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Abstract. In this article, we study the stable categories of graded Cohen-Macaulay
modules over Artin-Schelter Gorenstein algebras. We give a characterization of the exis-
tence of tilting objects in the stable categories. Gorenstein parameters of such algebras
play an important role. Gorenstein tiled orders are typical examples of Artin-Schelter
Gorenstein algebras of dimension one. We give an explicit description of the endomor-
phism algebra of a tilting object over a Gorenstein tiled order.

1. Introduction

One of the main objects of representation theory of a Cohen-Macaulay ring A is the
category CMA of maximal Cohen-Macaulay modules (CM modules for short). By many
results on this category, such as the study of Auslander-Reiten sequcence, the structure
of the category is gradually becoming clearer. Moreover, if A is Gorenstein, then the
situation is much nicer. In fact, the stable category CMA is a triangulated category, and
it is equivalent to the singularity category of A by the result of Buchweitz [2].

In this study, we focus on a N-graded Artin-Schelter Gorenstein algebra A, which is one
of the main objects in noncommutative algebraic geometry. We study tilting objects of
the stable category CMZA of graded CM modules. We refer [3, 5, 6, 8] for recent related
works.

Notation. Throughout this article k is a field. For an N-graded ring A, we denote by
modZA the category of finitely generated Z-graded right A-modules. Let D = Homk(−, k)
the k-dual of k-vector spaces.

2. Artin-Schelter Gorenstein algebras

In this section, we introduce Artin-Schelter Gorenstein algebras. Let A =
⊕

i∈N Ai be
an N-graded k-algebra. We say that A is locally finite if dimk Ai is finite for each i ≥ 0.
It is easy to see that if A is locally finite, then the category modZA is Hom-finite and
Krull-Schmidt.

Assume that A is locally finite. So A0 is a finite dimensional k-algebra. Let 1 =
e1+e2+· · ·+en be primitive orthogonal idempotents of A0. Then eiA is an indecomposable
projective A-module for each i. Note that A0 is basic if and only if A is basic, that is,
eiA ≃ ejA as (ungraded) A-modules implies i = j. By taking graded Morita equivalences,
we may assume that A is basic. From now on to the end of this article, we assume that
a locally finite algebra A is basic.

The detailed version of this paper will be submitted for publication elsewhere.



Let I := {1, 2, . . . , n}. For a locally finite algebra A, we denote by simA := {Si :=
top(eiA0) | i ∈ I} the set of all simple A0-modules. This set simA is the set of all Z-graded
simple A-modules concentrated in degree zero. Let simAop := {S ′

i := D(Si) | i ∈ I} be
the set of all Z-graded simple left A-modules concentrated in degree zero.
Let d ≥ 0 be an integer. We say that A is d-Iwanaga-Gorenstein if A is Noetherian

and inj.dim(AA) = inj.dim(AA) = d holds.
We give a definition of Artin-Schelter Gorenstein algebras.

Definition 1. Let A be a basic, Noetherian and locally finite N-graded k-algebra. Let
d ≥ 0 be an integer. We say that A is an Artin-Schelter Gorenstein algebra of dimension
d (AS-Gorenstein for short) if it satisfies the following properties.

(1) A is a d-Iwanaga-Gorenstein algebra.
(2) There exist a permutation ν : I → I and integers pi (i ∈ I) such that the following

isomorphism holds for each i ∈ I;

ExtjA(Si, A) ≃

{
S ′
ν(i)(pi) j = d,

0 else.

We call ν the Nakayama permutation, and call (pi)i∈I Gorenstein parameters of A.

Note that Definition 1(2) is a natural generalization of the Gorenstein parameter of a
commutative Noetherian Gorenstein local ring.

Example 2. We give one typical example. See the next section to the definition of CMR.

(1) Let R be an N-graded commutative Noetherian Gorenstein k-algebra with Krull
dimension dimR = d. An N-graded R-algebra A is called a Gorenstein R-order if
AR ∈ CMR and HomR(AA, R) ∈ proj(AA) hold. We can show that a Gorenstein
R-order is an AS-Gorenstein algebra of dimension d.

(2) More concretely, let R = k[x] with deg x = 1 and m = (x). Then for a, b ∈ Z≥0

with a+ b > 0,

A =

[
R ma

mb R

]
is a Gorenstein R-order. So A is an AS-Gorenstein algebra of dimension 1 by (1).

Let e1 =
(
1 0
0 0

)
, e2 =

(
0 0
0 1

)
∈ A. Then ν = (1 2) and (p1, p2) = (1− b, 1− a) hold.

3. The category of Cohen-Macaulay modules and our results

Let A =
⊕

i∈N Ai be an Iwanaga-Gorenstein algebra, and let

CMZA := {M ∈ modZA | ExtiA(M,A) = 0 ∀i > 0}
be the category of Cohen-Macaulay A-modules (CM modules for short). It is known
that CMZA is a Frobenius category [2]. Thus the projective stable category CMZA is a
triangulated category.

From now on, we consider an AS-Gorenstein algebra A of dimension 1. Denote by
modZ0A the category of finite dimensional Z-graded A-modules. We consider the Serre
quotient category

qgrA := modZA/modZ0A



which is traditionally called the noncommutative projective scheme [1]. Define the graded
total quotient ring Q :=

⊕
i∈Z EndqgrA(A,A(i)). Moreover, let

CMZ
0A = {M ∈ CMZA | M ⊗A Q is a graded projective Q-module}.

This is a Frobenius subcategory of CMZA, and the natural inclusion induces a fully faithful
triangle functor CMZ

0A → CMZA. As in classical Auslander-Reiten theory for orders,
CMZ

0A behaves much nicer than CMZA. In fact, it enjoys Auslander-Reiten-Serre duality,
and hence it has almost split sequences as follows.

Theorem 3. Let A be an AS-Gorenstein algebra of dimension 1. Then there exists an
invertible A-bimodule ω such that (−)⊗A ω induces a Serre functor

(−)⊗A ω : CMZ
0A −→ CMZ

0A.

We recall the definition of tilting objects. Let T be a Hom-finite and Krull-Schmidt
triangulated k-category (e.g. CMZ

0A for an AS-Gorenstein algebra A of dimension 1).
An object T ∈ T is tilting if it satisfies (i) HomT (T, T [i]) = 0 for all i ̸= 0, and (ii) T
generates T , that is, the smallest triangulated subcategory of T containing T and closed
under direct summands is T . We call T silting if T satisfies (ii) and (i′) HomT (T, T [i]) = 0
for all i > 0.

If T has a tilting object T , then we have a triangle equivalence T ≃ Kb(projEndT (T )).
So the existence of tilting objets and calculating their endomorphism algebras are very
important to study triangulated categories.

We state our main result.

Theorem 4. Let A be an AS-Gorenstein algebra of dimension 1 with Gorenstein param-
eters (pi)i∈I. Assume that A is ring-indecomposable and gldim A0 < ∞.

(a) For sufficiently large N > 0, V =
⊕N

i=1A(i)≥0 is a silting object of CMZ
0A.

(b) If pi ≤ 0 for any i ∈ I, then V is tilting.
(c) In the case (b), we have a description of End(V ) by using A,Q and (pi)i∈I.
(d) The following statements are equivalent.

(i) CMZ
0A has a tilting object.

(ii)
∑

i∈I pi ≤ 0 or gldim A < ∞.

Note that this theorem is a natural generalization of the result of [3], which is one
aspect of the motivation for our study.

4. Tiled orders and endomorphism algebras

In this section, we give a definition of tiled orders, and calculate endomorphism algebras
of tilting objects of them. We refer [7] for basic properties of Gorenstein tiled orders.

Throughout this section, let R = k[x] be the ring of polynomials in one variable with
deg x = 1. We denote by m = (x) = Rx a maximal ideal of R. Let I := {1, 2, . . . , n}. A
Gorenstein tiled order A is an R-subalgebra of Mn(R) of the form

A =


R mm(1,2) · · · mm(1,n)

mm(2,1) R · · · mm(2,n)

...
...

. . .
...

mm(n,1) mm(n,2) · · · R

(4.1)



for some m(i, j) ∈ Z≥0 satisfying HomR(AA, R) ∈ proj(AA).
Gorenstein tiled orders over R are clearly Gorenstein R-orders. So by Example 2(1),

Gorenstein tiled orders over R are AS-Gorenstein algebras of dimension 1. Let A be a
Gorenstein tiled order of the form (4.1). We can see that the Nakayama permutation ν
of A is determined by an equation

m(ν(i), j) +m(j, i) = m(ν(i), i) for each i, j ∈ I.
The Gorenstein parameters (pi)i∈I can be calculated as pi = 1−m(ν(i), i) for each i.

Example 5. Let p, q, r ∈ Z≥0 with p+ q + r > 0. Then R mp mp+q

mq+r R mq

mr mr+p R


is a Gorenstein tiled order such that ν = (1 2 3) and p1 = −q − r, p2 = 1− r − p, p3 =
1− p− q.

Let A be a Gorenstein tiled order of the form (4.1) with the Nakayama permutation
ν and Gorenstein parameters (pi)i∈I. To calculate the endomorphism algebras of tilting
objects, we need the following notation.

For an A-module M of the form M = [mℓ1 mℓ2 · · · mℓn ], let

v(M) := (ℓ1, ℓ2, . . . , ℓn) ∈ Zn.

For v, w ∈ Zn, we write v ≤ w if vi ≤ wi for each i ∈ I. This defines a partial order on
Zn. We have a finite poset (VA,≤), where

VA := {v(eiA(j)≥0) | i ∈ I, 1 ≤ j ≤ −pν−1(i)} ∪ {0} ⊂ Zn.

Then we sate our theorem.

Theorem 6. Assume that pi ≤ 0 for each i ∈ I. Let V =
⊕N

i=1A(i)≥0 be the tilting object

of CMZ
0A as in Theorem 4. Then End(V ) is Morita equivalent to the incidence algebra

k(Vop
A ) of the opposite poset of (VA,≤).

We end this article by giving two examples.

Example 7. For a, b ∈ Z with a+ b > 0, let A be the Gorenstein tiled order in Example
2(2). We have that p1, p2 ≤ 0 if and only if a, b ≥ 1. Then

VA = {(0 i), (0 0), (j 0) | 1 ≤ i ≤ a− 1, 1 ≤ j ≤ b− 1}
and End(V ) is Morita equivalent to k(Vop

A ) ≃ kQ for a quiver Q as follows

• // • // · · · // • // •0 •oo · · ·oo •oo •oo

where •0 corresponds to (0, 0) ∈ VA. There are a − 1 vertices arranged to the left of •0,
and there are b− 1 vertices arranged to the right of •0.

Example 8. For p, q, r ∈ Z≥0 with p + q + r > 0, let A be the Gorenstein tiled order in
Example 5. Assume that p1, p2, p3 ≤ 0 (⇔ q+r, r+p, p+q ≥ 1). Then End(V ) is Morita
equivalent to k(Vop

A ) ≃ kQ/I, where Q is as follows and I is generated by commutative
relations:



•

•
...

•

•

•
...

•

· · ·· · ·

p− 1

q

• · · · • • • · · · •

...

r − 1 p

•· · ·•••· · ·•

...

...

q − 1r
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