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Abstract. Let Λ be an arbitrary monomial algebra. We investigate the stable category
GprojZΛ of graded Gorenstein-projective Λ-modules and the orbit category GprojZΛ/(1)

induced by GprojZΛ and the degree shift functor (1). We prove that GprojZΛ is triangle
equivalent to the bounded derived category of a path algebra of Dynkin type A and
that GprojZΛ/(1) is triangle equivalent to the stable module category of a self-injective
Nakayama algebra. The latter result provides an explicit description of the stable cate-
gory of (ungraded) Gorenstein-projective Λ-modules.

1. Introduction

Throughout this paper, let K be a field. By an algebra, we mean a finite dimensional
associative K-algebra with a unit (except when considering the path algebra KQ of a
finite quiver Q that contains a cycle). Further, a module means a finitely generated right
module. For a Krull-Schmidt category C, we denote by ind C the set of indecomposable
objects of C up to isomorphism. We always assume that any full subcategory of an additive
category is closed under isomorphisms.

The notion of Gorenstein-projective Λ-modules was originally introduced by Auslander
and Bridger [2], and it is well known that the stable category GprojΛ of Gorenstein-
projective Λ-modules carries a structure of a triangulated category. Many authors work
with Iwanaga-Gorenstein algebras because of a theorem of Buchweitz [4, Theorem 4.4.1]
and Happel [10, 4.6], which says that if Λ is an Iwanaga-Gorenstein algebra, then GprojΛ
is triangle equivalent to the singularity category Dsg(modΛ) of Λ.
On the other hand, for more general algebras, Gorenstein-projective modules over

monomial algebras Λ have been intensively studied. Indeed, Ringel [14] showed that when
Λ is a connected Nakayama algebra without simple projective modules, GprojΛ is trian-
gle equivalent to the stable module category of some connected self-injective Nakayama
algebra. Further, Chen, Shen and Zhou [6] proved that GprojΛ is triangle equivalent to
the stable module category of some radical square zero self-injective Nakayama algebra
when Λ is a monomial algebra with a certain condition. Moreover, Kalck [11] and Lu and
Zhu [13] obtained a similar result for gentle algebras and 1-Iwanaga-Gorenstein monomial
algebras, respectively.

In this paper, we study GprojΛ for arbitrary monomial algebras Λ = KQ/I and, by
applying the covering theory developed in [1], we show that GprojΛ is triangle equivalent
to the stable module category of some self-injective Nakayama algebra.

The detailed version of this paper will be submitted for publication elsewhere.



2. Preliminaries

In this section, we recall the definition of Gorenstien-projective modules and related
notions and facts used in this paper.

2.1. Gorenstein-projective modules. Throughout this subsection, we let Λ be an alge-

bra. A cochain complex P • : · · · → P i−1 di−1

−−→ P i di−→ P i+1 → · · · of projective Λ-modules
is called totally acyclic [3] if both P • and the Hom complex HomΛ(P

•,Λ) are acyclic.
We say that a Λ-module M is Gorenstein-projective [7] if there exists a totally acyclic
complex P • such that Ker d0 is isomorphic to M in modΛ. We refer to [5] for their
basic properties. Let Gproj Λ be the full subcategory of modΛ consisting of Gorenstien-
projective Λ-modules. Since projective modules are Gorenstein-projective, we have that
proj Λ ⊆ Gproj Λ ⊆ modΛ. We say that Λ is CM-free if proj Λ = Gproj Λ. For example,
algebras of finite global dimension are CM-free. We say that Λ is CM-finite if there are only
finitely many pairwise non-isomorphic indecomposable Gorenstein-projective Λ-modules.
CM-free algebras and representation-finite algebras are both examples of CM-finite alge-
bras. Also, it is easily seen that Gproj Λ = modΛ if and only if Λ is self-injective.

Recall that the stable category modΛ of modΛ is defined as the category whose objects
are the same as modΛ and whose morphisms are given by

HomΛ(M,N) := HommodΛ(M,N) = HomΛ(M,N)/P(M,N)(2.1)

for any M and N ∈ modΛ, where P(M,N) denotes the space of morphisms from M to N
that factor through a projective Λ-module. Let GprojΛ be the full subcategory of modΛ
consisting of Gorenstein-projective Λ-modules. The category Gproj Λ is known to be a
Frobenius exact category whose projective objects are precisely projective Λ-modules, so
that the stable category GprojΛ carries a structure of a triangulated category; see [9].
Recall that Λ is called d-Iwanaga-Gorenstein (or simply Iwanaga-Gorenstein) if both

idΛ Λ and idΛΛ are finite and at most d, where idΛM denotes the injective dimension of
M in modΛ. In case Λ is Iwanaga-Gorenstein, there exists a triangle equivalence from the
stable category GprojΛ to the singularity category Dsg(modΛ) of Λ, where Dsg(modΛ) is

defined to be the Verdier quotient of the bounded derived category Db(modΛ) of Λ by
the perfect derived category Kb(proj Λ); see [4].

2.2. Monomial algebras and their Gorenstein-projective modules. In this sub-
section, we review some notations and facts related to monomial algebras, including an
explicit description of Gorenstein-projective modules by Chen, Shen and Zhou [6].

Let Q = (Q0, Q1, s, t) be a finite quiver. A path of length n in Q is a sequence p =
a1a2 · · · an of arrows ai ∈ Q1 with t(ai) = s(ai+1) for all 1 ≤ i ≤ n − 1. We define its
source s(p) := s(a1) and its target t(p) := t(an). The length of a path p is denoted by l(p).
For a vertex v in Q, we associate a trivial path ev of length zero with s(ev) = v = t(ev).
We denote by B the set of paths, by Bi the set of paths of length i and by B≥i the set
of paths of length ≥ i. We put B>0 := B≥1. The concatenation of two paths p and q
with t(p) = s(q) is denoted by pq. For any p and q ∈ B, we say that q is a subpath of p
if p = p′qp′′ for some p′, p′′ ∈ B. When p′ is trivial, we refer to the subpath q as a left
divisor of p. Dually, when p′′ is trivial, we refer to the subpath q as a right divisor of p. A
subpath q of p is called proper if q ̸= p. A cycle in Q is a path c such that s(c) = t(c). We



say that two cycles c and c′ are equivalent if c coincides with c′ up to cyclic permutation.
This is equivalent to saying that c is a subpath of (c′)m and c′ is a subpath of cn for some
positive integers m,n. Let S be a subset of B. We say that p ∈ S is left minimal in S if
there exists no proper left divisor of p that belongs to S (i.e. there exists no path s ∈ S
such that p = sp′ for some p′ ∈ B>0). Dually, one can define right minimal path in S. We
say that p ∈ S is minimal in S if there exists no proper subpath of p that belongs to S.

Recall that a bound quiver algebra KQ/I is called monomial if the admissible ideal I
is generated by paths. In the rest of this section, let Λ = KQ/I be a monomial algebra.
We denote by F the set of minimal paths in the set {paths belonging to I}. Note that
F generates I as an ideal of KQ. In particular, F is a finite set. We say that p ∈ B is
non-zero in Λ if the canonical image p + I in Λ is non-zero, or equivalently, p does not
contain any path of F as a subpath. The non-zero paths form a K-basis of Λ. For each
p ∈ B, we denote the canonical image p + I in Λ by p. We write p = 0 in Λ when p lies
in I. For a non-zero non-trivial path p, we define L(p) as the set of right minimal paths
in the set {non-zero paths q | t(q) = s(p) and qp = 0 in Λ}. Dually, we define R(p) as the
set of left minimal paths in the set {non-zero paths q | t(p) = s(q) and pq = 0 in Λ}.

Definition 1 (cf. [6, Definitions 3.3 and 3.7]). (1) A pair (p, q) of non-zero paths in
Λ is said to be perfect if the following conditions are satisfied:
(P1) p and q are both non-trivial and satisfy t(p) = s(q) and pq = 0 in Λ;
(P2) If pq′ = 0 for a non-zero path q′ with t(p) = s(q′), then q is a left divisor of q′

(in other words, R(p) = {q});
(P3) If p′q = 0 for a non-zero path p′ with t(p′) = s(q), then p is a right divisor of

p′ (in other words, L(q) = {p}).
(2) A sequence (p1, . . . , pn, pn+1 = p1) of non-zero paths in Λ is called a perfect path

sequence if (pi, pi+1) is a perfect pair for all 1 ≤ i ≤ n. A path appearing in a
perfect path sequence is called a perfect path.

(3) A perfect path sequence (p1, . . . , pn, pn+1 = p1) is called minimal if pi ̸= pj for any
1 ≤ i ̸= j ≤ n.

Let PΛ denote the set of perfect paths. The following result describes indecomposable
non-projective Gorenstein-projective Λ-modules. Note that indGprojΛ can be identified
with the set of the isomorphism classes of indecomposable non-projective Gorenstein-
projective Λ-modules.

Theorem 2 ([6, Theorem 4.1]). Let Λ be a monomial algebra. Then there is a bijection

PΛ
1:1←−→ indGprojΛ,

where a perfect path p is sent to the cyclic Λ-module pΛ.

Remark 3. It follows from the theorem that monomial algebras Λ are always CM-finite.
It also follows that Λ is CM-free precisely when PΛ is empty.

2.3. Positively graded algebras. This subsection is devoted to recalling some basic
facts in the representation theory of finite dimensional positively graded algebras from
[8, 13]. Throughout this subsection, let Λ =

⊕
i≥0 Λi be a positively graded algebra (i.e. a

Z-graded algebra satisfying Λi = 0 for i < 0).



Let modZ Λ be the category of graded Λ-modules and projZ Λ its full subcategory con-
sisting of graded projective Λ-modules. Recall that the space of morphisms from M to N
in modZ Λ is defined by

HomZ
Λ(M,N) := HommodZ Λ(M,N) = { f ∈ HomΛ(M,N) | f(Mi) ⊆ Ni for all i ∈ Z }.

Let modZΛ be the stable category of modZ Λ, defined in a way similar to the case of modΛ.
For any M,N ∈ modZΛ, we denote HomZ

Λ(M,N) := HommodZΛ(M,N). For a graded Λ-

module M =
⊕

i∈ZMi and an integer j, we define the degree shift M(j) ∈ modZ Λ by

M(j)i = Mi+j for i ∈ Z. This operation induces an automorphism (j) : modZ Λ →
modZ Λ.

Replacing modΛ by modZ Λ, one can define the notion of graded Gorenstein-projective
Λ-modules. We denote by GprojZ Λ (resp. GprojZΛ) the full subcategory of modZ Λ

(resp. modZΛ) consisting of graded Gorenstein-projective Λ-modules. Then we have
projZ Λ ⊆ GprojZ Λ ⊆ modZ Λ. We say that Λ is graded CM-free if projZ Λ = GprojZ Λ.
The algebra Λ is said to be graded CM-finite if the number of the isomorphism classes of
indecomposable graded Gorenstein-projective Λ-modules is finite up to degree shift. By
definition, graded CM-freeness implies graded CM-finiteness. Let F : modZ Λ → modΛ
be the forgetful functor. It follows from [8, Theorem 3.2] (resp. [8, Theorem 3.3]) that a
graded Λ-module M is indecomposable (resp. projective) in modZ Λ if and only if FM is
indecomposable (resp. projective) in modΛ. Therefore, if Λ is CM-free (resp. CM-finite)
as an ungraded algebra, then Λ is graded CM-free (resp. graded CM-finite). On the other
hand, as in the ungraded case, GprojZ Λ is a Frobenius category whose projective objects
are precisely graded projective Λ-modules. Hence, the stable category GprojZΛ carries a
structure of a triangulated category.

We say that Λ is graded Iwanaga-Gorenstein if gr.idΛΛ < ∞ and gr.idΛΛ < ∞, where
gr.idΛM denotes the injective dimension of M in modZ Λ. As mentioned in [13, Section
2.1], the positively graded algebra Λ is graded Iwanaga-Gorenstein if and only if Λ is
Iwanaga-Gorenstein as an ungraded algebra. Thus we do not distinguish between be-
ing graded Iwanaga-Gorenstein and being Iwanaga-Gorenstein. As in the ungraded case,
if Λ is Iwanaga-Gorenstein, then GprojZΛ is triangle equivalent to the graded singular-

ity category Dsg(modZ Λ) of Λ, where Dsg(modZ Λ) is defined by the Verdier quotient of

Db(modZ Λ) by Kb(projZ Λ).

3. Stable categories of graded Gorenstien-projective modules

In the rest of this paper, let Λ = KQ/I be a monomial algebra and F the set
of minimal paths in I. Further, we always think of Λ as a positively graded alge-
bra by setting the degree of each arrow to one. We know from [13, Section 4.1] that
indGprojZΛ = { pΛ(i) | p ∈ PΛ, i ∈ Z}, where we regard pΛ as a graded Λ-module whose
top is concentrated in degree l(p). In particular, pΛ =

⊕
i∈Z pΛi satisfies that pΛi is

spanned by the non-zero paths of the form px with x ∈ Bi−l(p) if such non-zero paths exist
and otherwise pΛi = 0.



In this section, we apply tilting theory to obtain a triangle equivalence between the
stable category GprojZΛ and the bounded derived category Db(modKQ) of a path algebra
KQ, where Q is a disjoint union of Dynkin quivers of type A.
We need some preparation to proceed. A perfect path sequence (p1, . . . , pn, pn+1 = p1)

gives rise to a cycle p1 · · · pn. We refer to the shortest cycle c such that p1 · · · pn = cl for
some l > 0 as the underlying cycle associated with the perfect path p1 and denote it by
cp1 . Cyclic permutations define an equivalence relation on the set of underlying cycles.
We denote by C(Λ) the set of the equivalence classes of underlying cycles modulo this
equivalence relation. On the other hand, for two perfect paths p and q, we write p ⪯ q
if p is a left divisor of q. It is easy to check that the pair (PΛ,⪯) is a partially ordered
set, and that the Hasse quiver H(PΛ,⪯) is a disjoint union of linear quivers. We say that
a perfect path p is co-elementary if p is a sink in H(PΛ,⪯). The following observation
asserts that any underlying cycle is the concatenation of co-elementary paths.

Proposition-Definition 4. For c ∈ C(Λ), there uniquely exist finitely many co-elementary
paths r1, . . . , rn such that c = r1 · · · rn. We denote |c| := n.

For each underlying cycle c = r1 · · · rn in Λ with each ri co-elementary, we set

PΛ(c) := {p ∈ PΛ | r1 ⪯ p} and Tc :=
⊕

p∈PΛ(c)

pΛ.

Then we define an object T of GprojZΛ as

T :=
⊕

c∈C(Λ)

⊕
0≤i<l(c)

Tc(i).

From the definition, T depends on the choice of underlying cycles and is basic in the sense
that any two distinct indecomposable summands of T are non-isomorphic.
Let T be a triangulated category with suspension functor Σ. We denote by T (k) a

direct product of k copies of T . For a class X of objects of T , we denote by thickT X
the smallest thick subcategory of T that contains X . When X consists of a single object
X, we write thickT X instead of thickT {X}. In what follows, we drop the index T in
thickT X when T is clear from the context. Recall that a object T of T is called a tilting
object if the following two conditions are satisfied:

(i) HomT (T,Σ
iT ) = 0 for all i ̸= 0.

(ii) thickT = T .
We are now ready to state the main result of this section is the following.

Theorem 5. The following statements hold.

(1) The object T is a tilting object of GprojZΛ.
(2) There exists an algebra isomorphism

EndZ
ΛT
∼=

∏
c∈C(Λ)

(KAc)
(l(c)),

where Ac is the following linear quiver

Ac : 1→ 2→ · · · → |PΛ(c)|,



and (KAc)
(l(c)) is the direct product of l(c) copies of the path algebra KAc.

(3) There exists a triangle equivalence

GprojZΛ ∼=
∏

c∈C(Λ)

Db(modKAc)
(l(c)),

where Db(modKAc)
(l(c)) is the direct product of l(c) copies of the bounded derived

category Db(modKAc) of the path algebra KAc.

Remark 6. The theorem explicitly describes the graded singularity category Dsg(modZ Λ)
of an Iwanaga-Gorenstein monomial algebra Λ and in particular improves a result of
Lu-Zhu [13, Theorem 5.2.2] for Iwanaga-Gorenstein monomial algebras.

4. Stable categories of Gorenstien-projective modules

The aim of this section is to realize GprojΛ as the stable module category of a self-
injective Nakayama algebra. For this, we apply the covering theory developed in [1].
We follow the terminologies in [1]. We rely on the following proposition, essentially
proved by Lu and Zhu [13, Lemma 4.2.1]. Recall that for any i ∈ Z, the automorphism
(i) : modZ Λ → modZ Λ and the forgetful functor F : modZ Λ → modΛ satisfy that
F = F ◦ (i).

Proposition 7. The forgetful functor F : modZ Λ→ modΛ induces a G-covering

F̃G : GprojZΛ→ GprojΛ

in the sense of [1], where G is the cyclic group generated by the automorphism (1) :
GprojZΛ → GprojZΛ, and the invariance adjuster of F̃G is given by the induced formula

F̃G = F̃G ◦ (i) with i ∈ Z.

By [1, Theorem 2.9], there exists an equivalence H : GprojZΛ/(1)
∼−→ GprojΛ of

additive categories such that F̃G = HP (as G-invariant functors), where P : GprojZΛ→
GprojZΛ/(1) is the canonical functor:

GprojZΛ
F̃G //

P %%

GprojΛ

GprojZΛ/(1)
H

∼ 99

Thus the orbit category GprojZΛ/(1) becomes a triangulated category whose triangulated
structure is derived from that of the triangulated category GprojΛ via the equivalence H.

Finally, since F̃G and H are both triangulated functors, the canonical functor P is also
triangulated. On the other hand, we know from Theorem 5 that

GprojZΛ =
∏

c∈C(Λ)
∏

0≤i<l(c) thickTc(i) with thickTc(i) ∼= Db(modKAc).

For a class X of objects of GprojZΛ, we denote by P (X ) the full subcategory of GprojZΛ/(1)
given by P (X ) = {P (X) | X ∈ X}. Then for c ∈ C(Λ) and i ∈ Z, we have

P (thickTc(i)) = P ((thickTc)(i)) = P (thickTc),



so that we obtain a decomposition into additive categories

GprojΛ ∼= GprojZΛ/(1) =
∏

c∈C(Λ)

∏
0≤i<l(c)

P (thickTc(i)) =
∏

c∈C(Λ)

P (thickTc).

This is a decomposition into triangulated categories, since P (thickTc) = thickP (Tc) for
all c ∈ C(Λ) and i ∈ Z. The following lemma investigates each triangulated subcategory
P (thickTc).

Proposition 8. We have the following statements.

(1) For c ∈ C(Λ) and i, j ∈ Z, we have that thickTc(i) = thickTc(j) in GprojZΛ if
and only if i ≡ j mod l(c).

(2) For c ∈ C(Λ), the restriction of the canonical functor P : GprojZΛ→ GprojZΛ/(1)
to thickTc induces a Gc-covering

Pc : thickTc → P (thickTc)

where Gc is the cyclic group generated by the induced automorphism (l(c)) : thickTc →
thickTc.

(3) For c ∈ C(Λ), we have a triangle equivalence

P (thickTc) ∼= Db(modKAc)/τ
|c|,

where Db(modKAc)/τ
|c| denotes the triangulated orbit category induced by Db(modKAc)

and its Auslander-Reiten translation τ in the sense of [12].

The following consequence of the proposition is the main result of this section.

Theorem 9. Let Λ be a monomial algebra over a field K. Then we have the following
triangle equivalences

GprojΛ ∼=
∏

c∈C(Λ)

Db(modKAc)/τ
|c|

∼=
∏

c∈C(Λ)

modK
(
1 // 2 // · · · // |c|hh

)/
R|PΛ(c)|+1,

where Db(modKAc)/τ
|c| is the triangulated orbit category induced by Db(modKAc) and

its Auslander-Reiten translation τ in the sense of [12], and R is the arrow ideal of the

path algebra K
(
1 // 2 // · · · // |c|hh

)
.

Remark 10. The theorem explicitly describes the singularity categories Dsg(modΛ) of
Iwanaga-Gorenstein monomial algebras Λ. Moreover, it recovers the results of Chen,
Shen and Zhou [6], Kalck [11], Lu and Zhu [13] and Ringel [14].
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