where $\mathsf{D}^{\mathsf{b}}(\mathsf{mod} K\mathbb{A}_c)/\tau^{|c|}$ denotes the triangulated orbit category induced by $\mathsf{D}^{\mathsf{b}}(\mathsf{mod} K\mathbb{A}_c)$ and its Auslander-Reiten translation τ in the sense of [12].

The following consequence of the proposition is the main result of this section.

Theorem 9. Let Λ be a monomial algebra over a field K. Then we have the following triangle equivalences

$$\underline{\operatorname{Gproj}}\Lambda \cong \prod_{c \in \mathcal{C}(\Lambda)} \operatorname{D^{b}}(\operatorname{mod} K\mathbb{A}_{c})/\tau^{|c|} \\
\cong \prod_{c \in \mathcal{C}(\Lambda)} \underline{\operatorname{mod}} K\left(1 \rightleftharpoons 2 \twoheadrightarrow \cdots \twoheadrightarrow |c|\right) / R^{|\mathbb{P}_{\Lambda}(c)|+1},$$

where $\mathsf{D}^{\mathsf{b}}(\mathsf{mod} K\mathbb{A}_c)/\tau^{|c|}$ is the triangulated orbit category induced by $\mathsf{D}^{\mathsf{b}}(\mathsf{mod} K\mathbb{A}_c)$ and its Auslander-Reiten translation τ in the sense of [12], and R is the arrow ideal of the path algebra $K(1 \rightleftharpoons 2 \twoheadrightarrow \cdots \twoheadrightarrow |c|)$.

Remark 10. The theorem explicitly describes the singularity categories $D_{sg}(\text{mod }\Lambda)$ of Iwanaga-Gorenstein monomial algebras Λ . Moreover, it recovers the results of Chen, Shen and Zhou [6], Kalck [11], Lu and Zhu [13] and Ringel [14].

References

- H. Asashiba, A generalization of Gabriel's Galois covering functors and derived equivalences, J. Algebra, 334(1) (2011), 109–149.
- [2] M. Auslander and M. Bridger, *Stable module theory*, Memoirs of the American Mathematical Society, No. 94. American Mathematical Society, Providence, R.I., 1969.

- [3] L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. (3) 85(2) (2002), 393–440.
- [4] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, unpublished manuscript, (1986). available at http://hdl.handle.net/1807/16682.
- [5] X.-W. Chen, Gorenstein Homological Algebra of Artin Algebras, (2017). arXiv:1712.04587.
- [6] X.-W. Chen, D. Shen, and G. Zhou, The Gorenstein-projective modules over a monomial algebra, Proc. Roy. Soc. Edinburgh Sect. A 148(6) (2018), 1115–1134.
- [7] E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220(4) (1995), 611–633.
- [8] R. Gordon and E. L. Green, Graded Artin algebras, J. Algebra 76(1) (1982), 111–137.
- [9] D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras, **119** London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, (1988).
- [10] _____, On Gorenstein algebras, In Representation Theory of Finite Groups and Finite-Dimensional Algebras, 95 Progress in Math. Basel: Birkhäuser Verlag (1991), 389–404.
- [11] M. Kalck, Singularity categories of gentle algebras, Bull. London Math. Soc. 47 (2015), 65–74.
- [12] B. Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551–581.
- [13] M. Lu and B. Zhu, Singularity categories of Gorenstein monomial algebras, J. Pure Appl. Algebra 225(8) (2021), Paper No. 106651, 39.
- [14] C. M. Ringel, The Gorenstein projective modules for the Nakayama algebras. I, J. Algebra 385 (2013), 241–261.

DEPARTMENT OF GENERAL EDUCATION NATIONAL INSTITUTE OF TECHNOLOGY (KOSEN), YUGE COLLEGE OCHI, EHIME 794-2593 JAPAN Email address: 99cfqc90gmail.com

DEPARTMENT OF GENERAL EDUCATION TOKYO METROPOLITAN COLLEGE OF INDUSTRIAL TECHNOLOGY 8-17-1, MINAMISENJU, ARAKAWA-KU, TOKYO 116-8523 JAPAN *Email address*: usui@metro-cit.ac.jp