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The Symposium on Ring Theory and Representation Theory has been held annually
in Japan and the Proceedings have been published by the organizing committee. The
first Symposium was organized in 1968 by H. Tominaga, H. Tachikawa, M. Harada and S.
Endo. After their retirement, in 1997, a new committee was organized for managing the
Symposium. The present members of the committee are Y. Hirano (Okayama Univ. ), Y.
Iwanaga (Shinshu Univ.), S. Koshitani (Chiba Univ.) and K. Nishida (Shinshu Univ.).

The Proceedings of each Symposium is edited by program organizer. Anyone who wants
these Proceedings should ask to the program organizer of each Symposium or one of the
committee members.

The Symposium in 2004 will be held at Shinshu University in Matsumoto for Sep. 3-5,
and the program will be arranged by H. Asashiba (Osaka City Univ. )-

Concerning several information on ring theory group in Japan containing schedules of
meetings and symposiums as well as the addresses of members in the group, you should
refer the following homepage, which is arranged by M. Sato (Yamanashi Univ.):

http://fuji.cec.yamanashi.ac.jp/ ring/ (Japanese)
http://fuji.cec.yamanashi.ac.jp/ ring/japan/ (English)
Yasuo Jwanaga

Nagano, Japan
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Preface

The year of 2003 is the memorial year in the sense that George Frobenins (1849-1917)
published his first paper about so called Irobenius Algebra. In the samne year Wright
Brother succeeded to fly their air plane Wright Flyer. Also It passed half a century since
television programs has been broadcasted in Japan. Comparing the development of ring
theory last one century with the development of technology, we must say our development
is slower than them. We have great responsibility to develop ring theory in next 100 years
faster than any others. We hope this Symposium will play a important roll for this
development.

The 36th Symposiuin on Ring Theory and Representation Theory was lLeld at Hi-
rosaki University on Qctober 11th - 13th, 2003. The symposium and this proceeding are
financially supported by Kenji Nishida (Shinslm University) Grant-in-Aid for Scientific
Research (B)(1), No.14340007, JSPS. Also Hirosaki University supported the symposium
by the request [rom Professor Kaoru Motose.

We would like to thanks Professors Kenji Nishida, Yasuo Iwanaga, Yasuyuki Hirano
- and Shigeo Koshitani for their helpful suggestions concerning the symposium. Finally we
would like to express our thanks to Professor I{aoru Motose and Katsushi Waki for their
great effort and preparation to hold the symposium in Hirosaki University.

Masahisa Sato
Yamanashi
January, 2004

Ferdinand Georg Frobenius (1849-1917)
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EXAMPLES OF BROUE’S ABELIAN
DEFECT GROUP CONJECTURE IN
REPRESENTATION THEORY OF FINITE GROUPS

SHiGEO KOSHITANI (A EKk)!

ABSTRACT. In representation theory of finite groups, there is a well-known
and important conjecture due to M. Broué. He conjectures that, for any
prime p, if a p-block A of a finite group G has an abelian defect group °
P, then A and its Brauer corresponding p-block B of Ng(P) are derived
equivalent. We survey in this article that Broué’s conjecture holds for non-
principal 3-blocks A with elementary abelian defect group P of order 9 for
several sporadic simple groups.

0. Introduction

I believe nobody would disagree that in modular representation theory of
finite groups Richard Brauer (1901-77) was a real pioneer [13]. He actually
gave a nice survey talk in early sixties [5]. I guess many pcople would
agree that now in representation theory of finite groups three of the most
important problems should be the {ollowing. Namely,

Conjecture 1. Alperin’s weight conjecture (1986) (3]
Conjecture 2. Dade’s conjecture (1990) [15], [16], [17], [18], [19]

Conjecture 3. Broué’s abelian defect group conjecture (1988) (6], [7], [8],
[9], [26]

These three conjectures have actually origins which had already appeared
in the Brauer’s problems in [5]. We anyway need some notation and termi-
nology.

1991 Mathematics Subject Classification. primary 20C20, 20C05; secondary 20C34,
20C15.

Key words and phrases. block, Broué's abelian defect group conjecture, modular rep-
resentation theory, finite group, derived equivalence, Rickard equivalence.

This paper will not be submitted for publication anywher else.
1The author was in part supported by the Ministry of Education, Culture, Sports, Science
and Technology, Grant-in-Aid for JSPS Fellows 01016, 2002-2003; and the JSPS (Japan
Society for Promotion of Science), Grant-in-Aid for Scientific Research C(2) 14540009,
2002-2003.



(0.1) Notation and assumption. Let k be an algebraically field of char-
acteristic p > 0, G is always a finite group, and modules here mean always
finitely generated right modules unless stated otherwise. Let A be a block
algebra of the group algebra kG, namely, A is an indecomposable two-sided
ideal of kG which is a direct summand of 1gkGrg. Then, it is well-known
that up to G-conjugacy a unique p-subgroup P of G is attached to the block
algebra A, which is called a defect group of A, see for instance [43]. Now, let
H = Ng(P). Then, by Brauer’s first main theorem, there uniquely exists a
block algebra B of kH, which has the same defect group P and A and B
correspond each other via so-called the Brauer homomorphism. Since many
years ago, it has been predicted the following.

(0.2) Question. How do A and B resemble each other?

As a matter of fact, the above three conjectures are all on this question.
In this survey note we concentrate on the third conjecture, that is, Broué’s
abelian defect group conjecture. Then, what is Broué’s abelian defect group
conjecture? To state it let’s move on to the next section.

1. Broué’s abelian defect group conjecture

(1.1) Broué’s abelian defect group conjecture ({6, 6.2.Question], 8,
4.9.Conjecture], [56, §9.2.4, Conjecture], [62, §5.2]). We use the notation
and assumption in (0.1). Moreover, if the defect group P is abelian, then the
block algebras A and B should be derived equivalent (Rickard equivalent),
that is to say, the categories D*(mod-A) and D*(mod-B) are equivalent as
triangulated categories, where D¥(mod-A) is a bounded derived category of
a category mod-A of a finitely generated right XG-modules in A.

There are several (not many) cases where Broué’s abelian defect group con-
jecture has been checked. For example, the author proves the next with
N. Kunugi by using many initiated results which are done by L. Puig, T.
Okuyama, T. Okuyama and K. Waki, N. Kunugi, the author and H. Miy-
achi and the author and N. Kunugi, see [50], [44], [45], [47], [48], [49],
[27], [32], [33], [34], [11). Namely,

(1.2) Theorem (Koshitani-Kunugi [28]. If A is the principal block algebra
with elementary abelian defect group P of order 9, then Broué’s abelian
defect group conjecture is true.

It should be noted that to get the above result (1.2) the classification of
finite simple groups is necessary.



For other results of Broué’s abelian defect group conjecture, see the following
Web Page done by Jeremy Rickard:

http://wuv.maths.bris.ac.uk/~majcr/adgc/adge.html

2. Broué’s abelian defect group
conjecture for non-principal 3-blocks

Since Broué's abelian defect group conjecture (1.1) has been checked for
principal block algebras A with elementary abelian defect group P & C3xCs
of order 9, one of the next objects might be the case where A is a non-
principal block algebra with the same defect group P & C3 x C3. On
this direction the author with N. Kunugi and K. Waki proves that Broué’s
abelian defect group conjecture holds in the following special cases. Namely,

(2.1) Theorem (Koshitani, Kunugi and Waki). Let A be a non-principal
block algebra of kG with elementary abelian defect group P of order 9.
Furthermore, if G is one of the following four sporadic simple groups, then
Broué’s abelian defect group conjecture is true:

(i) G = O'N (O’Nan simple group)

(ii) G = HS (Higman-Sims simple group)

(i) G = He (Held simple group)

(iv) G = Suz (sporadic Suzuki group).

Proof. For entire proofs see our papers [30] and [31].

(2.2) Final remark. In this article, perhaps the author has not been able
to give a sufficient explanation. Therefore, the author would like the readers
to consult papers listed below, especially, for instance (8], [13], [21], [26],
9], (42], [48], [55], [56], [57], [58], [59], [60), [61] and [62].

References

[1] J. L. Alperin, Local representation theory, in *The Santa Cruz Con-
ference on [Finite Groups” edited by G. Mason, Proc.Symposia in Pure
Math. Vol.37, Amer. Math.Soc., 1980, pp.369-375.

[2] J. L. Alperin, Local Representation Theory, Cambridge Univ. Press,
1986.

[3] J. L. Alperin, Weights for finite groups, in "The Arcata Conference on
Representations of IFinite Groups”, edited by P. IFong, Proc. Symposia
in Pure Math. Vol.47, Amer. Math. Soc., 1987, pp.369-379.

[4] M. Auslander, I.Reiten and S.0.Smalg. Representation Theory of Artin
Algebras, Cambridge Univ. Press, 1995.

[5] R. Brauer ({4 #%R), Representations of Finite Groups (HRIEDO X
#), in "Lectures on Modern Mathematics Vol.I (BR{XDE%E 1), edited



by T. L. Saaty,(¥—7 1« —#d), Wiley, 1963 (& #&/E, 1965), 133-175
(197-257).

[6] M. Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque
181-182 (1990), 61-92.

[7] M. Broué, Isométries de caractéres et équivalences de Morita ou dérivée,
Publ. Math. THES 71 (1990), 45-63.

[8] M. Broué, Equivalences of blocks of group algebras, in "Finite Dimen-
sional Algebras and Related Topics”, edited by V. Dlab and L. L. Scott,
Kluwer Acad. Pub., 1994, pp.1-26.

{9] M. Broué, Rickard equivalences and block theory, in ”Groups '93 Gal-
way/St. Andrews Vol.1”, edited by C. M. Campbell et al., London Math.
Soc. Lecture Note Series, Vol.211, pp.58-79.

[10] J. Chuang, The derived categories of some blocks and a conjecture of
Broué, J. Algebra 217 (1999), 114-155.

[11]) J. Chuang, Derived equivalence in SL(2,p?), Trans. Amer. Math. Soc.
353 (2001), 2897-2913.

[12] J. Chuang and R. Kessar, Symmetric groups, wreath products, Morita
equivalences, and Broué’s abelian defect group conjecture, Bull. London
Math. Soc. 34 (2002), 174-185.

[13] C. W. Curtis, Pioneers of Representation Theory: I'robenius, Burnside,
Schur, and Brauer, History of Mathematics, Vol.15, Amer. Math. Soc.
and London Math. Soc., 1999.

[14] E. C. Dade, A correspondence of characters, in "The Santa Cruz Con-
ference on Finitc Groups” edited by G. Mason, Proc. Symposia in Pure
Math. Vol.37, Amer. Math. Soc., 1980, pp.401-403.

[15] E. C. Dade, Counting characters in blocks I, Inv.math. 109 (1992), 187-
210.

[168] E. C. Dade, Counting characters in blocks II, J. reine angew. Math. 448
(1994), 97-190.

[17] E. C. Dade, Counting characters in blocks with cyclic defect groups I, J.
Algebra 186 (1996), 934-969.

[18] E. C. Dade, Counting characters in blocks 2.9, in ” Representation Theory
of Finite Groups”, edited by R. Solomon, de Gruyter, 1997, pp.45-60.

[19] E. C. Dade, Another way to count characters, J. reine angew. Math.
510 (1999), 1-55.

[20] K. Erdmann, Blocks of Tame Representation Type and Related Algebras,
Lecture Notes in Mathemaltics, Vol.1428, Springer, 1990.

[21] W. Feit, The Representation Theory of Finite Groups, North-Holland,
1982.

[22] H. W. Gollan and T. Okuyama, Derived equivalences for the smallest
Janko group, preprint, 19977,

[23] M. E. Harris and M. Linckelmann, Splendid derived equivalences for
blocks of finite p-solvable groups, J. London Math. Soc. (2) 62 (2000),
85-96.



[24] A. Hida and H. Miyachi, Some blocks of finite general linear groups in
non-defining characteristic, preprint, 1999.

[25] M. Holloway, Broué’s conjecture for the Hall-Janko group and its double
cover, Proc. London Math. Soc. (3) 86 (2003), 109-130.

[26] S. Konig and A. Zimmermann, Derived Equivalences for Group Rings,
Lecture Notes in Mathematics, Vol.1685, Springer, 1998.

[27] S. Koshitani and N. Kunugi, The principal 3-blocks of the 3-dimensional
projective special unitary groups in non-defining characteristic, J. reine
angew. Math. 539 (2001), 1-27.

[28] S. Koshitani and N. Kunugi, Broué’s conjecture holds for principal 3-
blocks with elementary abelian defect group of order 9, J. Algebra 248
(2002), 575-604.

[29] S. Koshitani and N. Kunugi, Blocks of central p-group extensions of finite
groups, to appear in Proc. Amer. Math. Soc.

[30] S. Koshitani, N. Kunugi and K. Waki, Broué’s conjecture for non-principal
3-blocks of finite groups, J. Pure Appl. Algebra 173 (2002), 177-211.

{31} S. Koshitani, N. Kunugi and K. Waki, Broué’s abelian defect group con-
jecture for the Held group and the sporadic Suzuki group, preprint (2003).

[32] S. Koshitani and H. Miyachi, The principal 3-blocks of four- and five- di-
mensional projective special linear groups in non-defining characteristic,
J. Algebra 226 (2000), 788-806.

[33] S. Koshitani and H. Miyachi, Donovan conjecture and Loewy length for
principal 3-blocks, Comm. Algebra 29 (2001), 41509-4522.

[34] N. Kunugi, Morita equivalent 3-blocks of the 3-dimensional projective
special linear groups, Proc. London Math. Soc. (3) 80 (2000), 575-589.

[35]) N. Kunugi and K. Waki, Derived equivalences for the 3-dimensional spe-
cial unitary groups in non-defining characteristic, J. Algebra 240 (2001),
251-267.

[36] P. Landrock and G. O: Michler, Principal 2-blocks of the simple groups
of Ree type, Trans. Amer. Math. Soc. 260 (1980), 83-111.

[37] M. Linckelmann, Derived equivalence for cyclic blocks over a P-adic ring,
Math.Z. 207 (1991), 293-301.

[38] A. Marcus, On equivalences between blocks of group algebras: reduction
to the simple components, J. Algebra 184 (1996), 372-396.

[39] A. Marcus, Recent results on Broué's abelian defect group conjecture,
in "Proceedings of the Algebra Symposium”, Babes-Bloyai University,
Romania, 2002, 16 pages.

[40] A.Marcus, Broué's abelian defect group conjecture for alternating groups,
Proc. Amer. Math. Soc. 132 (2003), 7-14.

[41] A. Marcus, Tilting complexes for group graded algebras II, Preprint
(2003). :

([42]) G. O. Michler, Contributions to modular representation theory of fi-
nite groups, in ”Representation Theory of Finite Groups and Finite-



Dimensional Algebras” edited by G. O. Michler and C. M. Ringel, Birkhauser,
1991, pp.99-140.

[43] H. Nagao and Y. Tsushima (5k /2R, HBITH), 1987, H¥E, Academic
Press.

(44] T. Okuyama, Some examples of derived equivalent blocks of finite groups,
preprint, 1998, 19 pages.

[45] T. Okuyama, Remarks on splendid tilting complexes, in " Representa-
tion Theory of Finite Groups and Related Groups”, RIMS Kokyuroku
1149, pp.53-59. Research Institute for Mathematical Sciences of Kyoto
University, 2000.

[46] T. Okuyama, On Broué’s conjecture (A survey talk), in ”Proceedings of
Representations of Finite and Algebraic Groups”, Osaka Univ., edited
by N. Kawanaka, G. Michler and K. Uno, 2000, pp.1-9.

[47] T. Okuyama, Remarks on splendid tilting complexes, in " Proceedings of
Representations of Finite and Algebraic Groups”, Osaka Univ., edited
by N. Kawanaka, G. Michler and K. Uno, 2000, pp.171-179.

[48] T. Okuyama, Derived equivalences in SL(2,q), preprint, 2000.

[49] T. Okuyama and K. Waki, Decomposition numbers of Sp(4,q), J.Algebra
199 (1998), 544-555.

[50] L. Puig, Algebres de source de certains blocs des groupes de Chevalley,
Astérisque 181-182 (1990), 221-236.

[51] J. Rickard, Morita theory for derived categories, J. London Math. Soc.
(2) 39 (1989), 436-456.

[52] J. Rickard, Derived categories and stable equivalences, J. Pure Appl.
Algebra 61-(1989), 303-317.

[63] J. Rickard, Derived equivalences as derived functors, J. London Math.
Soc. (2) 43 (1991), 37-48.

{54] J. Rickard, Splendid equivalences: derived categories and permutation
modules, Proc. London Math. Soc. (3) 72 (1996), 331-358.

[65] J. Rickard, Some recent advances in modular representation theory, in
" Algebras and Modules I”, Canadian Mathematical Soc. Conference
Proceedings, Vol.23, 1998, pp.157-178.

[56] J. Rickard, Triangulated categories in the modular representation theory
of finite groups, in " Derived Equivalences for Group Rings”, by S. Konig
and A. Zimmermann, Springer Lecture Notes in Mathematics, Vol.1685,
1998, pp.177-198.

[67]) J. Rickard, Bousfield localization for representation theorists, in "Infinite
Length Modules” edited by H. Krause and C. M. Ringel, Birkhauser,
2000, pp.273-283.

[58] J. Rickard, Equivalences of derived categories for symmetric algebras, J.
Algebra 257 (2002), 460-481.

[59]) G. R. Robinson, Some open conjectures on representation theory, in
"Representation Theory of Finite Groups”, edited by R. Solomon, de
Gruyter, 1997, pp.127-131.



[60] R. Rouquier, From stable equivalences to Rickard equivalences for blocks
with cyclic defect, in ”Groups '93 Galway/St. Andrews Vol.2”, edited by
C. M. Campbell et al., London Math. Soc. Lecture Note Series, Vol.212,
pp-512-523.

[61] R. Rouquier, The derived category of blocks with cyclic defect groups, in
"Derived Equivalences for Group Rings”, by S. Kénig and A. Zimmer-
mann, Springer Lecture Notes in Mathematics, Vol.1685, 1998, pp.199-
220.

[62] R. Rouquier, Block theory via stale and Rickard equivalences, in ”Mod-
ular Representation Theory of Finite Groups” edited by M. J. Collins,
B. J. Parshall and L. L. Scott, de Gruyter, 2001, pp.101-146.

[63] R. Rouquier, Gluing p-permutation modules, preprint, 1998, 11 pages.

[64] W. Turner, Equivalent blocks of finite general linear groups in non-
describing characteristic, J. Algebra 247 (2002), 244-267.

[65] A. Watanabe, On the principal blocks of finite groups with abelian Sylow
p-subgroups II, preprint, 2000, 10 pages.

Department of Mathematics and Informatics, Faculty of Science,
Chiba University, 263-8522, Japan i
koshitan@math.s.chiba-u.ac.jp



Representation dimension of artin algebras ! 2
OsaMu Ivama

ABSTRACT. We will study the resolution dimension of functorially finite subcategories. The subcate-
gories with the resolution dimension zero correspond to ring epimorphisms, and rejective subcategories
correspond to surjective ring morphisms. We will study a chain of rejective subcategories to construct
modules with endomorphisms rings of finite global dimension. We apply these result to study a function
ra : mod A — Ny which is a natural extension of Auslander’s representation dimension.

We study functorially finite subcategories [AS1] from the viewpoint of its resolu-
tion dimension (§1.1). Typical examples of functorially finite subcategories are given
by morphisms of rings (§1.2) and by cotilting modules (§1.3). The subcategories of
resolution dimension zero is called bireflective [St], and they correspond to ring epi-
morphisms (§1.4(1)). We introduce a special class of bireflective subcategories called
rejective subcategories (§1.4(2)), and they correspond to factor algebras. Recently, re-
jective subcategories played a crucial role in the study of representation-finite orders
[11,2][Rul,2]. In §2, we study certain chains of rejective subcategories called rejective
chains (§2.1), which give a method to construct rings of finite global dimension (§2.1.1).
Recently, in [13,4], rejective chains were applied to give positive answer to Solomon’s con-
jecture on zeta lunctions of orders [S1,2] and the finiteness problem of the representation
dimension of artin algebras [A][Xil] (§2.2). Moreover, we show that rejective chains
give quasi-hereditary algebras (§2.4) of Cline-Parshall-Scott [CPS1,2]. This provide us
a categorical approach to quasi-hereditary algebras originally suggested by Dlab-Ringel
[DR2,3].

The representation dimension of artin algebras A was introduced by M. Auslan-
der [A] as a homological invariant to measure how far an artin algebra is from being
representation-finite. We introduce a function r,, which is given by the resolution di-
mension of certain subcategories (§3.1.2). The value 74(A & DA) equals to Auslander’s
representation dimension, and would be quite natural in Auslander’s philosophy, the ho-
mological approach to the representation theory. Our function r, would give us much
more information. For example, although rep.dim A does not distinguish tame hereditary
algebras and wild hereditary algebras (§3.2.2(2)), the supremum |r,| of r5 determines the
representation type of hereditary algebras (§3.3.2). This is an application of Rouquier’s
result [R] on exterior algebras (§3.6.2), which is proved in §4. We show that the value
of ro(A) is closely related to the reflexive-finiteness of A (§3.2.1).

All results in §1-3 were explained and proved in [I7}.

! 2000 Mathematics Subject Classification. Primary 16E10; Secondary 16G10, 16G30
2 The detailed version of this paper will be submitted elsewhere.
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0.1 Notations In this paper, any module is assumed to be a left module. For a ring
A, we denote by J, the Jacobson radical of A, and by mod A (resp. prA) the category
of finitely generated (resp. finitely generated projective) A-modules.

Let C be an additive category, C(X,Y) := Hom¢(X,Y), and fg the composition of
f e ¢C(X,Y) and ¢ € ¢(Y,Z). We denote by J. the Jacobson radical of ¢, and by
ind C the set of isoclasses of indecomposable objects in ¢. In §1-§3, any subcategory is
assumed to be full and closed under isomorphisms, direct sums and direct summands.
For a collection S of objects in C, we denote by add S the smallest subcategory of C
containing S, and by |S] the ideal of C consisting of morphisms which factor through
some object in S. We call X € C an additive generator of C if add X = C.

A C-module is a contravariant additive functors from ¢ to the category of abelian
groups. We denote by Mod C the category of C-modules, where (Mod C)(M, M) consists
of the natural transformations from M to M’. Then Mod C forms an abelian category.
By Yoneda’s Lemma, ¢( , X) is a projective object in Mod ¢. We call M € Mod(C finitely
presented if there exists an exact sequence C( ,Y) — C( ,X) = M — 0. We denote by
mod C the category of finitely presented C-modules.

1 Functorially finite subcategory

1.1 Definition Let A be an artin algebra and ¢’ C ¢ subcategories of mod A.

(1)|AS1] We call f € C(Y, X) a right C'-approzimation of X if Y € ¢’ and ¢(,Y)
C¢( ,X) — 0 is exact on C’, or equivalently, ¢( ,Y) 4 [c')( ,X) — 0 is exact on C
(§0.1). We call ¢’ a contravariantly finite subcategory of C if any X € C has a right
C’-approximation. Dually, a left C'-epprozimation and a covariantly finite subcategory
are defined. We call ¢’ functorially finite if it is contravariantly and covariantly finite.

(2) A right C'-resolution of X € C is a complex :-- = Y; il " LN Yy B X in c
such that ¥; € ¢’ and - = ¢( ,Y2) B (.Y B c(,Yo) B ¢(,X) = 0 is exact
on C'. We write ¢'-resol.dim X < n if X has a right ¢'-resolution with Y,,,, = 0, write
C'-resol.dimC < n if C'-resol.dim X < n holds for any X € ¢.> We call them right
resolution dimension. Dually, we define a left C'-resolution, left resolution dimension,
C' %-resol.dim X and C' “P-resol.dim C.

1.1.1 Proposition For e functorially finite subcategory C' of C := modA, 0 <
gldim(mod ¢’) — C'-resol.dimC < 2, 0 < gl.dim(mod (' °?) — C' ®P-resol.dimC? < 2 and
gl.dim(mod ¢') = gl.dim(mod C’°?) hold.

1.2 Example Let ¢ : A — T be a morphism of artin algebras. We denote by

¢" : modI’ = mod A the natural induced functor. Then ¢* has a left adjoint I'®4
mod A — modT and a right adjoint Hom, (', ) : mod A — modT.

(1) Define a (A,A)-module Cy by an exact seqeuence A 5058 Cp— 0 We

3 We borrowed the notation C'-resol.dim X in [AB]. Sikko [Si] dencte ('-resol.dim (medA) by
gldim(c’, A). .
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(ii) The inclusion functor ¢’ — C has a right (resp. left) adjoint with a counit ¢~
(resp. unit €*) such that €y is monic (resp. €} is epic) for any X € C.

We call C’ rejective if it is left and right rejective. Any right (resp. left) rejective

subcategories are coreflective (resp. reflective), but the converse does not hold in general.

1.4.1 A morphism ¢ : A = I' of artin algebras is called a ring epimorphism if it is
epic in the category of rings. This is equivalent to that the functor ¢* : modI" = mod A
is full. For example, the inclusion ( kX ) C Ma(k) is a ring epimorphism.

Theorem Let A be an artin algebra and C a subcategory of mod A.
(1) The conditions below are equivalent, and there exists a szectzon between rejective
subcategories of mod A and factor algebras of A. .
(i) C is a rejective subcategory of mod A.
(i) C = Xp := ¢*(modT) for a surjective ring morphism ¢ : A —= I
(iii) C is closed under submodules and factor modules.
(2) The conditions below are equivalent, and there exists a bijection between bireflec-
tive subcategories of mod A and ring epimorphisms from A to artin algebras (cf. [GD]).
(i) C is a bireflective subcategory of mod A.
(i) C = X := ¢°(mod ') for a ring epimorphism ¢ : A = T between artin algebras.
(iii) C is functorially finite, and closed under kernels and cokernels.

1.5 If ¢ : A = T is not a ring epimorphism, it seems to be difficult to study the
behavior of Xy in general. But an interesting example is given by radical embeddings
[EHIS], which also appeared in [N].

Theorem Let A é I’ be artin algebras with J\ = Jp.
1 (1) X4 := add ¢*(mod ') satisfies Xy-resol.dim (mod A) < 1 and X4 -resol.dim (mod A?) <
(2) Y{ := add Homa(T',mod A) and Y; :=addT ®, (mod A) coincide with modT.
- (8) ¢*-induces a full faithful functorC’ := mod I'/[mod I’/ Jp} = C := mod A/[mod A/J4],
and C' forms a rejective subcategory of C.

2 Rejective chain

Let A be an artin algebra and ¢’ C C subcategories of mod A. We call C semisimple if
Je = 0 holds. We call C’ a cosemisimple subcategory of C if C /[C'] is semisimple, namely,
any non-invertible morphism in C between indecomposable objects factor through an
object in C'.

2.1 Definition Let A be an artin algebra and 0 = Gy € Cm-1 € -+ € Co = C a chain
of subcategories of mod A. We call it a left (resp. right) rejective chain of length m if Coa
is a cosemisimple left (resp. right) rejective subcategory of C, for any n (0 <7 <m). In
this case, let ¢} (resp. ¢;) be the unit (resp. counit) of the natural inclusion Cpy) — Cp-
We call the chain above A-total if €} x (resp. €, x) is epic (resp. monic) in mod A for
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any X € C, and n (0 < n < m). The following theorem plays an important role in §3.

2.1.1 Theorem Let A be an artin algebra and C a subcalegory of mod A with
#indC < oo. Assume that C has a A-total left (resp. right) rejective chain of length
m > 0. Then Cresoldim (modA) < m (resp. C°-resol.dim(modA®) < m) and
gl.dim(mod C) £ m hold.

2.1.2 Example Let A be an artin algebra and m := LL(A) the Loewy length of A.
Put C, := add @75" A/Ji. Then 0 = Cm € Cm-1 € -+ - C Co gives a A-total left rejective
chain. Put T':= Ends(@Z4A/J}). By 2.1.1, we obtain Auslander’s result gl.dimI' < m
[A]. We will show in 2.4.1 that I' is quasi-hereditary, the result of Dlab-Ringel [DR2].

2.2 Generalizing the construction of the preprojective partition of Auslander-Smalo
[AS2|, we can prove that certain kind of subcategories has a left (resp. right) rejective
chain. The aunthor applied 2.2.1 to prove Solomon’s conjecture on zeta functions on
orders [13], and 2.2.2 to prove the finiteness of the representation dimension of artin
algebras [I4] (see §3.1.1). See [I5] for their unified approach.

2.2.1 Theorem Let A be an artin algebra. For n € N, put (™ := add{X €
ind(mod A) | length, X < n}. If #indC™ < oo, then C™ has a A-total left rejective
chain and a A-total right rejective chain.

2.2.2 Theorem Let A be an artin algebra and My := M € modA. Put My, :=
MoJEadn(My) (T€sp. Muyy := D{((DMp)Jgadas(DM,))) inductively. Take m > O such that
Mpn = 0. Then C, := add @[, Mi gives a A-total right (resp. left) rejective chain
0=Cmn CCn-1C- - CCo

2.3 Let us recall quasi-hereditary algebras of Cline-Parshall-Scott [CPS1,2]. A two-
sided ideal I of an artin algebra I" is called heredity if I = I, IJr] =0 and I € prT.
This condition is left-right symmetric since the last condition is equivalent to I € prI'®,
An artin algebra I is called quasi-hereditary if it has a heredity chain, which is a chain
0=In C I;m-y €+ C Jo =T of ideals of I such that J,_; /I, is a heredity ideal of I'/I,
for any n (0 < n < m). Let us recall the following theorem in [CPS1,2].

2.3.1 Theorem Let I" be an artin algebra. If I is a heredity ideal of ', then 0 <
gldimT — gl.dimI'/I < 2 holds. Consequently, if ' is a quasi-heredilary algebra with a
chain0=In C Ly C---Clog=T, then gldimI" < 2m — 2 holds.

2.4 There exists a bijection between equivalence classes of Krull-Schmidt categories
C with additive generators M and Morita-equivalence classes of semiperfect rings T,
which is given by C +» C(M, M) and the converse is given by I' — prI'. In this case, the
set of subcategories C’ of C and the set of idempotent ideals I of I' correspond bijectively
by ¢’ — I := [C'](M, M). In particular, we have a bijection between semisimple rejective
subcategories C’ of C and heredity ideals I of I'. A heredity chain corresponds to a chain
0 =Cm C Cm-1 € -+ € Co = C of subcategories of C such that Cy /[Cn41] is a semisimple
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rejective subcategory of C /|Cn+1] for any n (0 < n < m). The following theorem gives a
categorical approach to quasi-hereditary algebras.

2.4.1 Theorem Any I'-total right (resp. left) rejective chain is a heredity chain.
3 Representation Dimension

3.1 Definition Let A be an artin algebra and M € mod A. Put
ga(M) := gl.dim Endp (M) and ra{M) := inf{ga(M & N) | N € mod A}.

By 3.1.1 below, r, gives a function mod A = Nyp. Put |rs| := sup{ra(M) | M € mod A}.
We call rep.dimA := rp{A @ DA) the representation dimension of A, introduced by
Auslander [A].

3.1.1 Theorem r4(M) < oo holds for any M € mod A.
PROOF Immediate from 2.1.1 and 2.2.21
3.1.2 The following theorem gives a method to calculate 75 |A][EHIS] (cf. 1.1.1).

Theorem Let A be an artin algebra, M € mod A and C :=add M. IfA® DA €,
then C-resol.dim (mod A) = C°-resol.dim (mod A*?) = max{ga(M) — 2,0}.

3.2 Immediately, we obtain Auslander’s theorem [A] below, which gives the reason
why we call rep.dim A the representation dimension. Notice that it is easily checked that
rep.dim A <1 and |ry| €1 occurs only when A is semisimple.

Theorem Let A be an artin algebra. Then rep.dimA < 2 if and only if |[ra| < 2 if
and only if A is representation-finite.

Proor Fix M € mod A and assume that C ;= add M satisfies A @ DA € C. By
3.1.2, ga(M) < 2 is equivalent to C-resol.dim (mod A) = 0 which means that, for any

X € modA, there exists a morphism Y 4y X such that Y € C and Homy( ,Y) =A
Hom,( , X) is an isomorphism on €. This is equivalent to that f is an isomorphism by
A € C. Thus ga(M) < 2 is equivalent to ¢ = mod A. Thus we obtain the assertion.l

3.2.1 Theorem If A is 1-Gorenstein artin algebra [ARZ/{FGR/, then rp(A) < 2 if
and only if A is reflexive-finite, i.e. A has only finitely many isoclasses of indecomposable
reflexive modules.

3.2.2 Example Let A be an artin algebra with the Loewy length LL(A).

(1) 7a(A) < ga(®M AJJL) < LL(A) holds by 2.1.2. In particular, rep.dimA <
LL{A) holds if A is selfinjective [A].

(2) If A is hereditary, then one can check that rep.dimA < ga(A @ DA) < 3 holds
[A]- On the other hand, if J? = 0, then A is stably equivalent to a hereditary algebra
[ARS], and rep.dim A < 3 holds by 3 4(2) below [A][X]. This can be proved dlrectly by
rep.dimA < gp(ADA/JL ®DA) <
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(3) As we shall see in 3.7, algebras with representation dimension at most 3 form
an interesting class. Several classes of algebras are known to have the representation
dimension at most 3 (Xil||CP][H1,2][BHS]. The following theorem of Erdmann-Holm-
Schréer and the author [EHIS] also gives such algebras.

3.2.3 Theorem Let A é I’ be artin algebras. Assume that I’ is representation-
finite and Jy is an ideal (resp. left ideal, right ideal) of I'. Then rep.dimA < 3 (resp.
ra(A) £ 3, ra(DA) < 3) holds.

3.2.4 Example In |EHIS], the representation dimension of a special biserial algebras
is shown to be at most 3 by applying 3.2.3. Now let us consider the representation
dimension of a clannish algebra A over a field & [CB]. Then there exists a Backstrom k[[t]]-
order A with a hereditary overorder I and an ideal f of " such that Jy = Jpand A = A /[
by [16;1.3(3)]. Since B :=T/I is a cyclic Nakayama algebra with J4 = Jg C A C B, we
obtain that B is representation-finite and rep.dim A < 3 by 3.2.3.

3.3 Tame-Wild dichotomy and r4 By famous Drozd's Theorem |D|, finite di-
mensional algebras over an algebraically closed field is divided into two classes, tame and
wild. Any representation-finite algebra is tame. A certain class of wild algebras called
controlled wild algebras was introduced in [Ha]. Ringel conjectures that any wild algebra
is controlled wild. We will prove the following theorem in 3.6.2.

Theorem If A is a controlled wild algebra, then |rj| = 0.

3.3.1 Question We conjecture that any wild algebra satifies |ra| = co. This follows
from Ringel’s conjecture. On the other hand, does any tame algebra satify |ry| < 0o? As
the theorem below shows, this is true for hereditary algebras. Also, it is an interesting
question whether any tame algebra satifies rep.dim A < 3 or not [BHS]. These questions
can be regarded as a part of the study of tame algebras in terms of endomorphism rings.

3.3.2 Theorem Let A be a finite dimensional hereditary algebra. Then the value of
[ra| is given as follows.

agsociated valued quiver [DR1] ynkin | extended Dyokin | else
Iral_ £2 3 ©o

3.4 Let A and I" be artin algebras. We say that A is finitely equivalent to I il there
exists subcategories X and X’ of mod A and mod I" respectively such that #ind X < oo,
#ind X' < oo and mod A/[X] is equivalent to mod I'/[x’]. Especially, when X = prA
and X' = prT, we say that A is stably equivalent to I" [ARS]. Xiangqian's result (2) below
is proved by an application of Auslander-Reiten theory. We need relative homological
algebra of Auslander-Solberg to prove (1).

Theorem Assume that A and I’ are not representation-finite.
(1) If A is finitely equivalent to T', then |ra| = |rp|.
(2){X] If A is stably equivalent to T, then rep.dim A = rep.dimT.
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3.5 Definition We shall introduce two homological invariant of A which is closely
related to the function r4. Let A and I' be artin algebras.

(1) We write A <X I" if there exists P € prI" such that Endp(P) is Morita-equivalent
to A. Obviously, < gives a partial order on the set of Morita-equivalence classes of artin
algebras. Define the expanded dimension of A by exp.dimA := inf{gldimI’ | A X T}.
This concept first appeared in Auslander’s observation in [A] such that exp.dimA < oo
by 2.1.2. Forn =0, 1, exp.dimA = n if and only if 75 (A) = n if and only if gl.dim A = n.

(2) Let ¢ be a subcategory of mod A. We define the weak resolution dimension
wresol.dim ¢ as the minimal number n > 0 which satisfies equivalent conditions below
(cf. §1.1). (wresol.dim(mod A) + 2 coincides with rwrep.dim A in [R].)

(i) There exists M € mod A such that, for any X € (C, there exists an exact
sequence 0 &> M, = - 9 My oY - 0with M;€addM,Y € and X € addY.

(ii) There exists M € modA such that, for any X € C, there exists an exact
sequence 0 2 Y - My > .- 5 M, > 0O with M;€caddM,Y €C and X € addY.

3.5.1 Let A be an artin algebra. One can easily check the following facts:

(1) exp.dim End(X) < ra(X) holds for any X € mod A.

(2) wresol.dim(mod A) < exp.dim A < r5(A) < min{gl.dim A, rep.dim A, LL(A)}.

(3) wresol.dim add 92%(mod A) < max{exp.dimA — 2,0}.

-(4) If a morphism ¢ : A = T of artin algebras satisfies add ¢*(modI') = mod A, then
wresol.dim(mod A) <-wresol.dim(mod I).

~ 3.6 Rougquier’s theorem below |R;6.10,6.9] gave the first example of algebras with
representation dimension greater than 3. It follows from 4.2 and 4.3 below, which will
be proved in §4.6. Consequently, exp.dim A and r,(A) is also n + 1 by 3.5.1(2)(3).

Theorem Let k be a field and A = A(k™) the exterior algebra with n > 0. Then
wresol.dim(mod A) + 2 = rep.dimA =n + 1.

3.6.1 Example We can obtain many artin algebras with large representation dimen-
sion by using 3.6. Again let A = A(k™) be the exterior algebra with n > 0.

(1) An artin algebra I' with A <X T satisfies n + 1 = exp.dimA < exp.dimI' <
rep.dimI by 3.5.1(2).

(2) If ¢ : A = T is a split monomorphism of artin algebras, then n—1 = wresol.dim(mod A) <
wresol.dim(mod I') < rep.dimT" by 3.5.1(4).

3.6.2 Proof of 3.3 For any artin algebra I', there exists M € mod A and an ideal [
of End (M) such that Endy (M) =T'& I [Ha;2.3]. Considering the case I' is the exterior
algebra over n-dimensional vector space, we obtain n—1 < wresol.dim(mod Ends(M)) <
exp.dim Endp (M) < ra(M) < |ra] by 3.6.1(2) and 3.5.1(1)(2). Thus |rs| = oo holdsA

3.7 Finitistic dimension conjecture Let A be an artin algebra and fin.dimA :=

sup{pd X | X € mod A, pd X < oo} the finitistic dimension of A [B|. The finitistic
dimension conjecture (FDC) asserts that fin.dim A < oo holds for any artin algebra A.
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We refer to [Z] for known results and the relationship to other homological conjecture.
Recently, Izusa-Todorov [IT] introduced a function ¥4 and applied it to prove (FDC) for
artin algebras with rep.dimA < 3. We refer [EHIS] and [Xi2,3] for approach to (FDC)
using Igusa-Todorov’s theorem.

3.7.1 Lemma Let A be an artin algebra. Then there exists a function ¥, : modA —
Nxp with the following properties.

(i) If pd X < oo, then Ya(X) =pd X.

(ii) add X C addY implies ¥4 (X) < ¥a(Y).

(i) If 0> X =2 Y = Z = 0 is ezact withpd Z < 00, then pd Z < Y (X DY) + 1.

3.7.2 Theorem Let A be an artin algebra. If wresol.dimadd Q*(modA) < 1 holds
for some n, then fin.dim A < co. Thus rep.dimA < 3 (resp. ro(A) <3, exp.dimA < 3)
implies fin.dim A < co.

ProoF By 3.5.1(2)(3), we only have to show the former assertion. Let M € mod A
be in 3.5(2)(i). For any X € modA with pd X < oo, take an exact sequence 0 —
M = My =Y — 0 with M; € addM and Q"X € addY. Then pd X < pdY 4+ n <
Pa(My ® My) + n+ 1 =, (M) + n+ 1 holds by 3.7.1(ii)(iii) .1

4 Dimensions of triangulated categories
In this section, we shall give a proof of Rouquier’s theorem 3.6.

4.1 Definition [R;3.1] Let 7" be a triangulated category, and C and C’ subcategories
of 7. We denote by € =’ the subcategory of T consisting of X such that there exists
atriangleY =+ X = Y’ — ... such that Y € ¢ and Y’ € ¢’. We denote by (C) the
smallest full subcategory of 7" containing € and closed under finite direct sums, direct
summands and shifts. Put CoC’:= (C*(’). Put {C)o:=0, {C)i := (C)i-10(C) fori >0
and (€)oo := Ui»o(C)i- We sometimes denote (C); by (C)7,;. The dimension dimT of T
is the minimal integer d > 0 such that there exists M € T with T = (M)44,.

4.1.1 Example This concept is motivated by examples in algebraic geometry. Let
k be a field and X a scheme over k.

(1) If X is smooth quasi-projective, then dim D®(coh X) < 2dim X [R;5.8].

(2) If X is smooth affine and of finite type, then dim D*(coh X) = dim X [R;5.37).

(3) If X is separated and of finite type, then dim D%(coh X) < oo [R;5.38]. This is
due to Kontsevich, Bondal and Van den Bergh for non-singular case [BV].

4.2 Let A be a selfinjective artin algebra. Then the stable category modA [ARS]
forms a triangulated category. The following proposition gives the relationship between
the dimension of stable categories and the representation dimension.

Proposition [R;6.9] dim modA < wresol.dim(mod A) < rep.dim A —2 < LL{A) - 2.

PROOF Since A is selfinjective, 22(mod A) = mod A holds. By 3.5.1{2)(3), it suffices
to show the left inequality. Put n := wresol.dim(mod A) and take M € modA in
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3.5(2)(i). For any X € mod A, there exists an exact sequence 0 = M, = - = My —
Y 2 0with M; €addM and X € addY. Put ¥5:=Y and Y, := M,. Then we have an
exact sequence 0 = Y; = M;_, = Yi_; = 0 with M;_, € (M) (0 < i <n). Inductively,
Y; € {M)n_iy) holds for any i. Thus Y € (M)p4) and {M),4) = modA hold

4.3 Theorem [R;6.10] Let A := A(k") be the exterior algebra with n > 0. Then
dimmodA =n ~ 1.

4.4 Definition Let A be an abelian category with an autofunctor F : 4 = A. Define
a new category (A,F) as follows: An object is a apir (M, d) consisting of an object M
of A and d € A(M,FM) such that dF(d) = 0. Put (A4,F)((M,d),(M',d)) = {f €
A(M, M) | dF(f) = fd'}. We regard A as a full subcategory of (4,F) by M +— (M,0).
We call a morphism f in (4,F) quasi-isomorphism if the induced map Kerd/Imd —
Kerd'/Imd' is an isomorphism in 4. Now (A,F) has the structure of exact category,
wlere an exact sequence is a sequence which is a split exact as a sequence in 4. Then
(A,F) forms a Frobenius category, and its homotopy category H(A,F) is defined as
usual. We define the derived category D(A4,F) as the localization of H(A,F) by quasi-
isomorphisms. Later we shall use the three categories below.

(1)|R;5.1.3] Let T be a k-algebra. Then the category of differential I'-modules is

diff T := (mod T, 1). Put Ddiff T := D(mod T, 1). Then D diff (M, M’) = [T Bxt}(M, M)

holds for any M = (M,0), M'= (M’,0) € DdifI.
2)[K] Let T be a graded k-algebra. Then the category of differential graded I'-
modules is diffgr ' := (grmod T, F), where F is the shift. Put D diffgrI" := D(grmod I', F).
(3) Let I be a commutative graded k-algebra, X := ProjI" and @, the local ring at
the point = € X. For the shift F : coh X — coh X, we put diffcoh X := (coh X, F) and
D diffcoh X := D(coh X,F). We have the following commutative diagram:

differ T —O, gdificoh x —V=y diff o,
l l l
D diffge T—— D diffcoh X = D diff O,

4.5 Proposition [R;5.11] Let I" be a k-algebra and L a '-module with pdp L > n.
Then L ¢ (F)depm.

Proor (i)[R;5.10] Put '™ :=I' ®, . We will show that there exist '*"-modules
My =T, M,,---, M, which are projective as left and as right [-modules, and {; €
Extpen (Mi, Miy1) (0 < i < n) such that (¢o+++Gam1) ®r 1 is a non-zero element of
ExtR(L, M, @r L).

Let ... = P 4 Py Brsobea projective resolution of the I'-module I'. Put
M1 = Ker f;. Then we have an exact sequence 0 - M;y; — P; = M; = 0, which
gives an element §; € Exthen (M;, Myy;). We have a projective resolution 0 = M, ®p L —
FPoy®rL—o... = Py® L — L — 0of the I'module L, and the assertion follows.
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(i) Assume L € (I'). Then there exist triangles L;_, = L; LA Ni—=+...(0<j<mn)
such that Ly, N; € (I'} (0 < j < n) and L is a direct summand of L,_,. By 4.4(1), we
regard {; @ 1y € Ext}.(M.- Q&p N, My ®r N) C DdlﬁF(M. ®r N, M, @p N) for any
[-module N. Thus we have the following morphism of triangles in D diff I":

M@[‘ L,'-] M M.' @pL IM‘@’ M @pN —_
J'(i@ll.’_l -l-(‘e“" l(l@hv,

1 ®a. @b
My ®r Lj— =" Miyy @r L; 1% Mor ®p Nj— -

Since the right-hand side map is zero by N; € (I'), the morphism ¢; ® 1z, factors
through 1y,,, ® a;. Thus we have the following commutative diagram:

Mo @ Loy

/ I(o@l

M) ®r Ln-2 2222 M, @r Ln-s

/ I(l@l l(l@l
/ l(-—a@l ](--ael

Ma.2@p L1122, . 1880=2pr . @p Ln-222252 M3 @1 Ln -y

el fe-se foese

M) Or Lo282L M,y @ L2882, 182y, ®F Ln-22222} M, _1 ®p Ln-1

I(n—l@l=0 I(-- 191 I(.- 181 l(.—lel

Ma@r Lo 21224 M, @p L, 182%,.. 18002 ap grp, o 19000 M, @ Lans

Since (o @1, = 0 holds by Lo € ([}, the right-hand side composition ({o- - - {a-1)®
14, ., in the above diagram is zero, a contradiction to (i) and 4.4(1).8

4.6 Proof of 4.3 In the rest of this paper, let A := A(k") be the exterior al-
gebra and I' := k[z,,---,z,) the polynomial ring. By 4.2 and LL(A) = n + 1, we
only have to show n — 1 < dimmodA. The usual Koszul duality gives an equivalence
Db(grmod A) — D®(grmodT’) of triangulated categories, which induces an equivalence
grmodA — D®(coh P™~!) of triangulated categories (BBG|. But we need the following
version of Koszul duality due to Keller.

4.8.1 Theorem [K;10.5] There exists an equivalence D*(mod A) = (T} paiggrroo Of
triangulated categories, which induces an equivalence modA — (') p uisigrr,c0/ (k) D difier 00
of triangulated categories.

4.8.2 Proposition For any (F,d) € D diffcoh P"~2, there ezists a point z € P"‘l
such that (F,,d.) € (O:)pano,-



ProoF Put G := Kerd(1)/Imd and take a point z € P*~! such that G, is a pro-

jective Oz-module. We have an exact sequence (F:,d;) = Kerd; 4 G. — 0in diff @,,
and we can take ¢ € Homg,_(G., Kerd,) such that gf = 1g_. Since the composition
G: 5 Kerd, C (F:,d;) is a quasi-isomorphism, we obtain the assertion.ll

4.6.3 Since [-modules of finite length vanishes by the functor diffgr I' = diffcoh P™~?,
we have the following functors of triangulated categories for any z € P*! by 4.4 and
46.1:

_OdA ;) T = (F)Ddiﬂ'y[‘.oo/(k)pdiﬂ‘g[‘.m — Ddiffcoh P"-l — D diff O

Assume that M € T satisfies T = (M)yn-1. Let (F,d) € Ddiffcoh P"~! be the
image of M, z € P"! the point obtained by 4.6.2, and p the homogeneous prime ideal
of I which defines z. Then I'/p is contained in 7" by the regularity of I'. Since the image
of I'/p in D diff @, is the simple @,-module k., we obtain k; € ((Fz,dz))pair Oun-1 S
(Oz) D dir 0,,m—1 by the choice of z. This contradicts to 4.5 by pd,,_k. =n - 11
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A GENERALIZATION OF ZWARA'S THEOREM
ON DEGENERATION OF MODULES

YUJI YOSHINO

This is a survey of my recent works on degenerations of modules and their G-dimension.
For the datail of the contents, the reader should refer to the original papers (4], [5].

1. DEGENERATIONS OF MODULES

In this section k always denotes a field and R is a k-algebra. Note that R may not be
commutative nor Noetherian.

Definition 1.1. For finitely generated left R-modules M and N, we say that M degen-
erates to IV along a discrete valuation ring, or N is a degeneration of M along a DVR, if
there is a discrete valuation ring (V,tV, k) that is a k-algebra (where ¢ is a prime element)
and a finitely generated left R ®; V-module @ which satisfies the following conditions:

(1) Q is flat as a V-module

(2) Q/tQ = N as a left R-module.

(3) Q3] & M ®, V[3] as a left R @ V[}]-module.

We have considered a different kind of degenerations in the previous paper (3], mainly
for maximal Colien-Macaulay modules over a commutative Cohen-Macaulay local ring.
To distinguish it from the degenerations defined in Definition 1.1, we make the following
definition.

Definition 1.2. In this definition we assume that k is an algebraically closed field to
identify the affine line with k. And let R be a k-algebra as before. For finitely generated
left R-modules M and N, we say that M degenerates to N along an affine line, or N isa
degeneration of M along an affine line, if there is a finitely generated left module Q over
R ® k[t] which satisfies the following conditions:

(1) Q is flat as a k|t]-module.

(2) For any c € k, let us denote Q/(t — ¢)Q by Q., which is a finitely generated left
R-module. Then, @Qp 2 N as a left R-module.

(3) There is a non-empty Zariski open subset U of Al 2 k such that if ¢ € U, then
Q. = M as a left R-module.

The following is our main theorem from [5].

Theorem 1.1. The following conditions are equivalent for finitely generated left R-
modules M and N.

(1) N is a degeneration of M along a DVR.
(2) There is a short ezact sequence of finitely generated left R-modules

-4
0-—>Z£°—)>Mez—>N—)0,
such that the endomorphism ¢ on Z is nilpotent, i.e. " =0 forn > 1.
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Remark 1.1. As G.Zwara has shown in [6], if R is an Artinian k-algebra, then the following
conditions are equivalent for finitely generated left R-modules M and N:

(1) N is a degeneration of M along a DVR.
(2") There is a short exact sequence of finitely generated left R-modules

0—+ZQyM€BZ-+N—-)O

Note here that we need not the nilpotency assumption for ¥. It is easy to see from
Fitting Theorem that if R is an Artinian ring then the condition (2') is equivalent to the
condition (2). In this way, our theorem contains the theorem of Zwara.

By the proof of (2) = (1) of the theorem we get the following result as a corollary.

Corollary 1.2. Suppose that M degenerates to N along a DVR. Then as a discrete val-
uation ring V we can always take the ring k[t]).

Remark 1.2. Assume that there is an exact sequence of finitely generated left R-modules
0+NBMIHN 50
" Then it is easy to see that M degenerates to N' @ N” along a DVR. In fact, we have only

to notice that there is an exact sequence
g 0
O—-)N’(—)MGBN’( )N”QN’—-)O

where the mapping ¥ : N — N’ is the zero mapping, hence nilpotent.

We can prove an implication between degenerations as in the following theorem. But
one should remark that the converse implication does not hold in general. See Remark
2.1.

Theorem 1.3. Assume that k is an algebraically closed field and that R is a left Noe-
therian k-algebra. Let M and N be finitely generated left R-modules. If M degenerates to
N along a DVR, then M degenerates to N along an affine line.

2. REMARKS FOR COMMUTATIVE NOETHERIAN ALGEBRAS

In the rest of the paper, we assume that R is a commutative Noetherian algebra over
a field k. In this case we have the following result as a corollary of Theorem 1.1.

Corollary 2.1. Suppose that M and N are R-modules of finite length. Then the following
conditions are equivalent.

(1) N is a degeneration of M along a DVR.
(2) There is an ezact sequence

©) M®Z-aN-—-0

where Z is also a module of finite length.

In particular, if M degenerates to N along a DVR, then we must have an equahty of the
lengths; ZR(M) = ZR(N)

02—
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Remark 2.1. There is an example where the opposite direction of the implication in The-
orem 1.3 does not hold.

For example, let R = k|[z]] be the formal power series ring over an algebraically closed
field k and let M = R/(z) and N = R/(z?). Since M and N have distinct lengths, N can
never be a degeneration of M along a DVR by Corollary 2.1. On the other hand, consider
the R[t|-module Q@ = R[t]/(z? —tx). It is easy to see that Assgy@ = {(z),(z — 1)}, hence
any nonzero element of k[t] is a non-zero divisor on Q. This implies that Q is flat over
k[t]. For any element c € k, note that Q. = R/(z(z — c)), hence that Qp = R/(z?) and
Q. = R/(z) for ¢ # 0, since £ — ¢ is a unit in R. Therefore, from the definition, the
module M degenerates to N along an affine line. Note that there is an exact sequence

0= R Riz) @ REZY R/(s2) > 0,

however the endomorphism R 5 R is not nilpotent.

3. OPENNESS OF THE G-DIMENSION ZERO PROPERTY

Let R be a commutative Noetherian ring as before. Auslander and Bridger [1] give
a definition of G-dimension, which we denote by G-dimgM for a finitely generated R-
module M. In our subsequent work [4], we have shown the following fact:

Theorem 3.1. If there is an ezact sequence of finitely generated R-modules
02 Z—=M@®Z—->N-=0,
then we have an inequality G-dimpM £ G-dimgN.
Combining this with Theorem 1.1, we have the following result as a corollary

Corollary 3.2. Assume that R is a Noetherian commutative algebra over a field k and
let M and N be finitely generated R-modules. Suppose that N is a degeneration of M
along a DVR. Then the inequality G-dimpgM £ G-dimgN holds.

In particular, if N has G-dimension 0, then so does M in this case. We infer from
this that if there is an algebraic set that parameterizes a family of finitely generated
R-modules, then the set of points corresponding to modules with G-dimension 0 should
form an open subset. By this property we may say that the property for a module having
G-dimension 0 is an ‘open’ property. This generalizes a well-known fact that the maximal
Cohen-Macaulay property for modules over a Gorenstein local ring is an open property.
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FINITE GENERATIONS OF RINGS
OF DIFFERENTIAL OPERATORS OF SEMIGROUP ALGEBRAS

MUTSUMI SAITO AND WILLIAM N. TRAVES

1. INTRODUCTION

Let A :={a,ay,...,a, } be a finite subset of Z%, We denote by NA, ZA, and RyoA
the monoid, the abelian group, and the cone generated by A, respectively.

Let R, denote the semigroup algebra C[NA] of NA. We consider two rings: the ring
D(R,) of differential operators of R4 and its graded ring Gr(D(R,4)) with respect to the
order filtration. As a starting point for the study of D(R,), we have examined the finite
generations of D(R,4) and Gr(D(R,)).

While considering the finite generation of Gr(D(R,)), we encountered the notion of a
scored semigroup; a semigroup NA is scored if the difference (R>0ANZA)\ NA consists
of a finite union of hyperlane sections of R»>0A N ZA parallel to facets of the cone R>pA.

We have proved the following.

Theorem 1.1 (Theorem 3.2.12 in [1], Theorem 5.13, Theorem 6.3 in [2]).

1. Gr(D(R,)) is finitely generated if and only if R4 is a scored semigroup algebra.
2. D(R,) is finitely generated for all semigroup algebras R4.

By the standard argument of filtered rings, we obtain the Noetherian properties of
D(R,4) from those of Gr(D(Ra));

Corollary 1.2 (Corollary 6.4 in [1]). If the semigroup NA is scored, then D(R,) is left
and right Noetherian.

Here we exhibit the idea of the proof of the theorem, and explain the scored property.
The scored property implies Serre’s condition (S:). However neither the scored property
nor the Cohen-Macaulay property implies the other. The problem of the Noetherian
properties of D(R,) is still open.

2. MOTIVATION

In the theory of A-hypergeometric systems (or GKZ systems), the associative algebra
composed of contiguity differential operators plays an important role. We [1] proved
that this algebra (called the symmetry algebra) is anti-isomorphic to the algebra D(Rj4).
Hence we expect that the study of D(R4) has some fruitful applications to the theory of
A-hypergeometric systems.

We also expect that the study of D(R,4) brings new insights into the ring R4.

This report is based on {1] and |2].



3. DEFINITIONS

In this section, we briefly recall some fundamental facts about the rings of differential
operators of semigroup algebras. Let A := {a;,az,...,a,} be a finite set of column
vectors in Z¢. Sometimes we identify A with the matrix (a;,az,... ,an). Throughout
this paper, we assume that ZA = Z? for simplicity.

The ring C[t§",... ,t$](d,... ,04) of differential operators with Laurent polynomial
coefficients is the ring of differential operators on the algebraic torus (C* )¢, where [8;, t;] =
8ij, [05,85") = 6,272, and the other pairs of generators commute. Here [, | denotes the
commutator and d&; is 1 if ¢ = 7 and 0 otherwise.

3.1. The Rings R4 and D(R4). The semigroup algebra R, := C[NA| = @, 54 Ct* is
the ring of regular functions on the affine toric variety defined by A, where t* = t}'13* - - - t3¢

for a = *(a1,02,...,aq4). Its ring of differential operators D(R,4) can be realized as a
subring of the ring C[tF, ... ,t3!]{8),. .. ,0a) of differential operators on the big torus as
follows:

D(Ra) ={P e C[tF,... ,tF)(B1,... ,84) : P(R4) C Ra).
. 32, The Ring Gr(D(Ra)). Next we explain the order filtration. A differential operator
P=) ca(t)0"eClt},... ,t3'(a),... ,0a)

agNd

is said to be of order k if ¢, # 0 for some a with |a| = k and ¢, = 0 for all a with |a| > £,
where |a| = @) + a2 + -+ + aa. Let Dy(R,) denote the set of differential operators in
D(R,) of order at most k. Then {Dy(R)}xen is called the order filtration of D(R,).
We consider the graded ring Gr(D(R4)) of D(R,4) with respect to the order filtration,

Gr(D(Ra4)) := € Dx(R4)/Dx-1(Ra),

keN
where D_;(R4) = 0. The graded ring Gr(D(R,)) is a subring of the commutative ring

Gr(C[t!,... ,tF)(d,... ,8s)) = Clt", &,... 131, 6,&,... ,&d],
where &; is the element represented by 0;.

4. SCORED SEMIGROUPS

We recall the definition of scored semigroups. To this end, let us define the primitive
integral support function of a facet (maximal face) of the cone Ry0A. We denote by F the
set of facets of the cone RypA. Given o € F, we denote by F, the primitive integral
support function of o, i.e., F;, is the uniquely determined linear form on R? satisfying
Fs(R50A) 2 0, Fy;(0) =0, and F,(Z?) = Z.

Definition 4.1. The semigroup NA is said to be scored if
(4.1) e NA=(|{a€Z': F,(a) € F,(NA)}.

oceF
1
3 )

Example 1. Let
11
A1=(alaa2)a3)= (0 2
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Then
F= {UI‘R>oax,03=Rzoas},
Fy (0),02) = 03, Fyy(0y,02) = 30, — 05, and
N\ Fy,(NA;)) = {1}, N\ F,(NA;))=0.
The semigroup NA, is scored.

o0

Remark 4.1. 1. By the definition of F,, the difference N \ F,(NA) is finite for any
og€F.

2. The semigroup NA is scored if and only if
(RoANZHY\NA=|] |J F'(m)NRyANZY
o€F meN\Fz(NA)
Thus NA is scored if and only if the difference (R>0A4NZA) \ NA consists of a finite
union of hyperlane sections of R>0A N ZA parallel to facets of the cone RyoA.

The semigroup ring C[NA] is Cohen-Macaulay if and only if it satisfies Serre’s condi-
tion (Sz) and the reduced homology modules of certain simplicial complexes vanish ([3,
Theorem 4.1]). In our case, Serre’s (S;) condition can be stated as follows:

(S2) NA= [|(NA+Z(ANo)).
g€F
Proposition 4.1 (Proposition 2.6 in [2]). Any scored semigroup satisfies (Sz).

Proof. Let NAbea scored semlgroup It is enough to show that for any facet ¢ € F we
have

(4.2) NA+Z(Ano)={a€Z¢: F,(a) € F,(NA)}.

The inclusion ‘C’ is clear from the definition of F,. To prove the other inclusion ‘',
let a € Z4 satisfy F,(a) € F,(NA). For every ¢’ € F different from o, there exists a; € A
such that a; ¢ ¢’/ and a; € 0. Since F,(a;) > 0 and N\ F«(NA) is finite, there exists
my; € N such that F,(a+ m;a;) € F,.(NA).

Doing this argument for every ¢’ € F different from o, we find b € N(AN¢) such that

Fo(a+b)€ Fy(NA) (Vo' € F\ {o}).

Since

Fc(a +b) = F,(a) € F,(NA)
and NA is scored, we see a + b € NA. Hence a € NA+ Z(ANo). ]
Example 2.

_(012
A"(llo)' oy

The semigroup NA; satisfies (S;). Hence the semigroup ring C[NA,) is8 Cohen-Macaulay
as well since the cone Ry A is simplicial. Thus C[NA,) is Cohen-Macaulay but not scored.

28~



Example 3. Let 0 =1
11 11 1 'z

A3= 0 2 2 3 . coee
00 11 6,

Then the semigroup NAj; is clearly scored. However the semigroup ring C[NA;] is not
Cohen-Macaulay ([3, Example 3.9]).

11
30
01

5. GRADED STRUCTURE
Put §; :=t;0; for j =1,2,... ,d. Then it is easy to see that 8; € D(R,) for all j. We
introduce a Z%-grading on the ring D(R,) as follows: For a = *(a),a3;. .. ,a4) € Z°, set
D(Ra)a:={P€D(Ra) : |6;,Pl=a;P forj=1,2,...,d).
Then D(R4) is Z%-graded; D(Ra) = @, ez« D(Ra)a = Pacze t*1((a)), where 1(Q(a)) is
a certain ideal of C|d]. .
Since each Dy(R,) is Z%-graded — Dy(Ra) = @yeze De(Ra) N D(R4)a - the graded

ring Gr(D(R,)) inherits the grading; Gr(D(R,)) = @ gez« Gr(D(R4))a-
" The following decomposition is a key to the finite generations of D(R,) and Gr(D(R,)).

Proposition 5.1 (Proposition 3.4 in [2])." There ezist m € N, b; € Z?, and faces 1; of
RyoA withi=1,2,... ,m such that

1) (RooA 0Z\NA = [](bs+ N(A N 7).

()]

The decomposition (5.1) is called a Stanley decomposition of (1R>0A N Z9) \ NA.
Note that it is not unique.

6. FINITE GENERATION OF Gr(D(R))

The Serre's condition (S2) means that every graded component D(R4)q is a singly
generated C[f]-module.

Proposition 6.1. The C|0]-modules D(R,)a are singly generated for all a if and only if
the semigroup NA satisfies (S;).

Next we consider the scored property. Let ¢ € NA be a vector such that c+RyoANZ? C
NA. It is well known that such a vector always exists.

Proposition 6.2. There erists L € N independent of d € ¢ + R>oANZ? such that the
minimal degree of polynomials in 1(QA(—d)) is equal to 3, e Fo(d) + L.

Purthermore, L = 0 if and only if NA is scored.

Thus the scored property means that the degree of generators of graded components

far from the hyperplanes grows linearly without a constant term. This fact intuitively
explains Theorem 1.1 (1).

The proof of the finite generation of Gr(D(RA)) for a scored semigroup ring R4 goes
as follows:

1. Fix a Stanley decomposition (5.1).
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2. Let M be one plus the maximum of F,(b;) (c € F,i=1,... ,m).
3. Decompose Z¢ into pieces;
2! =S,
m

where g runs over all maps from F to {—oo0, 0} U{k € Z: |k| < M}, and
S,:={deZ?: F,(d) = p(o) foralloe F}.

Here we agree that F,(d) = +00 (—o00, respectively) mean F,(d) > M (< —M,

respectively).

4. Let Ray(A) denote the set of rays of the hyperplane arrangement determined by
A, {(F, = 0) : 0 € F}. For each ray p € Ray(A), take d, from pN 2¢ so that
|Fo(d,)| 2 M whenever it is not zero.

5. Put F, := {p € Ray(4) : p C g if (o) # *oo}.

6. Then there exists a finite subset S, 5n C Sy such that S, = Spa + 3 ser,

7. Put D(R4)s, = Baes, D(Ra)a- Then Gr(D(RA))g is generabed by Gr(D(RA)),.
(a € Syp) and Gr(D(RA))p (p € Fy).

8. Gr(D(R,)) is finitely generated.

Example 4. (Continuation of Example 2)
Since NA; satisfies (S3), each D(R4,), is singly generated. For a = ‘(a;,a3), put
't9? (a1 >0,a; > 1, 0r a; > 0 even, a; = 0)
._ t;"tgag""” (a) 20,02 <0, or ay > 00dd, a; =0)
Qa:= t;"a',“" “(a) < 0,83 > 1, or a; <0 even, a3 = 0)
tg@}““@'{"“ (a1,a2 < 0, or a; < 0 odd, a = 0).

By computing 1(2(a)), we see that D(Ry4, ), is generated by @Q,. Hence L = 1. Moreover
we have

Gr(D(RA‘:»/(tl)El) = C[tzl t2£2) tzfgs t2£g) re ]‘
Since this is not a finitely generated algebra, neither is Gr(D(Rj,,)).

7. FINITE GENERATION OF D(R)

The proof of the finite generation of D(R,) for a general affine semigroup ring R4
follows the same steps as that of Gr(D(R,)) for a scored semigroup ring made until Step
6. Steps 7 and 8 are the following:

7 Put D(Ra)r,r = ®n52,ep na, D(Ra)a. Then D(Ry)s, is generated by D(R,)a

(a € Suse + Xper, N<m+2d,,) as a right D(R4) pmn—module, where N¢my2 denotes
the set of natural numbers less than m + 2.
8 D(R,) is finitely generated.

Let us explain Step 7 in some more details. Let d = (d -d,)+d, (d-d, € S,
p € F,). Then there exists an ideal I(d — d,,d,) of C[f] such that

D(Ra)a-a,D(Ra)a, = D(Ra)al(d — d,,d,).

When d — (m + 1)d, € S, we can prove that 3 pt! I(d — kd,, kd,) = (1). Hence
we see that D(R,)s, is generated by D(R4)a (a € S,6a + 2 per, Nemyad,) as a rlght
D(R4)p,,r-module.
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Example 5. (Continuation of Example 4)
Recall that Q:(,—p) = 1287*! for p > 1. Then for p,g > 1

Q‘(ol-P)Q‘(nl-'J) = Q'(“--P-'J) (t262 - Q)'
Hence for p > 3

Qi0,-p) = Quo,~(p-1)Qu0,~1) — Qe(0,~(p-2yQx(0,-2)-
Thus Q:(g,—p) (p = 3) are generated by Q«(o,—1) and Q:(,-2).
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ON DEGENERATIONS OF MODULES OVER GENERAL RINGS

YOSUKE OHNUKI AND MASAHISA SATO

In this paper, R is an associative ring with an identity and a module means a left
R-module otherwise stated. We denote by N the set of positive integers.

Recall [6], [8] that for a finite dimensional algebra A over an algebraically closed field
k and (finite) d-dimensional A-modules M, N, M degenerates to N (i.e., N lies in the
Gly(k)-orbit closure of M) if and only if there is some exact tube, called (M, N)-tube, if
and only if there is a short exact sequence 0 - Z2 = Z&® M — N = 0. Our aims are to
define the degeneration for infinite dimensional modules and to charactenze the non-split
exact sequence 0 3 N NN - N 0.

1. DEGENERATIONS

Our aim in this section is to generalize Zwara's results, that is, M degenerates to N if
and only if there is an exact sequence 0 =+ Z 5 Zdp M oI N 0.
Let N; (i € N) be modules and
. T:Nlim Nzﬁﬂ’ Na(ﬂa
a sequence of homomorphisms. T[1] is a shift of T, i.e.,
T[]: Ny «2— Ny 2 N, &

A morphism a : T — T[1] is the set of homomorphisms &; N; — Niy1, (i € N) which
makes a commutative diagram;

Nl<Ap' N, &2 N, B
Oll Ozl Osl
N, & Ny & N, &

A morphism a : T — T[1] is said to be “ezact” or “ezact tube” if for each i, we have the
short exact sequences

(alp-:-l (exis ﬂ-+|) .
0 — Niyyy —— N;® Niy? Nin > 0

with a monomorphism «; and an epimorphism g;.
For an exact tube a: T — T[1} and N := Cok(a,), we have a short exact sequence of
inverse systems;

0 y T —— T[1] » (N,1y) — 0.
Here we consider that (N, 1x) is a sequence of identity maps of N,
(N,1n) : N NS N &
The detailed version of this paper will be submitted for publication elsewhere.
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Then, this induces the exact sequence of inverse limit;
lima
0 — limT —— limT[1]] — N — 0,
— —
because the inverse limit functor lim is left exact and a right term N is the inverse limit

—
of the inverse system (N, 1y). For an exact tube @« : T — T[1] and any module L,
a®ly: TeL— T[1]® L is also an exact tube which makes a commutative diagram;

&L 21611. N2®L Ez@lt. Na@L Esﬂ)lz. ..

Ny
Qle)l[,J' GQQILJ' asQlLJ'

NeoL &2 NeL &2 N &2 .
Ilma

Lemma 1.1. Let @ : T — T{1] be an exact tube. If an exact sequence 0 — lim T =
lnm T[1] = N — 0 splits, then ezact sequences 0 = N; = Nyyy = N = 0 spht for all
1 2 1.

- Definition 1.2. Let M and N be non-zero modules. An exact tube o : T — T[1] is
called an (M, N)-tube if there is an isomorphism () : lim T[1] - lim T & M with the
property that l‘it_nT has no non-zero direct summand L such that l‘ir_n a|L: L— l‘il_n afL)
is an isomorphism. In this case N is called a “degeneration” of M.

The following theorem generalizes the results in [1, 7, 8] on general rings and modules.

Theorem 1.3. The following statements are equivalent;
(1) N is a degeneration of M.

I
(2) There is an exact sequence 0 — Z (il Z®&M — N = 0 for some module Z which
has no non-zero direct summand L such that f|L: L — f(L) is an isomorphism.

For a degeneration N of M, we constructed an exact sequence 0 = Z =+ Z o M —
N — 0 that the module Z was realized by an inverse limit for a chain of epimorphisms.
However, ‘we can also construct it by using a direct limit. In fact, for an exact sequence

f
0o 2 (—+) Z® M - N — (, we can construct a commutative diagram consisting of
direct systems ;

= L2

T: 2 — ZoM — ZoM® —
L ou sl ]
T]: ZoM 2= ZoM? 25 Zo M =

Here h; : ZOM' — Z&M'®M is given by h; (2) = (’f::) and i : ZOM' — ZOMOM:

is given by ¢; (2) = (:) for 2 € Z, z € M*. Note that hg = ().
Then it induces the exact sequence of direct limits of direct systems;

lima

0 — limT —— limT{l] — N — 0.
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Concretely, we have imT = Z @ MM, where MM is the direct sum of N-copies of M.
—
On our definition of a degeneration, it is satisfied the following basic properties.

Corollary 1.4. (1) If0 - A= B = C — 0 is an exact sequence, then A® C is a
degeneration of B.
(2) If N is a degeneration of M, then N is a degeneration of M), where N7 is
direct sum of r-copies of N and r is a cardinal number.
(3) If N is a degeneration of M, then N7 is o degeneration of M", where N7 is direct
product of r-copies of N.
!
Definition 1.5. Let 0 =+ Z -i)r Z®& M — N — 0 be an exact sequence which gives a
degeneration N of M. A degeneration is called “Fitting type” if f: Z — Z is nilpotent.

On a degeneration for finitely generated modules M 2 N, the endomorphism f must

Theorem 1.6. Assume a module N is finitely generated and there is a Filting type de-
generation N of M. Then M is finitely generated and there is a finitely generated module

(?)

Z such that0 = Z -5 Z® M — N — 0 is ezact and f is nilpotent.

be nilpotent for the induced exact sequence 0 — Z =

2. EXACT SEQUENCES OF THE FORM 0 9 N2 NN - N =0

In this section, we give a non-split exact sequence of the form 0 = N - N® N —
N — 0 and these examples make strange degenerations which do not happen for finitely
generated modules over finite dimensional algebras.

We give the preliminary lemma.

Lemma 2.1. The following statements are equivalent.
(1) Any ezact sequence0 - M - M @ N — N — 0 splits for any modules M and N.
(2) Any ezact sequence0 - N = N @& N — N — 0 splits for any modules N.

An exact tube:

N <2 N, B N, P

ml “’l a;l
Ny <2 Ny 2 N, &
induces an inductive systems;

(ﬁtix_.'l ) (2i-1,—B1), .

J= [Csa) ]

0 — Niyy ——— Ni® Nypo > Nipy — 0.
i (en—Fisr)

aisy .
Proposition 2.2. We set Ny, = llm N., (n“ ) = hm (a2)), (Orgr—Bro) = lEx(a;,—ﬁ;+1).
Then the short ezact sequence

By
(au‘;) (angi—Bno)
0 ¥ Ny, — Ny ® Ny, ——

N..,,-—)O
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splits.

Aehle, Riedtmann and Zwara (1] defined a complexity for an (M, N)-tube where M 2 N
are finitely generated modules over a finite dimensional algebra, that is, a complexity for
an (M, N)-tube is the minimal number such that exact sequences

ﬁu—l
o 2y N‘_l e N,'+l (ai—ln_ﬂl)) N,‘ — o
split for all ¢ > m.

Their results hold for an exact tube if there is such an m that the above property is
satisfied. So we can define the complexity of an exact tube over general rings.

By Proposition 2.2, the following fact holds.

Proposition 2.3. The complezity of an exact tube always ezists end this is less then or
equal to V.

The following example shows that there is a non-split exact sequence 0 - NS N®
N = N — 0 which induces the strange degeneration.

'Example 2.4. Let & be a field and Q the set of rational numbers. We set a semi-group
algebra R = ) @kz,. The multiplication is given by 2,2, = z,,. Then idempotents of

€Q,
0<q<1

" R are only 2y, z; and 2z, is the identity of R.
Now we shall construct R-module N. It is defined as vector space with bases { w,|t €
Q,-1<t <1} in the following;

N= Z ®Kw,.

teqQ,
-1€9%51

The R-operation is defined by z,w, = w,. The generators of N are w;, w-, and the socle
of N is Kwy.
We consider two R-homomorphisms f,, fo : N = N by

fl(tlh) = {wh (t = 0), fz( c) = {w. (t = 0),

wy, (t>0), wy, (t>0).

Then we have the non-split exact sequence;

N
0—— N )N®N—)N—)0

In particular, N has no non-zero direct summand L such that f;|L : L — f,(L) is not an
isomorphism.

Weset M, = 3. @®Kw; an ideal of 2. Then we have the exact sequence ;

=€Q
0s=<q

0 — .Afilﬂl* —_ AJI/A4} —_— All/ﬂd; — 0.

For any rational numbers 0 < r < s < 1, all of the modules of the form M,/M, are
isomorphic, thus we have a non-split exact sequence;

0 » M y M » M » 0.
Hence M? is a degeneration of M by Corollary 1.4.
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Crawley-Boevey and Krause studied a generic modules [2], [5]. This is determined
to a homogeneous tube. In particular, for a tame concealed algebra, a generic module
is uniquely constructed by a tubular family (it is a one-parameter family of tubes that
almost all of them are homogeneous.)

Example 2.5 ([5]). Let A be an algebra over a field k. An exact tube T is called a
homogeneous tube if it is a following exact diagrams

0 « N LN, B Ny B

IR

N, & N, & N3<'3’ N, 2
We have the exact sequence of inverse limits

0 — limT —5 imTf1)] — N — 0.

Then this also gives the following direct system of exact sequences

0 — ImT -, imT — N; > 0
| dl “|
0 — limT -, imT — Nepy — 0.

Note that Iim T @ N; is a degeneration of l.iLn T by Corollary 1.4. Otherwise, we also have
the exact sequence of direct limits
0 —— IlimT y M y imT —— 0.

It is called the universal exact sequence corresponding to T. In fact, M is uniquely
determined to a tubular family, and it is called a generic module. By Corollary 1.4, we
have that limT @ lim T is a degeneration of M.

— —

Now, we shall introduce the behavior of the homogeneous tube explaining in [5]. Let k[z)
be a polynomial ring with one invariant and k(z) be the quotient field of k[z]. Note that

klz] & lim k[z]/z* and k(z) is the direct limit of the direct system kz] —=» k[z] — ---.
The short exact sequence 0 — k[z] = k(z) — k(z)/k{z] — 0 is the universal exact
sequence corresponding to the tube (k[z]/z')ien

Lemma 2.6 ([5]). Let T be a homogeneous tube. Then T is isomorphic to (k[z]/z* @y
(I,iﬂl T))ieN'
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LIFTING MODULES OVER RIGHT PERFECT RINGS

CHANG CHAEHOON AND YOSUKE KURATOMI

We consider associative rings with identity and all modules considered are unitary
right R-modules. An R-module M is said to be an extending module, if it satisfies the
following property: For any submodule X of M, there exists a direct summand of M
which contains X as an essential submodule, that is, for any submodule X of M, there
exists a closure of X in M which is a direct summand of M. Dually, M is called a lifting
module, if it satisfies the dual property: For any submodule X of M, there exists a direct
summand of M which is a co-essential submodule of X, that is, for any submodule X of
M, there exists a co-closure of X in M which is a direct summand of M (cl.[4]). Any
submodule X of M has a closure in M, but not always has a co-closure in M. It seems
that the difficulty of study of lifting modules is hidden here.

Okado [3] has studied the decomposition of extending modules over right noetherian
rings and obtained the following:

Theorem R is a right noetherian if and only if every extending R-module is expressed
as a direct sum of indecomposable (uniform) modules.

As a dual problem, we consider the following problem:

Problem  Which ring R has the property that every lifting R-module has an inde-
composable decomposition ?

Our purpose of this note is to study this problem and show the following:

Result 1 Every lifting module over right perfect rings is expressed as a direct sum of
indecomposable (cyclic hollow) modules.

Result 2 Let R be a right perfect ring and let M be a lifting module.
(1) If M is generalized M-projective, then M has the exchange property.
(2) If M has the finite exchange property, then M has the exchange property.

Result 3 Any lifting module over right perfect rings has the exchange property.

1. PRELIMINARIES

Let M be a module. A submodule S of M is said to be a small submodule of M
(denoted by S « M) if M # K + S for any proper submodule X of M. Let N and K
be submodules of M with K C N. K is said to be a co-essential sibmodule of N in M
if N/K « M/K and we write K C. N in M in this case. Let X be a submodule of M.
X is called co-closed submodule in M if X has no proper co-essential submodule in M.
X' is called a co-closure of X in M if X’ is a co-closed submodule of M with X’ C. X in
M. K <g N means that K is a direct summand of V.

The detailed version of this paper has been submitted for publication elsewhere.
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A module M is called a lifting module if, for any submodule X of M, there exists a
direct summand X* of M such that X* C. X.

Let {M; | i € I} be a family of modules and let M = &;M;. M is said to be a lifting
module for the decomposition M = &;M; if, for any submodule X of M, there exist
X*C Mand M; C M; (i € I) such that X* C. X and M = X* @ (®,M;), that is, M isa
lifting module and satisfies the internal exchange property in the direct sum M = @®; M;.

Let X be a submodule of M. A submodule Y of M is called a supplement of X in M
ifM=X+Y and XNY « Y. Note that any supplement submodule (hence any direct
summand) of a module M is co-closed in M.

A module M is called supplemented if, X contains a supplement of Y in M whenever
M = X +Y. Note that the module M is lifting if and only if M is supplemented and every
supplement submodule of M is a direct summand. An epimorphism P 4 M - 0 with
P projective, is called a projective cover of M if ker f < P. The notion of a projective
cover is dual to that of an injective hull. A ring R is right perfect if every right R-module
has a projective cover. Now we consider the following condlt.lon

(*) Any submodule of M has a co-closure in M.

By [4, Theorem 1.3|, we note that every module M over right perfect ring satisfies the
~ condition (*).

Proposition 1.1. A ring R is right perfect if and only if every projective right R-module
is lifting. .

Proof. Let P be a projective R-module. IFor any submodule A of P, consider a canonical
epimorphism ¢ : P — P/A. Since P/A has a projective cover, there exists a decomposition
P = P, @ P, such that P, C ker(yp) = A and (p|P,) : P, =+ P/A — 0 a projective cover.
Thus ker(p|P) = P, A < P, hence P is lifting. Conversely, since any module M is an
epimorphic image of a free module, there exist a projective module P and epimorphism
f: P — M. Since P is lifting, there exists a decomposition P = A* @ A*™ such that
A* C. ker(f) in P. Thus (f|4.-) : A** = M — 0 is a projective cover. O

The following lemmas are due to Oshiro [4].

Lemma 1.2. Any projective module satisfies the following condition:
(D) If M, and M, are direct summands of M such that My " Ma <« M and M =
M, + Mz, then M = M, & M,.

Lemma 1.3. If M is a lifting module with the condition (D), then M satisfies the fol-
lowing condition:

(D') IfM; <g M (‘le I), M= ZlMi aﬂdM,'nZ‘#,-Mi <« M, then M = ZIMi s
direct.

2. LocaL SUMMANDS

Y ®reaXs C X is called a local summand of X, if Y ®rcp X <o X for every finite
subset ' C A.

The following lemma due to Oshiro is useful. For Okado's result above, this lemma was
used.
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Lemma 2.1 (cf. [5]). If every local summand of M is a direct summand, then M has an
indecomposable decomposition.

By Lemma 1.2 and [4, Proposition 3.2], the following holds:

Lemma 2.2 (cf. [4]). Every local summand of projective lifting modules is a direct sum-
mand.

A module M is said to have the (finite) exchange property if, for any (finite) index
set I, whenever M @& N = @;A; for modules N and A;, then M & N = M & (&, B;) for
submodules B; C A,

A module M has the (finite) internal exchange propert.y if, for any (finite) direct sum
decomposition M = @;M; and any direct summand X of M, there exist submodules
M € M; such that M = X & (&, M,).

The following is essentially due to Harada [1].

Theorem 2.3. Let M = ®;M,, where each M, has a local endomorphtsm ring. Then
the following conditions are equivalent:

(1) M has the internal exchange property (in the direct sum M = &;M,, );

(2) M has the (finite) ezchange properly;

(8) BEvery local summand of M is a direct summand.

3. MAIN RESULTS

The following is a main result of our talk.

Theorem 3.1. If R.is a right perfect ring, then every local summand of lifting modules
is direct summand.

Sketch of Proof: Let M be a lifting module and let @,;.X; be a local summand of M.
Since R is a right perfect ring, M has a projective cover, say ker f <« P LMo By
Lemma 1.1, P is projective lifting. So there exists a decomposition P = FP; @ P such that
P C. f71(X:) in P. As X; is co-closed in M, f(P) = X;. By Lemma 3.1, 3, P, = ®,P.
By Lemma 2.3, ®;P; <g P. Since f(®;F,) is co-closed in M, we see

@1 X = f(®1P) < M

Thus any local suammand of M is a direct summand.

O

The following result is a consequence of Lemma 2.1 and Theorem 3.1.

Theorem 3.2. Any lifting module over right perfect rings has an indecomposable decom-
position.

A module H is said to be hollow if H is indecomposable lifting. By a proof of [9,
Proposition 1], we see

Lemma 3.3. Let X be a hollow module. If X & X has the internal exchange property,
then X has a local endomorphism ring.

By Theorem 3.2 and Lemma 3.3, the following holds: .
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Corollary 3.4. Let R be a right perfect ring and M be a lifting module. If M has the
finite exchange property, then it has exchange property.

A module A is said to be generalized B-projective (B-cojective) if, for any homo-
morphism f : A — X and any epimorphism g : B — X, there exist decompositions
A = A @& Ay, B = B; & By, a homomorphism h; : Ay — B, and an epimorphism
hy : B = Ay such that go h), = f|a, and f o ks = g, (cf. [8]). The concept of general-
ized projective is a dual one of generalized injective (cf. [6]). Note that every B-projective
modules is generalized B-projective,

Lemma 3.5 (cf. [2]). Let M, and M, be lifting modules and put M = M, ® M,. Assume
that M satisfies the condition (x). Then M is lifting for M = M, @ M, if and only if M;
is generalized M;-projective (i # 7). -

By Lemma 3.5, 3.3, Theorem 3.1 and 2.3, we obtain the following:

Corollary 3.6. Let R be a right perfect ring and M be a lifting module. If M is gen-
eralized M-projective, then M has the exchange property. In particular, any projective
module over right perfect rings has the exchange property.

"Remark Recently, we obtained that any hollow module over right perfect rings has a
local endomorphism ring. Thus, by Theorem 2.3, the following holds: Any lifting module
over right perfect rings has the exchange property.
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NON-COMMUTATIVE VALUATION RINGS
OF K(X;0,6) OVER A DIVISION RING K

Shigeru KOBAYASHI Hiroaki KOMATSU
Hidetoshi MARUBAYASHI Guangming XIE *

Abstract

Let K be a division ring with a o-derivation §, where o is an
endomorphism of K and K{(X;0,8) be the quotient division ring of
the Ore extension K[X;0,5] over K in an indeterminate X. Suppose
that {o,8) is compatible with V, where V is a total valuation ring of
K, then R() = V[X;o, 8lavyix:o8 the localization of V([X;0,4] at
J(V)[X;0,9], is a total valuation ring of K(X;0,d). The aim of this
paper is to describe non-commutative valuation rings B of K(X;0,4)
such that R D B,BNK =V and X € B.

1. Introduction

Let K be a division ring, o be an endomorphism of X and 4 be a o-
derivation, i.e., an additive map 4 : K — K such that d(ab) = o(a)é(b)+6é(a)b
for all a,b € K. As usaual, K[X;0,8] = {f(X) | f/(X) = aaX" + - +
ao,a; € K} is the Ore extension over K with Xa = o(a)X + §(a) for any
a € K, where X is an indeterminate, Let V be a total valuation ring of K and
(0,68) be compatible with V. Then, in [BT], they proved by Krull methed that
J(V)[X;0,8] is a left Ore set of V[X; g,8] and R® = V[X;0,6|svyix:c.0, the
localization of V[X; 0,4] at J(V)[X; 0,§], is a total valuation ring of K(X; o, )
such that RM N K =V, X € RM. The aim of this paper is to describe non-
commutative valuation rings B of K(X;0,6) such that R D B, BNK =V
and X € B.

There are three types of non-commutative valuation rings as follows: Let
Q@ be a simple Artinian ring and let R be an order in @, i.e., R is a prime
Goldie ring. We say that R is a Dubrovin valuation ring of Q if R is semi-
hereditary and R is local, i.e., R/J(R) is a simple Artinian ring, where J(R)

*The detailed version of this paper has been submitted for publication elsewhere
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is the Jacobson radical of R. Assume that @ is a division ring. A subring
R of Q is said to be a total valuation ring of Q, if for any non-zero ¢ € @,
either g € R or ¢~! € R. In the case where K is a field, the definition of total
valuation rings is the same as one of the equivalent definitions of [G, (16.3)].
However, in the case where K is not a field, the structure of total valuation
rings is much different from one of commutative valuation rings (see, [Dy],
[BMO]). Furthermore, a total valuation ring R of Q is said to be invariant if
q~'Rq = R for all non-zero g € Q. It is easy to see that a total valuation ring
R is a Dubrovin valuation ring and the converse does not necessarily hold. We
refer to [MMU] for more properties of non-commutative valuation rings.

2. Non-commutative valuation rings of K(X;s,6) contained in R()

Let K be a division ring, o be an endomorphism of K, é be a o-derivation
and V be a total valuation ring of K. We assume that (0, ) is compatible with
V,ie, a(V) CV,0(J(V)) € J(V),8(V) S V,6(J(V)) € J(V). In [BT], they
proved that J(V)[X;0,] is left localizable and R(") = V[X; 0, 8}5v)ix:0.8), the
localization of V[X;a, 6] at J(V)[X; 0, 8], is a total valuation ring of K (X;0,5)
with RO N K = V,X € R® and we studied some properties of R{") ( see
. [XKM]). In this paper we shall study non-commutative valuation rings B of
K(X;0,6) such that BN K = V,B € RM and X € B. For simplicity, we
denote by D the set of all Dubrovin valuation rings B of K(X;g,6) such that
BNK=V,RM D Band X € B, by T the set of all total valuation rings B
of K(X;o,8) such that BN K =V, R D B and X € B. Obviously, 7C D.
To get some information of D and 7, we use the lollowing natural map.

Let p: R = VIX;0;8lavixiosy — RO = R(l)/J(R(l)) = V(X;7,5) be
the natural homomorphism, where #(7) = [o(v) + J(V)| and 4(9) = [6(v) +
J(V)] for any T = [v+ J(V)] € V = V/J(V). Set R = ¢~ }(V|X;5,0]) =
VIX;0,8] + J(RM).

The following lemma is crucial to find out non-commutative valuation rings
in D.

Lemma 2.1 There is a one-to-one correspondence between D and the set
of all Dubrovin valuation rings B of V(X;7,8) with 8 2 V[X;7,§), which is
given by ¢(B) = B and ¢~!(B) = B, where B € D.

Proof Let B € D with B # R, Then B 2 J(RM) and ¢(B) = B/J(RW)
is a Dubrovin valuation ring of R (see [MMU, (6.6))).

Conversely, it is not difficult to prove that for any Dubrovin valuation ring
B of V(X;7,6) with B D V[X;7,4], B=¢"'(B) isin D.
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Remark: Since RV is a total valuation ring, we can replace "D" and
"Dubrovin valuation rings” by "7" and "total valuation rings” respectively
in Lemma 2.1.

We know from Lemma 2.1 that it suffices to study Dubrovin valuation rings
B of V(X;7,8) with B D V[X;7,d] in order to describe Dubrovin valuation
rings in D. Let B be any proper Dubrovin valuation ring of V(X;7,8) with
8 D V|X;7,5]. Then J(B)NV][X;7,3] is a non-zero ideal of V[X;7,3J]. Since
V[X;7,3] is a left principal ideal domain (note that V is a division ring), some
B are obtained by the localization of V[X; 7, 8] at some maximal ideals. These
show that there are close relatons between the ideal theory of V[X; 7, 8] and
_ non-commutative valuation rings of V(X;%,8). So we will firstly study the
ideal theory of K[X;a,6], where K is a division ring, which is deeply depend
on the properties of & and 4. In order to study the ideal theory of K[X; o, 4], we
will introduce the following which was defined in [L} (also see [LL}). 4 is said to
be a gquasi-algebraic o-derivation if there exist a, =1,a,-1,--,80 € K,n >0
such that =} ;0,6 = Doy gn, Where Doy on(b) = agb — o™(b)ag for any b € K.
The inner order of o, denoted by o(c), is defined by the smallest positive
integer n such that ¢™ = [, the inner automorphism induced by some a € K;
if no such natural number n exists, then o(c) is co. A monic polynomial
p(X) with deg p(X) = n is said to be invariant if for any a € K,p(X)a =
a™(a)p(X),p(X)X = (X + c)p(X) for some ¢ € K.

The following lemma was proved by Lam, Leung, Leroy and Matczuk (see
[LLLM, 3.6]) after long history starting from Amitsur [A], in the case where
o=1.

Lemma 2.2 K|X;a,0] is simple if and only if § is nol a quasi-algebraic
o-derivation.

In the case where § is a quasi-algebraic o-derivation, there exists a monic
invariant polynomial p(X) of minimal non-zero degree from Lemma 2.2 which
plays a very important role to study the ideal theory of K|X;0,6] as follows.

Lemma 2.3 (Cauchon) Let § be a quasi-algebraic o-derivation. Then there
is @ monic invariant polynomial p(X) of minimal non-zero degree.
(1) If o(c) = o0, then Z(K|X;0,8]) = Z(K),s, where Z(S) stands for the
center of S for any ring S and Z(K)os = {a € Z(K) | o(a) = a and §(a) = 0}.
(2) Ifo(oc) = n < o0, then Z(K[X;0,8]) = Z(K)os[Ap(X)] for some
non-zero A € K and some natural number [.

Lemma 2.4 Let § be a quasi-algebraic o-derivation and p(X) be a monic
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tnvariant polynomial of minimal non-zero degree.

(1) If o(o) = oo, then P = K|X;0,8|p(X) is the only mazimal ideal of
K[X;0,4].

(2) Ifo(c) = n < 00, then any mazimal ideal of K|X; 0o, 8] is one of the
following: P = K[X;0,8]p(X), M = K[X;0,8lw(Y), where Y = Mp(X)' for
some A € K and w(Y) runs over all irreducible polynomials of Z(K).s|Y]
different from Y .

We will study non-commutative valuation rings in D in the following five
cases.

Theorem 2.5 (case 1) If3 is not a quasi-algebraic G-derivation, then D ={RW}.

Proof Let B € D with B # R". Then B = ¢(B) is a proper Dubrovin val-
uation ring of V(X;7,3) containing V[X;,3] and so J(B)NV[X;7,8] is a
non-zero ideal of V[X;@, 4] which is a contradiction to Lemma 2.2.

From now on we assume that & is a quasi-algebraic 7-derivation. Then we
can find a monic polynomial p(X) € V[X;a,4] such that p(p(X)) = p(X) €
- V[X;7,8] is a monic invariant polynomial of mininal non-zero degree. Let
P = Rp(X). At first we study the case # € Aut(V). In this case V[X;7,d] is
a Dedekind order in V(X;7,5). Then we can use the following lemma which
follows from [D;, Theorems 3 and 4, §2|.

Lemma 2.8 Let @ be a simple Artinian ring and S be a Dedekind order in

Q. Then there is a one-to-one correspondence belween the set of all proper
Dubrovin valuation rings of Q coniaining S and the set of all non-zero maz-
imal ideals of S, which is given by ¢ : B — J(B)N S end ™! : P — Sp,
where B ¢s a proper Dubrovin valuation ring of @} containing S and P is a
non-zero marimal ideal of S.

Theorem 2.7 Suppose that & is a guasi-algebraic 7-derivalion and 7 €

Aut(V).

(1) (case 2) If o(7) = oo, then D ={R"), Rp}, where P = Rp(X).

(2) (case 3) If o(F) = m < oo, then D= {R™, Rp}U{Ry | M =
Rw(X), where w(X) € V[X;0,08] such that w(X) is an irreducible polynomial
of Z(V)gz|Y (Y =3p(X) for some X € V and 1> 1 asin Lemma 2.4 }. In
particular, J(Rp) = Rpp(X) = p(X)Rp and J(Rpy) = Ryw(X) = w(X)Ru.

Proof Since p(X), w(X) € U(RM), we eas;ly have P = p=!(V(X;7,3]p(X)) =
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Rp(X) = p(X)R and M = ¢~ (V[X;7,8w(X)) = Rw(X) = w(X)R, where
R = V[X;0,8] + J(RM). Hence the theorem follows from Lemmas 2.3, 2.4
and 2.6.

Now we consider the case where 8 is a quasi-algebraic @-derivation and
7 ¢ Aut(V). Let p(X) be a monic invariant polynomial of V[X;&,3] with
minimal non-zero degree. Then p(X)V[X;7,8] C V[X;7,3|p(X), we can get
two ascending chain:

V[X;7,9] SP(X) Vix;w J]P(X) QP(X) VX7, 8p(X) € -

V < p(X) Vr(X) & p(X) VP(X) G-

Let V =uz_,p(X) Vp(X ), adivision rlng cont.amlngV R= uZ_p(X)”
where B = V[X;7,3]. For any a R_-Zip_j € V, define #(a) =
m_'?(ﬁ)ml We can check that 7 is well-defined and an automorphism
of V with o(ﬁ‘)

We define § as follows, let a = p_T “a'p(X ) be any element of V where
aeV. S!mce

pX)X=(X+H p(X) for some b; € V, we have
(X +b)g=2@X +3@) + b= a'(a)(x +b) + a7,
where @; = &(a) + @ — a(a)b, evV.
Define §(a) = p(X)_ Ep(_Xj‘ € V. Then

2(X) Xa = p(X) Xp(X)_ap(X)
= (X + B)ap(X)
= (7(@)(X +B) +®)p(X) . So

Xa = p(X) (5(a)(X +B) + m}p(X) -
=70 (@p(X) X +p(X) @p(X) =5(@X +¥(a).

This means 3(0:) Xa - E'(ZY)X S0 3 is well-defined. Furthermore,
we can easily check that 3 is a &-derivation and R = V[X v, —] Let R=
uz_,p(X)"™Rp(X)™, an over ring of R. It is easy to see that R = tp"(ﬁ) an
Priifer order in K(X;o 5) Let P = W Then P is the unique maximal
ideal of . Let P o —) We can get RpeD.

We say that Vis algebraic over Vif for any @& € i7 there exist &5,---,5 €

V, not all zero, such that &3_o&a* = 0. It is not difficult to prove the following
lemma.

Lemma 2.8 If V is algebraic over V, then any total valuation ring B of
V(X;2,8) with B D V|X;7,3| containing V[X;7,3].
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If P is a completely prime ideal of V[X v 3] then it is easy to prove that

Pisa completely prime ideal of V[X T 3] In this case R is a total valuation
ring of K(X;0,6). Now by Lemmas 2.1, 2.3,2.6, and 28 we can get that
T={RM, Rp}. Thus we get the following theorem.

Theorem 2.9 (case 4) Suppose that & is a quasi-algebraic 7-derivation and
T¢ Aut(_) Then
(1) RpeD.

2) If Vis algebraic over V' and Pis completely prime, then T= {R(‘) Rp}.

If V is not algebraic over V, then it becomes very sophisticated, even in the

case where V is a field. In this case, P is a completely prime ideal of V|X;7, 3]
and Rp is a total valuation ring. By using some properties of commutative
valuation rings in polynomial rings and localizations, we can construct total
valuation rings {A;}, {B;} satisfying-the following properties.

Theorem 2.10 (case 5) Suppose that 8 is a quasi-algebraic 7-derivation and

.7 & Aut(V). If V is not algebraic over V and V is a field with & = tr.degyV,
then a is infinite and there are {A;}, {B;} C D satisfying;

(i) R 2 A; for any i € A and A; are incomparable each other, where A is
an zndez set with |A| = a.

(i) B G B2 G -~ gB CRp

We have studied Dubrovin valuation rings in D classifying them into five
cases. We can provide examples of total valuation rings satisfying the proper-
ties in each case. However, we will not mention the examples because of the
_ limited pages. We refer the readers to the detailed version of this paper for
examples.
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Non-semisimple Hopf algebras over a field of characteristic p# 0
using Personal Computer.

KENJ1 YOKOGAWA

§1 Abstract and Introduction

Let K be a field of characteristic p # 0 and H be a Hopf algebra of dimen-
sion p over K generated by a p-nilpotent element z, z” = 0 (simply we say a
p-nilpotent Hopf algebra. We doesnot assume that p-nilpotent Hopf algebra
is cocommutative). A group ring H = Klo], o? = 1, is such a Hopf algebra
with a p-nilpotent generator o — 1 (we call Hopf algebra of this type as a Hopf
algebra of automorphism type). A Hopf algebra generated by a derivation d,
d? = 0, is also such a Hopf algebra (we call as a Hopf algebra of derivation
type). Another type of p-nilpotent Hopf algebra is not known. So the ques-
tion whether these two types of Hopf algebra are the all of p-nilpotent Hopf
algebras arises. p-nilpotent Hopf algebras are tiny, primitive, fundamental
Hopf algebras and it seems easy to classify thesc algheras. But the recent
method using semisimplicity does not work for these algebras and there is no
useful methods for these Hopf algebras. Classifying these algberas needs too
laborious calculations. Especially to check coassociativity is laborious. And
this prevents to get good conjectures to these algebras.

Using a personal computer, the author tried to investigate these algebra
in lower characteristic cases. And examining the great amount of calculations
in details, the author found some induction rules and succeeded to determine
the all p-nilpotent Hopf algebras in an arbitrary non-zero characteristic case.
We get for a suitable generator = of a p-nilpotent Hopf algebra, its diagonal
map A has a following form; A(z) =z @1+ 1Q@z+czP ' @z — 2" 1cz" 2@
2 +3 3@+ = (p=3)"ez? @2+ (p~-2) ez’ @2~ (p-
D lez®zP!, c € K. As a Corollary, we get if I is a prime field then there
exists exaclly p non-isomorphic p-nilpotent Hopf algebras and if K is an al-
gebraically closed field then there exists exactly 2 non-isomorphic p-nilpotent
Hopf algebras .

t I Z T2, Mathematica O % PLIZRBY 24, AL FOI W EOHRKT
BTHA.




In this paper, we discuss the utilization of a personal computer to mathe-
matics.

Throughout of this paper, K denotes a field of characteristic p # 0, H
denotes a p-nilpotent Hopf algebra over K unless otherwise stated. We shall
use the terminology of [Sw]. Especially, the diagonal map of H is denoted
by A, the augmentation map is denoted by &, and the antipode is denoted
by S. ® means ®.

'§2 Mathematical Soft Ware

- ML Software & | T, Mathematica, Maple 2 ¥¥*$H 3. Thboo
Software DEZH#fEEL LT, BMHRTH, ¥ Y HRVEHHE (XFKOE) |, fA
AHMEERAGVIEHE, 77 7OFF, IT¥IEHE, S —KFEN, s, @&
ﬁjﬁ:‘t& EXDHB. IO OBEEON, FHICY Y FNVEE (XFRADEY)
ILiEBT5.

Hopf algebra @ coassociativity DEEMNKELRTH A, Bz L
NEHBVWKRENERLTAL ). TOFTIHE, #HiZLE<S Lemma 1 % fwv
T, A(z) ¥TBERLT5.
p=5&L,A:H—= HQH, A(z) = Q1 +1®z+¢) 1 T2®T +C21 T ®T +€12T®
22+’ @+ @22 +¢132@ T +0012° BT + 03023 @ T + 292’ @2 +014T®
T 4 Tt @ L2 + 33 @ L + 2’ B T + 3zt ® 2P + Cu TP B 2% + ezt @ 2
¢, {BL z iZ p-nilpotent generator .

coassociativity ¥ MR35 21, (A®1)A(z), (1® A)A(z) (/BT BR
THBH, (A® )A(z) DB
(A®1)A(z) = A(Z)®1+1®@T+cnd(z)®T+cnd ()P @z +cnAz) @2+
n Az @z + A ()’ @1 +613A(z) @23 + e 1 A(2)* ®z + A () @22 +
cnA(Z)? ® 28 + 14 (2) ® 2% + c42A(7)! ® 2? + c1aA(z)} ® I° + 2 A(Z)* ®
z! + anA($)4 ® z? + CuA(x)a ® I‘ + C.MA(ZEYl ® ik & 5.
BEDHE cuD(2)' @2 = cu{z@1+1@z+ iz @+ -+ caaz* @2} @ 2
TdhH5.

BAXLHARTHE2OXHNETHA). LSBT, p=7FT
RBLEVE—RHBILEDHP L. ETHABRETREN. ZOEHED
&84 % computer + NI Software (28, FOHERIPOTFHEIML, F
NE2ERATIRTHS.
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i1 fLAYEA L7 BT SoftWare 13 [ Mathematica] T 52, £
Pz [Maple] %35, 84 % 4T (Maple] DAFMPERTWVWB LHICED
ha.

7 2: &¥ p-nilpotent Hopf algebra {2 cocommutative X {RE L, €D
B—DBE XA B Software DFIAFELHHET 20104,
cocommutative D4 D F HG#E L) % DT, cocommutative ZAXE L THBY
5.

§3 Preliminary

Lemma 1. Let H be a Hopf algebra generated by a p-nilpotent .elen.zent T
(throughout H denotes such a Hopf algebra) . Write A(z) = ¥ ¢;j2*®2’ (0 <
i,j <p), thencoo=0,c10 =1,c0 =001 <i<p)en=1andc;=0(1<
j<p)

Proof. Use relations (¢ ® 1)A(z) = (1®¢e)A(z) =z.

Alz) =Tz @z E LT, ‘multiplicati\Are, linear IZ#EEE ¥ 1if, Lemma
1 OB A(z)P = A(2P) = 0 27T DT, A i3 algebra-homo. 2% 3.
B, .

Lemma 2. Let c;; be coefficients satisfying the relation of Lemma 1. We
write A(z) = Y ci;z' @ 27 and extend to A : H - H® H multiplicatively
and linearly, then A is an algebra homomorphism.

Lemma 3. y € H is also an p-nilpotent generator if and only if y =
a1Z + apz® + ... + @y - 12° ! with a, a unit of K.

Lemma 3 26, BV generator X WA PN KNI 28 TH S, ERRC
p =5 OBAIC mathematica WA LR L RE, €D X I % generator
EFRAUTRAVHRBT S, .

Deltas = A(z), H=K[z|, H® H=K[X,Y],X=2®1,Y=1®z.
degree 4 LT OBF X3 2EL 50T, cn=cn=cpn=cu=c3=cy=0
EL,

A(a:) =X+Y +enXY +621X2Y +612XY2 +631X3Y +('42X2Y2 +C|3XY3
L’<.
ERTER s=a1z +ax? +azxl +az! 25V, U=501,V=1@s L&
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& ,A(s) 2 UV OBBLIETEDLTIRTH 5.
HER%E, £ =bis+ bas? + bys® + bysd, X = iU + b U? + bU% + bULY =
bV +b0V24bV34 bV ELTRL. (BT XYORDHIZST EH)

LT i3, Mathematica D#H Td 5, Mathematica Tl ¢) % cll, X2
EXT2&ERDbLTVS

In[7:=Deltax =X + Y+ cl1 XY +¢c21 X "2Y +c12XY "2+ c31 X "3Y +¢22X"
2Y " 2+4+c13XY"3;

In[8=S=bl1U+b2U"2+b3U"3+bdU"4;
IO=T=blV+b2V 2+b3V 3 +hiV 4

In[10]:= deltas = al Deltax + a2 Deltax * 2 + a3 Deltax * 3 + a4 Deltax " 4
Outfl0j=al (X +Y +cl1 XY +c21 X"2Y +c31 X 3Y +cl2XY "2+ c22X"2
Y 2+c3XY )N +a2((X+Y+cll XY+c21 X 2Y +c31X"3Y +cl2XY
"24¢22X72Y72+c13XY"3))"2+a3((X+Y +cll1XY+c21 X 2Y +¢31
X 3Y+c12XY 2+¢22X"2Y " 2+c13XY 3) " 3+ad((X+Y+cllXY+
21X 2Y+c31X " 3Y +cl2XY " 2+c22X"2Y 2 +c13XY"3))"4)
In[11):= deltas = deltas /. X —> § it —=>uHKRA

Outfll)=al (b1 U+b2U "2+ b3U 3 +b4dU 4+ Y +cll1 (LIU+1b2U 2+ b3
U 3+b4U Q)Y +c21 (b1 U+b2U"2+b3U"3+baU"4))"2Y +¢31((b1 U
+b2U 24+b3U 3 +b4U4)"3Y +cl2((LIU+b2U 2+b3U 3 +4U"
)Y 24+ c2(b1U+b2U 2+b3U 3+ b4U ) 2Y 2 +c13((b1 U +b2U
"24b3U 3+ Db4U4)) Y 3)) + a2(8) + a3(3E) + ad(%)

In[12]:= deltas = deltas /. Y => T

Out(12]=al (L1IU+b2U"2+b3U 3 +b4U 4 4+Db1V+D12V 2+b3V 3+
b4V 4+cll((b1U+b2U 2+Db3U 3 +baU d))((b1V+b2V 2+b3V"3
+b4V ) +c21 (B1U+b2U 2+ b3 U 34+b4U ) 2((b1V+b2V 2+b3
V'3+bdV )+ 31 ((b1U+b2U 24+ 03U 3+b4U 4)) "3 ((b1V+hb2V"2
+b3V 34+bAV ) +c12((B1U+b2U 2+ b3U 3+ bd U 4)) (b1 V + b2V
"24bIV 3 +DbAV ) 24+c2((LIU+DL2U 2+b3U 3+ b4 U 4) "2 ((b1
V+b2V 2+b3V 3+b4V~™4) "2+4+cl3((b1U+Db2U"2+b3U 3 +b4U"
4) (b1 V+L2V 2+ b3V 3 +bdV7™4))"3)) + + a2(8) + a3(BE) + ad(Bh) + B
iE: BLFTC 58T cut off

In[13]:= deltas = Po)ynomlalRemamder[deltas,U 5, U};

In[14):=deltas = PolynomialRemainder[deltas, V ~ 5, V};

In[15):=SS = Expand|deltas, U, V]

Out[15)=a1bl U +a2b1" 20U 2+a1b2U 2 +a3b1"3U 3 +2a2b1b2U"3 +
alb3U "3 +0a4bl"4U 4 +3a3b1"2b2U " 4+0a2b2°2U 4 +2a2b1b3U"4
+albd U 4+ ((al b1 +2a2b1°2U +81b172c11U+3a30b1°3U" 2+ 2a2bl
b2U"2 +2a2bl"3cll U"2 +B5)V + V484

In[16]):= CoefficientList[SS, {U,V}]

Out{16]= {{0, 21 b1 = 1,82 b1 "2 + a1 12,23 b1 "3 + 2a2 b1 b2 + a1 b3, a4 b1 "4 +
3a3bl "2b2+a2b272+282bl b3 + al b4}, {al bl,22a2bl "2 +al bl “2¢l11,3
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a3bl"3+2a2blb2+2a2bl"3cll +alblb2cll +8l1b1°3cl2,4a4bl "4 +6
a3bl“2b2+2a2b1b3 +303bl "4cll +4a2bl " 2b2cll +al bl b3cll +2 a2
bl "4 ¢c12 + 2 al bl "2 b2 c12 + al bl "4 cl13, Fv 484,
undertine 85 427&B L T
In|17):= SSS =SS /. a2 — > - (1/2) al c11
Out[17]=al bl U +al b2 U "2-1/2a1b1"2c11 U 24+ a3 b1 3U" "3 +alb3U"3-
alblb2¢l1 U 3 +adbl"4U"4+3a3b1"2b2U 4 +alba U 4-1/2a1b2"2
cl1U"4-alblb3cll U 4+ ((al bl + 3a3 b1 "3U"2-a1bl"3¢c11"2U "2+ al
b1°3c21U 2 +4a4db1"4U "3 +6a3b1 202U 3 +3a3b1°4cl1U"3-2al
b1°2b2c11°2U 34+2alDb17°2b2c21 U 3-albl"4cllc21 U 3+ al bl “4¢31
U 3+4+12a4b1°3b2U 4+3a3b1b2°2U 4+6a3b172b3 U 4+4a4b1"5
cllU"4+49a3b1"°3b2c11 U 4-a1bl b2 2¢11"°2U"4-2a1b1"2b3¢cl17°2U"
4+383b1°5c21 U 4+alb1b2°2c21U 4 +2albl " 2b3c21U"4-3a1b1"3
b2¢11¢21 U 4+ 3a1bl " 3b2¢31U"4-a1b1"5cll1c31 U Q) V + BWVHEs
ST UV ORI 0 ST AYMEES, RIS, UV OFEM 0 EEIRREEALWE
REEZL ZOBIIRNLG XY OFERE O EL. UV OEERM O 22T ROLMES
s,
In[18]:=SS =88 /. c11 —=> 0
Out|18|=al bl U +a2b1"2U 2 +2a1b2U 2+ a3b1"3U"3+2a2b1b2U"3 +al
L3U "3 +a4b1"4U 44+ 3a3b172b2U 4 +a2b2°2U 4 +2a2b1b3U "4 +al
b4U 4+ ((albl +2a2bl"2U +3a3b1°3U 2+ 2a2b1b2U"2 +albl"3c21
U"2+484b1"4U 3 +6a3bl"2b2U 3 +2a2b1b3U 3 + (E8))) V + L 48
. UV D451 2a2b1 "2 =04 h, UV OREAN 0 a2 =0 ¥35.
In[19]:=SS =SS /. a2 —> 0; In[20]:=S8 =SS /. b2 = > 0
Out[20]=al bl U +a3b1"3U 3+alb3U 3 +ad bl "4U "4+ 5
In[21):= CoefficientList[SS, {U,V}]
Out|21)= {{0, al b1,0,23 b1"3 + al b3, ad b1"4 +al bd}, {al1 b1,0,3 83 bl “3 + al bl " 3 cl2,
4adbl 44 albl"4cl13,683b1"2b3 +3a3bl"5c12 + 2al bl ~2b3cl2}, {0,323
bl "3 +21b1°3¢21,6adbl "4 +albl " 4c¢22,3a3b1"2b3+6a3bl " 5c12+ 3a3
b1°5¢c21+albl " 2b3¢c21,12a4 bl " 3b3 +3a3b1"2hd +12a4 b1 "6cl2 + 6 a3
b1 6c13+4a4bl"6c21 +al bl 2b4c21 +3a3 bl 6c22+ 2albl”3b3c22}, 84
U'2VOEE=3a3bl"3+01b1°3c21,U 2V 20k =6adbl 4+ a1bl"4
22 4DT, a3, a4 XWBIZED, U 2V, U2V 2048 =0 L k2.

M, U2V, U2V 204 =0 L2850, 03 =ad =3 =4 =0 Th
HYNRD.

ZDREEREBEIILT,
Theorem 4. There exists a p-nilpotent generator x whose cocoefficients
salisfy the relations; ¢)) = ¢y = Coa = C3p = Ca3 = *** = Cgq-1 = Cgq =
0(p=29+1).

Purther if x and y are p-nilpotent generators which satisfy the above relations
theny =ez,a#0, a € K.
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Definition. Theorem 4 ® %t % i#§7-¥ p-nilpotent generator * normal
generator £ IfA,

84 Main Theorem

Theorem 5. The cocoefficients of a normal generator = of a p-nilpotent
Hopf algebra satisfy the relations; ¢io = cor = 1,¢p-11 = ¢, Gpis = (—1)F" k71,
(2<k<p-1), c€ K, the other terms equal to 0 and S(z) = —x (S is an
antipode).

Conversely, an algebra generated by a p-nilpotent element whose cocoef-

ficients and antipode satisfy the above relations becomes a p-nilpotent Hopf
algebra.

Corollary 6. If K is a prime field then there exzisls exactly p non-
isomorphic p-nilpotent Hopf algebras, and if K is an algebraically closed field
then there ezists exactly 2 non-isomorphic p-nilpotent Hopf algebras.

Theorem 5 DFERFIE
Step 1: ¢;; =0, (0<1,5 < q) except ¢cj0 = ¢y =0, where p=2g+1
Step2: ¢;; =0, (g+1<i<2¢-1,0<j<i-2)
Step 3: ¢;; =0, (¢g+1<i<2q 2g+2-i<j<1)
Step 4: i+ j = p DK, ¢;; H* Theorem 5 DHF % il
Step 5: Wil ¢;; B Theorem § D Fff % #7-F K, coassociative (27 5 U
DR HhN D,
p=T0H4&, Stepl T TE®D S1, Step 2 T TEID S2, Step 3 T THD
S3 A0 %7RL,Stepd T THM S4 MEFL@ATHERT LI T,

[ 1 0 0 0 0 O
1 0 0 S1 S2 S3 54
0 0 0 0 S2 S4 S3
0S1 0 0 S4 S3 S3
0 S2 S2 5S4 S3 S3 S3
0 52 S4 S3 S3 S3 S3
0 S4 S3 S3 S3 S3 S3

p=>5 DL, Step 1 DHFIRIEVDT, p=7 O, Mathematica NEEL %
B¥kr5.

—54—



H=K|z], HQH®H = K[X,Y,Z], X = z®181,Y = 18281, Z = ®1831Q®z
L&, Dif =(A®1)A(z) - (1@ A)A(z) 2EHHT 5.
Dif = 0 & coassociative IZiEHE T 5.

In[]j=De=X+Y+c31 X " 3Y+c31 XY " 3+c41 X" 4Y+cdl XY "4+c51X"
5Y+c2X 4dY " 24e42X " 2Y 4451 XY ' 54+c61X"6Y+c52X"5Y 2+
43X "4Y " 34+cd3X"3Y 4+ e52X " 2Y 5461 XY 64+c62X"6Y "2+ 53
X°5Y " 34cddX " 4Y " 44+c53X"3Y " 54+c62X"2Y 6+4+c63X"6Y "3+ c54
X'5Y 44c54X " 4Y " 54+c63X"3Y 64+c04X"6Y 4+e55X 5Y 5+ b4
X'4Y 64+c65X " 6Y " 5+c65X"5Y 6+4+c66X"6Y"6;

In[2]:= De2 = Expand[De " 2, X];

In[3]:= DX = PolynomialRemainder{De2, X ~ 7, X];

In[d]:= DY = PolynomialRemainder[DX, Y " 7, Y};

In[5]:= De2 = PolynomialRemainder|DY, Z " 7, Z};

In|6]:= De3 = Expand[De ~ 3, X|;

ELF Ded, De5, De6 #8151 L TH<.

(A ®@1)A(2) DEHH _

In[22]:= DeldDe =De + Z + ¢31 De3 *Z + c31 DeZ"3 + c41Ded *Z + cd1 De Z°4 +

¢51 De5* Z + c42 Ded* Z° 2 + c42 De2* Z "4 +c51 De Z° 5 + ¢61 De6 * Z + 52 De5 *

Z°24c43Ded4*Z°3 4+ ¢cd3De3*Z "4+ ¢52De2*Z 54 c61 DeZ "6+ c62Deb * Z

724 c53De5*Z 3+ cddDed*Z "4+ c53De3*Z°5 + c62 De2 * Z" 6 +c63 De6 *
Z°34c54De5*Z "4 +c54Ded*Z"54c63 De3 *Z "6 4 c64 Deb * Z "~ 4 + c55 Deb

*Z°54+c64Ded*Z 6+ c65De6*Z "5+ c65De5* Z "6 +c66 De6 * Z " 6;

In[23]:= ExDeldDe =Collect[DeldDe, X];

In[24]:= DX = PolynomialRemainder|ExDeldDe, X “ 7, X|;

In[25]:= DY = PolynomialRRemainder|DX, Y “ 7, Y};

In|26]:= ExDeldDe = PolynomialRemainder[DY, Z “ 7, Z|;

In[27]:= ExDeldDe = Expand[ExDeldDe, X];

In|28]:= ExDeldDe = PolynomialMod|ExDeldDe, 7);

B (1 ® A)A(z) = ExldDeDe % 8Hi L.

In[56):= Dif = ExDeldDe — ExIdDeDe;

In[57):= Dif = PolynomialMod|Dif, 7);

In|58]:= Expand[Dif, X];

In|59]:= CoefficientList[Dif, {X,Y,Z}]

Out|s9]= {{(0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0},{0, 0, 0, 0, 0, 0, 0}, {0,0,0,0,0,0,
0}, {0,0,0,0,0,0, 0}, {0,0,0,0,0, 0,0}, {0,0,0,0, 0, 0, 0}}, {{0, 0, 0,0, 0,0, 0}, {0,
0, 4¢31, 3c41, 2 c424-2 c51, 4c31 ~ 242 ¢52+-¢61, 2662}, {0, 0, g4, 4 ¢51, c31 ~ 243 c43+6
€61, 3 31 cd14-3 c53, 2 ¢41 ~ 2 + 4 ¢31 ¢42 + 2 c31 c51 + 3 63}, V' ER

In|60):= Dif = Dif /. ¢31 -> 0;



In[61):= Dif = Dif /. c41 -> 0;

In[62]:= Dif = Dif /. <51 -> 0;

In(63]:= Dif = Dif /. cd42 -> 0;

p=T7OHEE, {2 31 =0 Th AN, —ARIZIL, cil =0 26 cij = 0 LRTRMIEL
5. X, cdl =0,c42=0,c51 =0 b—AfLZh, BAELCTEYITE L. HL, RMIED
W= WiRDFBIBEETH, p=11 DBOHUNLETHD.

In[64]:= Expand[Dif, X|;

In[65):= CoefficientList|Dif, {X,Y,Z}]

out[65]={{{0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0,
0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}}, {{0, 0, 0, 0, 0, 0,
0}, {0, 0, 0, 0, 0, 2 e52+¢61, 2 62}, {0, 0, 0, 0, 3 c43 + 6 c61, 3 c53, 3 63}, (0,0, 0, 4
43 + ¢61, 4 c44, 4 ¢54, 4 c64}, {0, 0, 5 ¢52 + 6 c61, 5 c53, 5 c54, 5 c56, 5 c65}, {0, 0, 6
62, 6 ¢63, 6 c64, 6 ¢65, 6 c66), Fe\ HER

underline DEBSFICIER THid, YA 0 s dr s (5.

In[66]:= Dif = Dif /. ¢62 -> 0; In|67]:= Dif = Dif /. ¢53 -> 0;

In[68]:= Dif = Dif /. 63 -> 0; In[69]:= Dif = Dif /. c44 -> 0;

In[70]:= Dif = Dif /. c54 -> 0; In|71|:= Dif = Dif /. ¢64 -> 0;cG5, c66

In[78]:= Expand|Dif, X];

In(79]:= CoefficientList(Dif, {X,Y,Z}]

out[79]= {{{0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0,
0}, {0,0,0,0,0, 0,0}, {0, 0, 0, 0, 0,0, 0}, {0, 0,0,0,0,0, 0}, {{0, 0,0, 0,0, 0, 0}, [0,
0,0,0, 0, 2 c52 + 61, 0}, {0, 0, 0, 0, 3 c43 + 6 c61, 0, 0}, {0, 0, 0, 4 ¢43 + c61, 0, 0, 0},
{0, 0, 5 c52 + 6 c61, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, G c43 c61 + 3 c52
c61 + 3 ¢61 " 2}}, {{0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 3 c43 + 2 ¢52, 0, 0}, {0, 0, 0, 6 c43 +
4¢52,0,0,0), BV

C O, BlMARS 6 1 OTNAHTH S,

Step 5: (FHFEH TIXT & %\, automorphism type @ Hopf algebra #%
Theorem 5 D%k % i#67- L, coassociative T2 F % FIH L THEWT 2,
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Valuations on coproducts of skew fields and free feilds
Katsuo Chiba

Abstract, We consider valuations on coproducts of skew fields and free fields.
We also introduce Cohn's skew field extensions XC L such that the right dimension
of L over X is finite , the left dimension of L over X is infinite, and X and L are

isomorphic as rings.

1JE X B U Cohn D P

TR LD free algebra @ universal field of fractions ¥ free field & \29.
P.M.Cohn [4,5,6)13 free field 2 BV TRD & ) LRMEILKEMR L 12 & 2778
th, AYERES, n 2HABLETS. F OB p ¥ET n 28bhiy,
n=mp’, pUm THA2HE0k 1 ODREmEREL, ThUADH SR 1
DR n FRETE, k<X>EREX={,AeA,ij=123] LD free k-
algegra, E % free k-algebra k<X > O universal field of fractions & ¥
b.xy =0'x,, CERINCE LOBRAB e L X} =x,, CERSNIELD
a-derivation § ¥ 5. L=E(;a,8) *BZHARE[,a,8]10BHE L, X
RFELITCERENILOBHLETE.ZOLELDK LORRTENnTL
DKEDERTHIERTH I, SLIIO2EDI b b,

&8 1(Cohn). LORHEIEA K cLIZBVT k DEH p METn=p DBEIS
W, KELIBASTERELTRARTH S,

EBIIBIEEM S Nzvy . Xue DEFE[7, Theorem12.6) R FZ D& 1 &K
D@ EI NS,

rf 2.7% M duality % ##7-% VWA artin 22% duo MAELET 5.

The detailed version of this paper will be submitted for publication elsewhere.
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E& Cohn DHFDOHIZ actin BOWZEIZ B T op O EMRRIEDFHEDTIFE
PLETDHY free field IZMELINEMETH S, 0 LERRTOFAEIIAL
HEIIZEZ B ELM YR T WVI LAE Vv, Cohn #° Lichtman 2 X 5 free field @
TR EOTEN S S D, & & CREFOTRMEERE L & WRFFZERFLE
T B FHED coproduct B U free feild DfHEICOWVWTER T 5.

EH:G E2MFERLL, G DHENUTE 0 L2 <. £8TDaeGiltnLT
w+a=a+ow=w+0RPa<o & THRIC, GICoZMAS. DEMGBLETS.
Efgv:Do>Gu{o} R DD xpy Iz LT, kOFBi AT LEERvE
DOfFEE S,

V) v(p)=v(x)+v(y),

(Vy) v(x+y)>min{v(x), v(»)},

(V) v(D=0 and v(0)=co, '
D 28K, X 24 LT 3. D Lk<X>D K ED ring coproduct %
D, <X >=D» K <X> <. £ universal field of fractions % D, (X) E ¥<.
k%EWiktkl ¥+ 5. free k-algebra k <X > O universal field of fractions % k(X) &
<.

2ERRUHER
EH1.D fHEiv 2 bOfMEK % D DEIEME, D, (ieNE K8l DO
GEHE, v(ieDEvEDKHRLAD (eDHELT S, RO EIKDY
ALD.
()X LD D, (ie 1) D ring coproduct *, D, i&F X TDfHliv, DY KRfFliw % b
2,
(ii)*, D, 2*& D @ 18 ring coproduct *, D~ EH K% ERD  honest TH NI,
K LD D, (iel)® field coproduct o, D, 3L TDv, KT 2w % b 2.
(iii)D & I AT HIE36),G()D w DFHERF 13 ZxG L T&B., TITGIWED
OAHER Z IBEB» S LD EFRHTH 5.



WU TO#MBIZL S,

#i%E 1([2, p.84, Theorem)).D *fHE K # DO 2 MWIRFHRRE L, X ¥ E/L T
5. ROILHRYALD., (MEED D OB D (X)) IIEKATES. (ii)D L
DN TIRLE S D (X)) Lol R3NHED TR TH 5,

WH 2. D EMK, K &£ D OBMAKE, {x|icl}therTrL
{x,"Dx,. liel }li D (X) D H T field coproducte, D, * £ T 5.

ﬁiﬂﬂ 3([5, p.114, Corollary]). KcEcF % #t4k, X &L ¥+ 3 &,

E(X)CF(X) &% 5B,

EH 2.k HAHAE, X ={x |iel }EHA, k<X > % kfree algebra, k(X) % free
field(k < X > O universal field of fractions)& 3 5.v, % k(x,) D k-flflit +5 &,
LTI KRE L2 TW5B LX) D kFEITFIET 5.

T t442[2,Theorem 312 YR L RO ER + HET 5.
SEF 3. k WK, X ={x|icl }EESE, KX)% free field, G % JAFM,
{glicl}txnmERETHE, KX)D kIl v TEED i KAWLT
vix)=g Lt 2B DDNTFIETS.

I RDOHEE 5.
HE 4([1, Theorem 3.4).JEFB G A E BB FORMKMG=F/IRELTHEb X

hickd s, TOLE FILELELHFE VA TLELORRRIMAFFLLTO
HWERISTE 5. ' .
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BGG CORRESPONDENCE AND ARAMOVA-HERZOG'S
THEORY ON EXTERIOR ALGEBRA

KOHJI YANAGAWA

This article is edited from my recent preprint [15] (some parts are abridged and
some are extended). The formal version of [15] has been submitted to a journal.

ABSTRACT. Let E = K{y;,... ,tm) be the exterior algebra. The distinguished
pairs of a graded E-module N describe the growth of a minimal graded injective
resolution of N. Romer gave a duality theorem between the distinguished pairs of
N and those of its dual N*. In this paper, we show that under Bernstein-Gel’fand-
Gel’fand correspondence, his duality is translated into a natural corollary of Serre
duality for (complexes of) graded § = K|[z,,... ,Zn]-modules.

1. BACKGROUND

While the results of this article are purely ring theoretic, they have a combinato-
rial background. More precisely, they are related to the theory of Stanley-Reisner
rings. This section is devoted to an explanation of this background, and indepen-
dent from the latter sections in some sense. So one can skip this section.

Let S = Klz),...,z,] be the polynomial ring over a field K. Set [n] :=
{1,...,n}. For an abstract simplicial complex A C 2I"l, set I, := (TLer=i |
F C [n], F ¢ A) to be a monomial ideal of S. We call K|A] = S/14 the Stanley-
Reisner ring of A. This is a central concept of combinatorial commutative algebra.
See [5, 12]. It is easy to see that AY := {F C [n] | [n]\ F € A} is a sim-
plicial complex again. We call AY the Alezander dual of A. It is known that
H(|A]; I€) = A*=-3(|AV|; K) for all £, where H;(|A|; K) is the ith reduced homol-
ogy group of the geometric realization |A| of A with the coefficients in K. This
isomorphism corresponds to the Alexander duality on the geometric realization
| 271\ [n] |, which is homeomorphic to an (i — 2)dimensional sphere.

Let M be a finitely generated graded S-module. The ijth Betti number §;;(M) =

dimy Tor{ (K, M); of M is an important invariant. Following Bayer-Charalambous-
Popescu [4], we say a Betti number By m(M) # 0 is extremal, if §;;(M) = 0 for all
(3,7) # (k,m) withi >k and j —i > m — k.
Theorem A (Bayer-Charalambous-Popescu, [4, Theorem 2.8]) Let A C 2(}+-7} e
a simplicial complez, and K[A] = S/14 the Stanley-Reisner ring. Then B;,4;(K[A])
is extremal if and only if so is B;;4i(Iav). Moreover, if this is the case, then
Bii+i(K[8)) = Bjivs(av).

We have Gin(K[A]) = dimg H,—i1(|A]; K) =: hn—i-1(JA]) by Hochster's for-
mula. If §; .(K[A]) # 0 then it is always an extremal Betti numbers. The equality
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Fncict (1A]) = Bin(KIA)) = Brcin(Iav) = Pu-isra(KIAV]) = Fe_a(|AV]) induced
by Theorem A corresponds to the usual Alexander duality. More generally, Theo-
rem A gives an Alexander duality for (some) iterated Betli numbers (c.f. [8]).

Let E = K{y,...,yn) be the exterior algebra. To understand Theorem A,
Aramova-Herzog [3] introduced distinguished pairs for a graded E-module N using
its graded injective resolution. See Definition 2.7 below (our convention to describe
these pairs is different from the original one in [3, 11]. Please be careful, when you
refer these papers). Let K{A} = E/Ja, Ja :=([l;ept: | F C[n], F € A), be the
ezterior face ring of A (cd. [2, 8]). Then [3, Corollary 9.6] states that (d,7) is a
distinguished pair for {{A}* := Homg(K{A}, E) if and only if Buti-nqa(K[A]) is
extremal. But Rémer [11] proved that (d, 1) is distinguished for N if and only if so
is (d,2n — d — i) for N*. Since k{A}* = Jav, his result implies Theorem A (their
arguments can also treat the value of §; ;(K[A])).

Bernstein-Gel'fand-Gel'fand correspondence (BGG correspondence, for short)

a well known theorem which states that the derived category D®(grS) of finitely
. generated graded S-modules is equivalent to the similar category D*(gr E) for E.
In this article, we show that BGG correspondence translates Romer's duality into
a natural consequence of Serre duality on D?(gr S). A key point is that the du-
ality functor (=)* = Homg(—, E) on D®(gr E) corresponds to the duality functor
RHomg(—,w*) on D(gr S), where w"* is a dualizing complex of S.

The original paper [4] states Theorem A in the Z-graded context, while the ar-
guments in [3, 11] are hard to work in this context. But, since BGG correspondence
also holds for Z"-graded modules, our method is powerful in this context too.

2. Z-GRADED CASE

Let W be an n-dimensional vector space over a field X, and S = ;.o Sym; W
the polynomial ring. We regard S as a graded ring with S; = Sym; W. Let Gr S be
the category of graded S-modules and their degree preserving S-homomorphisms,
and gr S the full subcategory of Gr S consisting of finitely generated modules. Then
" there is-an equivalence D%(gr S) = D:, s(Gr S). (For derived categories, consult [7].)
So we will freely identify these categories. For M = ®iez M; € Gr S and an integer
3, M(j) denotes the shifted module with M(j); = M;,;. For M* € D*(Gr S), M*[j]
denotes the jth translation of M*, that is, M*[j] is the complex with M*[j]' = M+,
So, if M € Gr S, M[j] is the cochain complex .- 50— M—=0— .-, where M
sits in the (—j7)th position. If M € gr S and N € Gr S, then Homg(M, N) has the
structure of a graded S-module with Homg(M, N); = Homg, (M, N(3)).

Let w* € Db(gr S) be a minimal graded injective resolution of S(—n)[n]. That is,
w* is a graded normalized dualizing complex of S. Then Dg(-) := Homg(—,w*)
gives a duality functor from D%(gr S) to itself. The ith cohomology of Dg(M?*) is
Ext{(M*,w*). For M* € D*gr8) and i € Z, set di(M*) := dimgs H'(M*). Here
the Krull dimension of the 0 modute is —o0.

Definition 2.1. We say (d,i) € N x Z is a distinguished pair for a complex M* €
Db(gr S), if d = d;(M*) and d;(M*) < d+1i— j for all j with j < i.
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Example 2.2. Let M* € Db(gr S) and d = d;(M*®) > 0. If d = max{d;(M*) | j €
Z}, then (d,1) is distinguished for M*. Similarly, if ¢ = min{j | H?(M*) # 0}, then
(d, 1) is also distinguished. Thus M* has several distinguished pairs in general.

In the sequel, degg(M) denotes the multiplicity (c.f. [5, Definition 4.1.5]) of a
module M € gr S, which is defined by the top term of the Hilbert polynomial of
M.

Theorem 2.3. For M* € D*(gr S), we have the following.

(1) A pair (d,1) is distinguished for M* if and only if (d, —d — 1) is distinguished
Jor Ds(M?®).

(2) If (d,1) is a distinguished pair for M*, then

degg H'(M®) = degg Extz**(M*,w").

Proof. (1) Since the statement is “symmetric”, it suffices to prove the direction =>.

From the double complex Hom§(M*,w*), we have a spectral sequence E}? =
Exti(H-9(M*),w*) = Exti™(M*,w"). For simplicity, set €29 := dimg EP9. By [5,
§8.1, Theorem 8.1.1], we have

-p ifp=—d_,(M*),
(2.1) ed? = dimg Ext5(H9(M*),u*) =< < —p if —d_o(M*) <p<0,
—oc  otherwise.

(I) By (2.1), we have ;%" = d. On the other hand, we have e} < d for all
(p,q) # (—d,—1) with p+ g = —d — i. In fact, the assertion follows from (2.1) if
p > —d. So we may assume that p < —d and ¢ = —d — i — p > —i. Since (d,?)
is distinguished, we have d_,(M*) < d + i+ ¢ = —p. Thus E}? = 0 in this case.
Anyway, we have ef? < d for all (p,q) # (—d, —i) withp+g=—d —i.

(IT) Since d;-j41(M*) < d+j—1 < d+j for all j > 2, we have that Eyiit-l o
0. So we have E-9-3=i+i=1 = 0 for all r > 2. Next we will show that d = ;%" =

e3%"" = ... = ;%% by induction on r. Recall that E 5" is the cohomology of

E;-d—r,—t+r—l _)Er—d.—l_)E;-d+r.-:—r+l.

But we have seen that E 9-"=#*"=1 = (. Moreover, ef4+n =i+ < grdtni=rtl <
d—r < dby (2.1), and e;%~i = d by the induction hypothesis. Thus e:fi'i =d.
Hence ez#~% = d. From this fact and (I), we have that dimg Ext3?"{(M*,w*) = d.

(I1I) Finally, we will show that Ext3?*7(M*,w*) < d+ j for all j > 0. To
see this, it suffices to show that e}’ < d + j for all 7 > 0 and all (p,q) with
pt+q=—-d—-i—3j Ifp > —d— j, the assertion is clear. If p = —d - j,
then ¢ = —% and d_4(M*) = d < —p. So E3? = 0 in this case. Hence we may
assume that p < —d — j and —¢ = d + % + j + p < i. Since (d, 1) is distinguished,
d_o(M*)<d+(i+q)=—j—p< —p. So we have E}? = 0 in this case too.

(2) Since degg E-*~ = degg E;f;™* for all 7 > 2 by the argument in (II) of the
proof of (1), we have degg E; ™ = deggs Ez%~*. Hence

degg Extz?{(M*,w*) = degs B2~ = degg E;*™* = degs Extgd(H'(M*®),w"),
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where the first equality follows from (I) and (II). But, since dim(H*(M*)) = d, we
have deggs Extz4(HY(M),w") = degg H(M®). a

Remark 2.4. For the above theorem, only (2.1) and the fact that inj. dimgw® < 0o
are essential. So the theorem holds in much wider contexts.

(1) Theorem 2.3 (1) also holds for a noetherian local commutative ring R admit-
ting a dualizing complex. The part (2) also holds for R, if we replace degg(—) by
Ip,(— ®g R,) for a prime ideal p C R with dimR/p = d.

(2) Let A be an associative ring with 1. For a left (or right) A-module M, set
(M) := min{i | Ext},(M, A) # 0}. We say A is Auslander Gorenstein if A is left
and right noetherian, inj.dim 4A = inj.dim A4 < oo, and satisfies the following
condition: For every finitely generated left (or right) A-module M and for all i > 0,
we have j(N) > i for all submodule N C Ext}, (M, A).

Familiar examples of Auslander Gorenstein rings include commutative Gorenstein
local rings (in this case, j(M) = dim A — dim M), Weyl algebras, and universal en-
veloping algebras of finite dimensional Lie algebras. See (1] for further information.

If A is Auslander Gorenstein, then —j(M) is an exact dimension function. If
we use this “dimension” to define distinguished pairs for objects in D*(mod,) or
D*(mod 4e¢ ), Theorem 2.3 also lolds for. the duality functor R Hom4(—, A) between
D*(mod,) and D®(mod 4e). More generally, the theorem holds for rings with Aus-
lander dualizing complezes (see [17]).

Next, we assume that A = €D, A; is a graded K(2 A)-algebra satisfying the
following conditions.

(a) There is a polynomial f(t) € Q[t] such that f(i) = dimg A; for 1 >> 0.

(b) A is Auslander regular (i.e., A is Auslander Gorenstein and g). dim A < 00).

(¢) A is Cohen-Macaulay with respect to Gel'fand-Kirillov dimension (c.f. [1]).

Then a finitely generated graded A-module M has the Hilbert polynomial, and
we can define the multiplicity deg,(M). If we use Gel’fand-Kirillov dimension to
define distinguished pairs, both (1) and (2) of Theorem 2.3 hold for A. So the under
the additional assumption that A is Koszul, it might be interesting to generalize
Corollary 2.8 below and related results to the quadratic dual ring A'.

Let V' be the dual vector space of W, and £ = AV the exterior algebra. We
regard E as a negatively graded ring with E_; = A’V (this is the opposite conven-
tion from [3, 11]). Let gr E be the category of finitely generated graded E-modules
and their degree preserving E-homomorphisms. Here “E-module” means a left and
right module N with ea = (—1){de8e}d<€a)ge for all homogeneous e € E and a € N.

Let {z),...,za} be a basis of W, and {y,,...,yn} its dual basis of V. Set
L(N*) = @;cz S ®x N* and L(N*)™ = @, _;_,, S ®« N}. The differential defined
by

LNY" D 8@k Nj31®z+ Y zm®uz+(-1)"(18®8(2)) € L(N*)™*
1€i€n

makes L(N*) a cochain complex of free S-modules. Here &' is the ith differential
map of N°*. Moreover, L gives a functor from D*(gr E) to D*(gr S). Slmllarly, we
have a functor R : D*(gr 8) = Db(gr E). The following is a crucial result.
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Theorem 2.5 (BGG correspondence, c.f.[6]). The functors L and R give a cate-
gory equivalence Db(gr ) = D¥(gr E).

For N € gr E, then N* := Homg(N, E) = Homg(N, K)(n) is a graded E-module
again. (—)* gives an exact duality functor on gr E, and it can be extended to the
duality functor Dg on D*(gr E).

Proposition 2.6. For N* € D*(gr E), we have
Ds o L(N®) 2 Lo Dg(N*)(~2n)[2n].
Proof. Since L(N*) consists of free S-modules, we have
Dgs o L(N*) = Homg(L(N*), S(—n)[n]).
It is easy to see that

Hom§(L(N*), S(-n)n) = P S(—n)®x(N‘)

J—i=m+n

where (—)" means the graded X(-dual. On the other hand,
LoDg(N*)"= P S@xDe(N*); = €P S(n)ex (N::,_,)v

f—j=m f—j=m

= P Smex ).

j=iz=m-n

So we can easily construct a quasi-isomorphism DgoL(N®) — LoD g(N°*)(—2n)[2n].

For N* € Db(gr E), we have H'(L(N*)); = Ext}F(KX, N*); by [6, Theorem 3.7].
So the Laurent series P(t) = 3¢5 (dimg Ext"“(K N*);)- ¥ is the Hilbert series of
the finitely generated graded S-module Hi(L(N*®)). If H'(L(N*®)) # 0, there exists

a Laurent polynomial Q;(t) € Z|t,t™!] such that

R() = 2,

where d = d;(L(N*)) = dimg H}(L(N*)). Set e;(N*) := Q:(1) = degg H'(L(N*®)).

Definition 2.7. Let N* € D*(gr E). We say (d,i) € N x Z is a distinguished pair
for N* if and only if it is distinguished for L(N*) (in the sense of Definition 2.1).

Note that a distinguished pair (d,i) for N* and e;(N°®) concern the growth of
the “(—i)-linear strand” of a minimal graded injective resolution of N*. The above
definition is (essentially) same as that of [3, 11]. But our convention to describe
these pairs is different from the original one.

Corollary 2.8 (c.f. [11, Theorem 3.8]). Let N* € D’(gr E). A pair (d,1) is dis-
tmgmshed for N* if and only if (d,2n — d — 7) is distinguished for Dg(N*). If this
is the case, we have e;(N*) = e3q—a-i(De(N*)).
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Proof. For the first statement, it suffices to prove the direction =. By Theorem 2.3,
(d,—d — 1) is a distinguished pair for Dg ¢ L(N*) 22 L o Dg(N*)(—2n)[2n]|. For
a complex M* € DbgrS), we have H'(M*(—2n)[2n]) = H*+(M*)(—2n) and
d;(M*(—2n)[2n]) = d2n+;(M*). Thus (d, 2n —d—1) is distinguished for LoD g(N*).
The last equality follows from Theorem 2.3 (2). O

For a module N € gr E, d;(L(N)) can be 0 quite often. But we have the following.

Proposition 2.9. Assume that a module N € gr E does not have a free summand.
If (d,?) is a distinguished pair for N, then we have d > 0.

Proof. Let 0 -+ N = I 5 ' — ... (resp. --- = I"' = I 5 N — 0) be
a minimal injective (resp. projective) resolution of N. For j > 0, set ;(N) :=
(ker(I# — Ii*1))[—j]. Obviously, 0 — Q;(N) = I’ - Ii*! - ... is a minimal
injective resolution. On the other hand, since N does not have a free summand,
e 3 IV 9 ... 5 171 5 Q(N) = 0 is a minimal projective resolution.
If d;(L(N)) > 0, then &;(L(Q;(N))) = di(L(N})) for all j > 0. But, if &;(L(N)) =
"0, then d;(L(S2;(N))) = —oo for 7 3» 0. On the other hand, since a minimal
injective resolution of N* is the dual of a minimal projective resolution of N, we
have d;(L(N*)) = di(L(2;(N)*)) for all i and all 5 > 0. So N* and Q;(N)*
have the same distinguished pairs. For a contradiction, we assume that (0,) is
a distinguished pair for N. Then (0, 2n — 1) is distinguished for N* and Q;(N)°.
So (0,%) is distinguished for ;(N) for all § > 0. This contradicts the above
observation. a

We say a distinguished pair (d, ) is positive, if d > 0. Since [3, 11] study a
distinguished pair for a module, they only treat a positive one.

Remark 2.10. When N* is a module, Corollary 2.8 was proved in [11, Theorem 3.8].
On the other hand, for positive distinguished pairs, we can prove the corollary
from [11, Theorem 3.8] directly: Let J* be an injective resolution of N* and P*
a projective resolution of I*. From the quasi-isomorphism f : P* — I°*, we have
the exact complex (T°*,8°) := cone(f). Then N := ker &, (resp. N*) has the same
positive distinguished pairs as N* (resp. Dg(N*)).

A variant of BGG correspondence gives an equivalence grE & D*(Coh(P"-1))
of triangulated categories, where gr E is the stable category, and Coh(P*~!) is the
category of coherent sheaves on P*~! = ProjS. More precisely, the composition of
the functor L : gr E — D%(gr S) and the natural functor D*(gr S) — D¥(Coh(P™!))
induces this equivalence. Note that the functor gr§ 3 M — M € Coh(P*!)
ignores modules of finite length. Hence if d;(M*) = 0 then H*(M*) = 0.

In the rest of this section, we assume that K is algebraically closed. Let N € gr E.
Following [2], we say v € E_; = V is N-regular if Anny(v) = vN. It is easy to
see that v is N-regular if and only if it is N*-regular. We say Vg(N) = {ve V|
v is not N-regular} is the rank variety of N (see [2]). [2, Theorem 3.1] states that
Ve(N) is an algebraic subset of V = Spec S, and dim Vp(V) = max{ &;(L(N)) |i €
Z}. By the above remark, Vg(N) = Vg(N*). We can refine this observation using
the grading of N. ‘ ’ '
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Recall that S can be seen as the Yoneda algebra Exty (IS, K), and Extg(IC, N)
has the S-module structure by the Yoneda product. By the same argument as (2,
Theorem 3.9], we have that

Ve(N)={ve V|&w) =0 for all £ € Anng( Extz(K,N))}.

But [Ext} (K, N)). := Djez Ext}*(K, N); is an S-module which is isomorphic
to H'(L(N)) (see the proof of [6, Proposition 2.3]. Note that Extp(K,K) =
[Extiz (), K)); for all £), and we have Ext(K,N) 2 @Jez[Dxt'“(K, N)].. Set

Ve(N)={v e V|&v) =0 for all £ € Anng([Extz()(,N)].)}.

We have Vg(N) = |, VE(N) and &(L(N)) = dim VD(N) For an algebraic set
X C SpecS of dimension d, set Top(X) to be the union of the all irreducible
components of X of dimensions d.

Proposition 2.11. If (d,1) is a distinguished pair for N € gr E, then we have
Top(VE(N)) = Top(V3""*~*(N*)).

Progf. By the proof of Theorem 2.3, Anng( H*(L(N))) has the same top dimen-
sional components as Anng( H~4-%(Ds o L(N))). (]

In the above situation, we have VE(N) # V2Z"¢~(N*) in general.

3. SQUAREFREE CASE

In this section, we regard S = K([z,,... ,z,| as an N®-graded ring with degz; =
(0,...,0,1,0,...,0) where 1 is in the ith position. Similarly, & = K{y,... ,yn) is
a —N"-graded ring with deg y; = —~ deg z;. Let *gr S (resp. *gr E) be the category of
finitely generated Z"-graded S-modules (resp. E-modules). The functors L and R
defining the BGG correspondence D*(gr S) 2 D*(gr E) also work in the Z"-graded
context. That is, the functors L : D*(*gr E) — Db(*grS) and R : D*(*gr S) —
Db(*gr E) are defined by the same way as the Z-graded case, and they give an
equivalence D*(*gr S) = Db(*gr E), see [14, Theorem 4.1]. Note that the dualizing
complex w* of S is Z™-graded, and Dg(—) = Homg(—,w*) is also a duality functor
on D(*gr S). Similarly, Dg(—) = Homg(—, E) is a duality functor on D¥(*gr E).
As Proposition 2.6, for N* € D*(*gr E), we have DgoL{N*®) 2 LoDg(N*)(-2)[2n]
in D¥(*gr S). Here we set j := (4,,... ,7) € N® for j € Z.

For a = (a,...,a,) € Z", set supp(a) := {i| & > 0} C [n] = {1,...,n} and
lal = >0, a:. We say a € Z" is squarefree if a; = 0,1 for all i € [n]. When a € Z"
is squarefree, we sometimes identify a with supp(a).

Definition 3.1 ([13]). We say a Z"-graded S-module M is squarefree, if the fol-
lowing conditions are satisfied.

(a) M is N"-graded (i.e., M, =0 if a & N") and finitely generated.

(b) The multiplication map M. 3 y — ([[z}) - ¥ € Maysp is bijective for alt
a,b € N" with supp(a + b) = supp(a).
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For a simplicial complex A C 2", the Stanley-Reisner ideal I := ([1;cpzi | F €
A) and the Stanley-Reisner ring I([A] := S/I4 aresquarefree modules. Note that if
M is squarefree then M, = My as K -vector spaces for all a € N® with supp(a) =
Let Sqg be the full subcategory of *gr S consisting of squarefree modules. In *gr S,
Sqg is closed under kernels, cokernels and extensions ([13, Lemma 2.3]), and we
have that D*(Sqs) & Dg, (*gr S). If M* € D*(Sqs), then Ds(M*) € Dg, (*grS)
(see [14]). So Dg gives a duality functor on D*(Sq;).

Remark 3.2. This remark is an advertisement for my recent paper [16], and quite
independent from other parts of this article.

Let B be an (n — 1)-simplex which is the geometric realization of 2"l. From
a squarefree S-module M, we can construct a k-sheal M* on B (we are thinking
classical topology on B). For example, k[A]* & j k5, where k), is the constant
sheaf on |A] and j : |A| = B is the embedding map. We have an isomorphism
H(B,M*) = [HiXY(M)]p for all 1 > 1, and an exact sequence 0 — [H(M)]o. —
My = HYB,M*) = [HL(M)]o — 0, where Hf (=) is the local cohomology module
with support in the maximal ideal m := (z;,...,z,). We have that leA' =
Homs(K[A),w*) € D*(Sqg), and j*(wiea))* is Verdners dualizing complex of |A|
(c.f. [9]). Moreover, Serre duality for RHomgqa)(— 1Wi|a) cotresponds to the
Poincaré-Verdier duality on |A| in our context. See [16] for detail.

Definition 3.3 (Romer [11]). A Z"-graded E-module N = @ ;. Na is squarefree
if N is finitely generated and N = @pcpy N-rF

For example, any monomial ideal of E is a squarefree module. Let Sqg; be the
full subcategory of *gr E consisting of squarefree E-modules. Then we have the
functors S : Sqg — Sqg and € : Sqg — Sqg giving an equivalence Sq¢ = Sqp.
Here S(N)r = N_r for N € Sqg, and the multiplication map S(N)r 3 z+ ;2 €
S(N)pugi) for i g F is given by S(N)p = N_p 3z (-1)°6Flyz € N_trutip =
S(N)rugiy, where i, F') = #{j € F | j < i}. See [11] for further information. Of
course, S and £ can be extended to the functors between D*(Sqg) and D*(Sqg).

If N € Sqg, then N* = Homg(N, E) is squarefree again. So (—)* gives the duality
functor Dg on D*(Sqg). We have the Alezander duality functor A :=SoDgo &
on Sqg (or D*(Sqg)). For example, A(K[A]) = Iav, where AV is the Alexander
dual complex of A (see §1). In general, we have A(HY(M*))r = (H(M*)mpr)Y-

Remark 3.4. Let A := (er¢ | F, G C [n}, F C G) be the incidence algebra of the
Boolean lattice 2i"l with the coefficients in X, and mod, the category of finitely
generated right A-modules. Then we have a functor ¥ : mody, — Sqg giving
an equivalence mod, = Sqg. See [14, Proposition 2.2]. Since inj.dimA < oo,
RHomu(—,A[n)) gives a duality functor from D*(mod,) to D*(modses). But the
map defined by er,c * ege, r gives a ring isomorphism A°® = A, where F* :=
[n]\ F. Under this isomorphism RHomy(—, A[n]) gives the duality functor Dy
from D*(mod,) to itself. Then we have Dg & W o Dy o ¥~!. Similarly, the duality
A on Sqg corresponds to the duality Homy(—, £¥) on mod,. See [14, Remark 3.3].
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An associated prime ideal of M € *gr S is of the form Pr = (z; | i & F) for some
F C [n]. Let M be a squarefree module. A monomial prime ideal Pr is a minimal
prime of M if and only if F is a maximal element of the set {G C [n]| | Mg # 0}.
The following is a squarefree version of Definition 2.1.

Definition 3.5. We say (F,i) € 2"l x Z is a distinguished pair for a complex
M* € DbSqg), if Pr is a minimal prime of H{(M*) and H/(M*)g = 0 for all j
with j < i and G D F with |G| < |F| +1i -j.

Theorem 3.6. Let M* € D*Sqg). A pair (F,i) is distinguished for M* if and only
if (F,—|F| — %) is distinguished for Ds(M?*). If this is the case, dimyx H*(M*)p =
dimg H-ln-'(Ds(M°))p.

Proof. Note that the spectral sequence E3? = Exti(H~9(M*),w*) = ExtF I (M*, )
is Z"-graded, and E}? is squarefree for all p,q and 7 > 2. So we can prove the
theorem in a similar way to Theorem 2.3. See [15] for detail.

If N* € D¥Sqg), then it is easy to see that L(N*)(—1) € D*Sqg). So L(-):
L(-)(-1) gives a functor from D*(Sqz) to D*(Sqs). Moreover, we have £
A o0 Dg o S by [14, Proposition 4.3].

Definition 3.7. Let N* € D*(Sqg). We say (F, 1) is a distinguished pair for N* if
it is a distinguished pair for L(N*) € D*(Sqg) in the sense of Definition 3.5.

The next result can be proved by the same way as Corollary 2.8 using Theo-
rem 3.6.

Proposition 3.8. Let N* € D*(Sqg). A pair (F,{) is distinguished for N* if and
only if (F,2n — |F| — i) is distinguished for Dg(N*®). If this is the case, we have
dimg H'(L(N*))r = dimg H>*- 1A=L 0 Dg(N*))r.

If M* € Db(*gr S), then Torf (IC, M*) := H-*(K ®p P*) is a Z"-graded module,
where P* is a graded free resolution of M*. Set ;.(M*) := dimg Tor} (K, M*),
for a € Z". We say f; o(M*) is the (i,a)th Betti number of M*. If M* € D*(Sqg)

and B; .(M*) # 0, then a is squarefree (see [14]). Now we back to extremal Betti
numbers mentioned in §1.

Definition 3.9 ([4]). A Betti number 3; p(M*) # 0 is extremal if B;c(M*) = 0 for
all (j,G) # (i, F) with§ 24,GD F,and |G| - j > |F| —i.

Proposition 3.10 (c.f. [3]). Let M* € D¥Sqs) and N* := £(M*) € D*(Sqg). A
pair (F,i) is distinguished for Dg(N*) if and only if Biy)rj—n,r(M?*) is an estremal
Betti numnber. If this is the case, then we have Biypj—n,r(M*) = H(LoDg(N*))p.

Proof. For j € Z and G C |n], we have the following.
Bic(M*) = dimg[HC"I-"(Dso A(M*))]pne  (by [14, Corollary 3.6})
= dimg[H"7"I(A 0o Dgo A(M*)))¢
= dimK[H"'H-IGl(E ofo A(M‘))]c
= dimg[H"H19Y(L o Dg(N*)))e-
The assertion easily follows from this equality. - a

o

R
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Corollary 3.11 (c.f. [4, 11, 10]). Let M* € DbSqg). A Betti number B, r(M*)
is extremal if and only if so is Bp— r(A(M?®)). If this is the case, B r(M*) =
BiFi-i.r(A(M?)).

Proof. If B; p(M"*) is extremal, then (F,n+i— |F|) is a distinguished pair for Dgo
&(M*) by Proposition 3.10. By Proposition 3.8, (F,n—1) is a distinguished pair for
E(M*) =2 DgofoA(M?*). So firj-i r(A(M*)) is extremal. The converse implication
can be proved by the same way. The last equality follows from Proposition 3.8. O
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FACTORIZATIONS OF ENVELOPING ALGEBRAS OF THREE
DIMENSIONAL LIE ALGEBRAS AND THEIR APPLICATIONS

JUN MORITA

1. GAuUss ELIMINATIONS

To solve a linear equation generically, for example,

az + by
cz +dy

r
S

we usually use the so-called Gauss elimination, which can be expressed as follows: -
a b\ _ 0 a 0 1 %
c d/] ™ 1 0 # 01/
1 0 a by _f(a b
— ﬁ 1 c d = 0 ad;bc )
oo a b Y_(1¢%
0 ¢ 0 —““;"‘ —\o0 1/

This idea leads to certain decompositions of groups of Lie type.

[y

eIn

That is, we see

Let G be a split semisimple algebraic group or a Kac-Moody group (over a field). We
take subgroups U, T,V of G as a standard maximal uppertriangular unipotent subgroup,
a standard maximal diagonal subgroup, a standard maximal lowertriangular unipotent
subgroup, respectively. Roughly speaking, Q = VTU is an open dense (or very large)
subset of G. Then, more precisely we obtain the Gauss decomposition:

. G=UVTU.
There is also a strong version. Namely,
G=2(G)u | Jg(VrU)g™
9€G

for all h € T, where Z(G) is the center of G. This is called a strong Gauss decomposition
of G. Using such a decomposition, we can immediately find that every noncentral element
can be expressed as a product of two unipotent elements.

Philosophically we can think of an additive version of these decompositions. Here we
introduce some idea of additive Gauss decompositions.

-72-



2. ADDITIVE GAUSS DECOMPOSITIONS

Let F be a field of characteristic 0, and L be a Lie algebra over F. The universal
enveloping algebra of L is denoted by U(L). Let V be an L-module.

Theorem (cf. [1]). Ler L be a three dimensional Lie algebra over F. If L is generated
by two elements z and y, Then, U(L) = 3, ;. z'y’z*. Furthermore, if both = and y act
on V as locally nilpotent aperators, then V is locally finite as an L-module.

The key formulas to establish the above theorem are as follows:

(Ae) yzy* = Sz + 2905z mod U,
(B:) vzy= L“Iy"“ + H—,y 1z mod Uy,

(Ce) yUi CUryr, Ue CUgy,

where Uy = 3, i (Fzy™ + Fy™z + Fy™).

Proof of Theorem. Suppose that L is generated by two elements z,y. Let z = [z,y].
- Now we want to show U(L) = 3, ;..o FziyPz*. Put X = 37, .., Fr'y/z* C U(L) and
let U, be defined as above. Clearly zX C X,%Xz C ¥ and U, C .‘£ “for all £ > 0. We claim

y(zfy™z") € X,

2(z'y™z") € X.
and show this by induction on £. If £ = 0, then we see y(y™2z") € X and using (A,,) we
get -
= (zy - yz)(y™z")
= gy™Hig" — yzy™z®
€ mem+lﬂ:n + (Fzym-i-l + Fym-i-lm + Um)zn g ¥,
Let £ > 0. Then, we obtain, using our inductive assumption, that

y(zlymz?) = (zy - z)(zy"z")
€ zX+XCX

and, letting [z, z] = az+by+cz for a,b, ¢ € F, we also get using our inductive assumption
that

z(y™z™)

z(z'y™z") = (zz+az+by+ c2)(z*'y™z")
€ IX+X+X+XCX.
Hence, our induction method shows yX C X. Since X is a left ideal of U(L) containing 1,
we obtain X = U(L). Therefore,
U(L)=%X= ) Fr'yz* = U(Fz) U(Fy) U(Fz).
1,,k20

Q.E.D.

The decomposition described in the above theorem may be rewritten as
U(L) = U(Fz) U(Fy) U(Fz) = U(Fy) U(Fz) U(Fy),
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which we call an additive Gauss decomposition. If we take

01 {00
=(80). 7=(30)

as generators of sfy = séa(F'), then we have

U(sty) = U(Fe) U(Ff) U(Fe) = U(Ff) U(Fe) U(Ff).
If 5 = Fr @& Fy® Fz is a Heisenberg Lie algebra with [z,y] = z and [z,2] = [y,2] = 0,
then we also have

U($) = U(Fz) U(Fy) U(Fz) = U(Fy) U(Fz) U(Fy).
We note that a three dimensional Lie algebra L is not two generated if and only if L is
abelian or isomorphic to the Lie algebra M = Fz & Fy @ Fz satisfying [z,4] = 0, [z,2] =

z, |y, z] = y. Hence, almost all three dimensional Lie algebras have additive Gauss
decompositions.

3. APPLICATIONS

Let g be a Kac-Moody Lie algebra or a Borcherds Lie algebra over F' with the so-called
standard Cartan subalgebra b, and g, (resp. g-) the standard maximal positive (resp.
negative) nilpotent subalgebra of g corresponding to positive (resp. negative) roots with
respect to . Using additive Gauss decompositions of sf; and £, we obtain

U(g) = U(s+) Ulox) U(os)-

Hence, all Kac-Moody Lie algebras and all Borcherds Lie algebras have additive Gauss
decompositions.

If e and f are locally nilpotent on an sé;-module V, then h is diagonalizable on V,
since V is a locally finite sé;-module. Furthermore, we take standard generators

€1y, leﬁ)hl)"' :hn)fl)'“ afn

for the derived subalgebra g’ = (g, g) of a Kac-Moody Lie algebra g. If the e; and the f;
are all locally nilpotent on a g-module V, then the h; are simultaneously diagonalizable
on V. Hence, this gives a sufficient condition for a g-module V' to be integrable.

Let L = L_,® Lo®L, be a three graded Lie algebra of dimension three with dim L, =1
for e =0,%£1. If U(L) = U(L,) U(L-,) U(L1), then L = 8¢, or L =~ 5j. This gives a new
caracterization of sé; and §.

We can also apply our method to quantum groups. Let C be the field of complex
numbers, and we fix a nonzero element ¢ € C with the property that ¢™ # 1 for all
m = 1,2,3.... We denote by U,(sf) the associative C-algebra generated by t*! e, f
with the following defining relations as usual:

t—-t!
q-q"
The algebra Uy(séy) is called the quantum group associated with sé;. For each natural

number k we define a ¢-integer, [k] = [k}, = (¢ — ¢7*)/(g — ¢™?), as a nonzero complex
number, and here we put [0] = 0 for convenience. Then, for n > 0, we obtain:

T =1, tet'=¢%, tft'=q7f, lefl=
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(A} @ fef* = et + Egftte + Hipm

(BY) : fref = mpmef™ + bt + Blpm

(A7) @ fef* = e+t + Hgfte + ¢l

(By) : fref = gEgef™ + FEpf e + ¢l
Using these relations, we can establish the following result.
Up(sla) = (Zijuzo Ce€ ")+ (Xs k20 Ceifies)t

Cle] C[f] Cle] (C & C¢).

As a direct consequence of this, we obtain the following. Let V' be an infinite dimensional
U,(sés)-module. Suppose that both operators e and f are locally nilpotent on V. Then:
(1) For each v € V, the submodule, U,(sé2)v, generated by v is finite dimensional.

(2) The operator ¢t is diagonalizable on V.

.(3) V is a direct sum of finite dimensional irreducible U,(s¢;)-modules. In particular, V
is completely reducible.

Using the results (1),(2),(3), we can produce a sufficient condition for a representation
of a quantum group to be integrable.

Remark. We note that this article is a survay of the successive papers [1], [5], [6].
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SOME APPLICATIONS OF KOSZUL DUALITY
IZURU MORI

ABSTRACT. In this paper, we will discuss some applications of Koszul duality for a con-
nected graded Koszul algebra A. Since A is an Artin-Schelter regular Koszul algebra if
and only if its Koszul dual A' is a Frobenius Koszul algebra, there is potential interac-
tion between two research areas, Noncommutative Algebraic Geometry and the study of
Frobenius algebras.

1. INTRODUCTION

Throughout, let A = ®&2,A; be a finitely generated connected graded algebra over a
field k. The augmentation ideal of A is denoted by m = &2, 4;. We often view k as a
graded left A-module by the identification kK = A/m. For a graded left A-module M =
@2 _.M; and an integer n € Z, we define a graded left A-module M(n) by M(n) =
as an ungraded left A-module but M(n); = M, for all i € Z. A linear resolution of M
is a resolution of the form

=2 PA-2) - PA-1)-PA- M0,

that is, a free resolution in which each differential is given by right multiplication of a
matrix whose entries are all degree 1 elements (linear elements) of A. We say that A is
Koszul if k has a linear resolution as a graded left A-module.

If A is a Koszul algebra, then its dual A' is again a Koszul algebra. An important clas-
sical result is that there is a duality, known as the Koszul duality, between the categories
of graded left modules having linear resolutions over A and A', respectively. Recently, it
has been shown that the Koszul duality can be extended to a duality between the derived
categories of finitely generated graded left modules over A and A', respectively. Through
this extended Koszul duality, we are more able to translate results on A to those on A'.

It is known that A is an Artin-Schelter regular Koszul algebra, which is one of the
most important algebras in Noncommutative Algebraic Geometry, if and only if A' is a
Frobenius Koszul algebra. Further, the extended Koszul duality induces an equivalence
between the derived category of a quantum projective space, which is a projective scheme
associated to a noetherian Artin-Schelter regular Koszul algebra, and the graded stable
category of the corresponding Frobenius Koszul algebra. So there is potential interac-
tion between two research areas, Noncommutative Algebraic Geometry and the study of
Frobenius algebras. In this paper, we will give some examples of such interaction.

This is an expository paper based on the results of the author and others. The detailed vers:on of
some of the results in this paper has been submitted for publication elsewhere.
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2. KoszuL DuAaLITY
Let I, M and N be graded left A-modules. The Yoneda product is a map
Exti,(N, L) ® Ext/,(M, N)-Ext'}?(M, L)
81 ® (o] o [Boad
defined by the following diagram:
P L 5 M0
ml al
o F N0
gl
L
where _
o PP P S PP 53 M0, and

3Gt 3G 5 N0

are free resolutions of M and N, respectively, and o is a lift of c.
~ We define a graded vector space E(M) over k by E(M); = Ext,(M, k). Then E(k) has

a structure of a connected graded algebra over k, and E(M) has a structure of a graded
left E(k)-module by the Yoneda produict.

Let A be a quadratic algebra over k, that is, A = T(V)/(R) where V is a finite
dimensional vector space over k, T'(V) is a tensor algebra over V, and RC V@V is
a subvector space. We define the dual of A by A' = T(V*)/(R*) where V" is the dual
vector space of V and

Rt={0eV*®@V* | Ar)=0 for all 7 € R}.

If A is a Koszul algebra, then it is known that A is quadratic and A' & E(k) as graded
algebras. In this case, E(E(M)) has a graded left module structure over (A") &2 A. The
following is an important classical result.

Theorem 2.1. [17] (Koszul duality) If A is a Koszul algebra, then A' is also a Koszul
algebra. In this case, if M is a graded left A-module having a linear resolution, then E(M )
is a graded left A'-module having a linear resolution, and

E(EM) =M
as graded left A-modules. That is, E defines a duality
E:LinA— Lin A,
where Lin A is the category of graded left A-modules having linear resolutions.
If A is a Koszul algebra, then we call A' the Koszul dual of A.

Example 1. A free algebra
T =k{zy, - ,Za)
is a Koszul algebra where

T k(zy, -, 2a)/ (ZiTj)ig=1,m

77—~



Example 2. A polynomial algebra

S =k[zy, - ,2a] = k{Za, "+, Ta}/(Zi%j — TjTs)igm1, o
is a Koszul algebra where
S' = k21, , Ta) J(ZiZj + TiZi, 22 )i =1, d
is an exterior algebra.

Example 3. An algebra
A = Kz, 9)/(4*)
is a Koszul algebra where
A' = k(z,y)/(z?, Ty, y).

By this duality, we can translate some of the properties of A to those of A'. For example,
the following result is immediate.

Lemma 2.2, Let A be a Koszul algebra. Then A is regular, that is, A has ﬁnite global
dimension, if and only if A' is finite dimensional over k.

3. EXTENDED KOSZUL DUALITY

The functor E above does not define a duality for the categories of arbitrary modules.
So the above Koszul duality has limited applications. In order to overcome this limitation,
we will extend the above Koszul duality to derived categories. If we assume the existence
of a balanced dualizing complex defined below, then the duality behaves particularly well.

Definition 3.1. [20] A balanced dualizing complex of A is a complex D4 of graded A-A
bimodules satisfying the following conditions, viewing D, as a complex of graded left and
right A-modules:
¢ D, has finite injective dimension,
¢ h¥(D,) are finitely generated for all ,

o Ext,(D4,D4) & {g ::: :g as graded A-A bimodules, and
A ifi=0
Hl o~ - H
o H, (Dy) = {0 140 as graded A-A bimodules,

where
Hi,(~) = lim Ext},(4/m",~)
is the 4-th local cohomology functor.

A balanced dualizing complex plays an essential role in Noncommutative Algebraic
Geometry. Many noetherian algebras of importance have balanced dualizing complexes.
For example, finite dimensional algebras, noetherian commutative algebras, and FBN
algebras (including noetherian PI algebras) have balanced dualizing complexes (see [19]).

We will now extend the Koszul duality to derived categories as follows. Let grmod A
be the category of finitely generated graded left A-modules and D*(grmod A) the derlved
category of bounded complexes in grmod A.
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Theorem 3.1. (Koszul duality) [4], [12] Let A be a Koszul algebra. If both A and A' are
noetherian and having balanced dualizing complezes, then there is a duality

E : D*(grmod A) — D*(grmod 4').

We refer to [4] and [12] for the definition of E(X) for a complex X of graded left A-
modules. If M is a finitely generated graded left A-module, then E(M) is a complex of
left A'-modules defined by

E(M) = A'® M (—1).
The following lemma says that the duality in the above theorem is in fact an extension
of the classical Koszul duality.

Lemma 3.2. [12] Let A be a Koszul algebra and M a_finitely generated graded left A-
module. Then M has a linear resolution if and only if E(M) = E(M) in D*(grmod A').

By this extended Koszul duality, we are more able to translate results on A to those
on A'. We will see such examples below.

4. GORENSTEIN CONDITION

One of the starting points of Noncommutative Algebraic Geometry was to classify
. Artin-Schelter regular algebras of global dimension 3, defined below.

Definition 4.1. [2] We say that A satisfies Gorenstein condition if, for some integer d,
we have
' ; ko ifi=d
Ext}(k, A) & '
xtalk, 4) {o if i d.

We say that A is Artin-Schelter regular (AS-regular, for short) if A is regular and satisfying
Gorenstein condition.

If A is noetherian and having a balanced dualizing complex (e.g. commutative), then A
satisfies Gorenstein condition if and only if A has finite injective dimension as a left module
over itself, so the above definition of Gorenstein condition agrees with the commutative
one. Note that a noetherian regular algebra is AS-regular if and only if A has a balanced
dualizing complex.

The first application of the extended Koszul duality is below.

Theorem 4.1. [7] [12| Let A be a Koszul algebra. Then A satisfies Gorenstein condition
if and only if A' satisfies Gorenstein condition.

Since a finite dimensional algebra satisfies Gorenstein condition if and only if it is
Frobenius, we can recapture the following result as a corollary.

Corollary 4.2. [17] Let A be a Koszul algebra. Then A is AS-regular if and only if A' is
Frobenius.
5. HILBERT SERIES

In this section and the next section, we will discuss rationality of the Hilbert series and
the Poincaré series, respectively, of a finitely generated graded left A-module M. "
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If dimy M; < oo for all i, then we define the Hilbert series of M by

Hy(t) = ) (dimy M)t € Z[[t,t7"]].

i==00

Let us calculate the Hilbert series of a few examples of graded algebras.
Example 4. If T = k(z;, - ,z4) is a free algebra, then

Hp(t) = id‘t‘ =

=0

7 € C(t).

Example 5. If S =k|z,,--- ,z4] is a polynomial algebra, then

=0
Example 6. If A = k{z,y)/(3?), then
Ag=k.
Al =kz + ky.

As = kx?* + kxy + kyz.
A; = kz* + kx’y + kzyz + kyz? + kyzy. '
Ay = kz' + k2Py + kx’yz + kzyz? + kyz® + kzyzy + kyzy + kyzyz.

If a; = dimy A;, then, by induction,
a=1a=2a=a._,+a._,fori>?2
(Fibonacci sequence). We can prove that

l+t

Ha(t) = Z it'= ——— e C(t).
=0
There was a natural conjecture by V. E. Govorov (1972) that “if A is finitely presented,
then H,(t) € C(t)". Although counterexamples were constructed by J. B. Shearer [16}
(1980) and D. Anick [1] (1982), we will still expect that reasonably nice algebras, such as
left noetherian algebras, have the following stronger property.

Definition 5.1. We say that A has the property (H) if Hp(t) € C(t) for all finitely
generated graded left A-modules M.

In fact, many left noetherian algebras have the property (H).

Example 7. 1. Every finite dimensional algebra has the property (H).
2. Every quotient algebra of a left noetherian regular algebra has the property (H). In
particular, every noetherian commutative algebra has the property (H).
3. (Stafford-Zhang [18], 1994) Every FBN algebra has the property (H). In partlcular,
every noetherian PI algebra has the property (H).
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6. POINCARE SERIES
If dim; Ext’,(M, k) < oo for all 7, then we define the Poincaré series of M by

PM(t) = Zdlm; Ext',(M, k)t' € Z|[t]).
i=0
There was a similar but more restrictive conjecture by Serre-Kaplansky (1965) that “if
A'is finite dimensional and commutative, then P4(t) € C(t)”. Although a counterexample
was constructed by D. Anick [1] (1982), finding a class of algebras having the following
stronger property remains interesting.

Definition 6.1. We say that A has the property (P) if P¥(t) C(t) for all finitely
generated graded left A-modules M.

We know that the following classes of algebras have the property (P).

Example 8. 1. Every left noetherian regular algebra has the property (P).
2. (T. H. Gulliksen [6], 1974) Every commutative complete intersection algebra has the

property (P).
Recent.ly, Martinez and Zacharia proved the following result.

. Theorem 6.1. [10] If A is a finite dimensional Koszul algebra such that A' is left noe-
therian, then A hes the property (P).

The second application of the extended Koszul duality is to generalize the above theo-
rem.’

Lemma 6.2. [12] Let A be a Koszul algebra and M a finitely generated graded left A-
module. If A is noetherian and having a balanced dualizing complez , then

P = > Hwepm)r.

i: finite
The following theorem is an immediate consequence of the above lemma.

Theorem 6.3. [12] Let A be a noetherian Koszul algebra having a balanced dualizing
complez. If-A' has the property (H), then A has the property (P).

As we have seen, every finite dimensional algebra is noetherian and having a balanced
dualizing complex, and every left noetherian regular algebra has the property (H), so the
above theorem contains that of Martinez and Zacharia

7. GROTHENDIECK GROUP

In the following two sections, we will apply the Koszul duality to the study of a quantum
projective space and the graded stable category of a Frobenius Koszul algebra.

Let fdim A be the full subcategory of grmod A consisting of finite dimensional modules.
Artin and Zhang [3] defined the noncommutative projective scheme associated to A to be
the quotient L category tails A = grmod A/ fdim A. The image of M € grmod A in tails A is
denoted by M. To understand this category, if A is left noetherian, then M= NintailsA
if and only if ®2 M; & ®2,N in grmod A for n > 0. By Serre, if A is commutative
and generated by degree 1 elements, then tails A is equivalent to the category of coherent
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modules over Proj A. If A is a noetherian AS-regular Koszul algebra, then we call tails A
a quantum projective space.

Since ~: grmod A — tails A is an-exact functor, it induces a functor ~: D¥(grmod A) —
Dh(tails A).

Theorem 7.1. [13] Let A be a Koszul algebra such that both A and A_l are noetherian and
having balanced dualizing complezes. Then, for X € ’D“(grmm_:l A), X =0 in D(tails A)
if and only if E(X) has finite projective dimension. That is, E induces a duality

E : D(tails A) — D*(grmod A')/P(A"),
where P(A'") is the full subcategory of D*(grmod A') consisting of complezes having finite
projective dimension.

Now, suppose that A is a noetherian AS-regular Koszul algebra. Since A' is Frobenius,
’D‘(grmod A")/P(A") = grmodA', where grmodA' is the stable category of grmod A'.
Moreover, since the duality Homg(—, A') : grmod A' — grmod(A')*” induces a duality
grmodA' — grmod(A')°P, where (A’)"” is the opposite graded algebra of A', we recapture
the following classical result.

Theorem 7.2. [5] [9] If A is a noetherian AS-regular Koszul algebra, then there is an
equivalence of calegories
Db(tails A) & grmod(A")*.

By this equivalence, we can translate results on a quantum projective space to those
on the graded stable category of the corresponding Frobenius Koszul algebra, and vice
versa. For example, let A and B be noetherian AS-regular Koszul algebras. Then the
above theorem says that tails A and tails B are derived equivalent if and only if (4')°? and
(B")? are graded stable equivalent. Moreover, we can calculate the Grothendieck group.

Theorem 7.3. [14] |15] If A is a left noetherian regular Koszul algebra, then
Ko(tails A) = Z[t)/(P5(~t)).
The above theorem can be translated as follows.
Theorem 7.4. If A is a Frobenius Koszul algebre such that A' is noetherian, then
Ko(grmod A) & Z[t]/(H a(-t)).
Example 9. If A = k(zy, -+ ,Za}/(ziz; + 242, TF)i jor, 4 18 81 exterior algebra, then
Ha(t) = (1 +1)4, s0
Ko(grmod A)  Zt)/((1 — ¢)?).

8. SERRE DUALITY

Let M and N be graded left A-modules. The set of morphisms M -~ N in grmodA is
denoted by Hom,(M, N). The i-th stable cohomology is defined by
Dt _ $ n4-i n
Exty,(M,N) nzmkxn{\_m} Hom ,(Q" M, Q" N),
where Q"M is the n-th syzygy of M. Il 0 : A = A is a graded algebra automorphism,
then we define a graded left A-module °M by M = M as a graded vector space over k
but with the new action a - m = o(a)m.
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First, let A be a Frobenius algebra of Loewy length n. Then there exists a graded
algebra automorphism v : A = A, called the Nakayama automorphism, such that A* =
¥A(n) as graded A-A bimodules.

Theorem 8.1. [8] Let A be a Frobenius algebra of Loewy length n, v the Nakayama
automorphism, and M, N finitely generated graded left A-modules. Then, for any integer
i, there is a natural isomorphism

Ext!,(M, N) 2 Ext;'"*(N,"M(n))".
Next, let A be a noetherian AS-regular Koszul algebra. Since A' is Frobenius, we have

the Nakayama automorphism v : A' — A!, which canonically induces a graded algebra
automorphism o : A -+ A. The above theorem can be translated as follows.

Theorem 8.2. [8] (Serre duality) Let A be a noetherian AS-regular Koszul algebra of
global dimension n, and M,N finitely generated graded left A-modules. Then, for any
integer i, there is a natural isomorphism

Ext'mbA(M N) e EXt'muA (N aM(_n))

Now, we will rewrite the formulas in the above two theorems using a balanced dualizing
‘complex Dy of A. First, let A be a Frobenius algebra of Loewy length n and v the
Nakayama automorphism. The functor

N(=) = Hom(—, A)* : grmod A — grmod A
is called the Nakayama equivalence. Since A is Frobenius,
: D, = HY(A) = A® =V A(n)
as graded A-A-bimodules, so A can be written as
N(-)=2Ds®,4 —: grmod A — grmod A.
Hence we can rewrite the formula in Theorem 8.1 as
Ext!, (M, N) 2 Ext '™ (N,N(M))" = Ext;'™(N, D, ®4 M)".

On the other hand, if A is a noetherian AS-regular algebra, then we can rewrite the
f0rmula in Theorem 8.2 as

' Extio (M, N) 2 Ext lo4 (N, Dy @4 M)
by [21]. So these two formulas look strikingly alike.

9. A GENERALIZATION OF NAKAYAMA EQUIVALENCE

Let D4 be a balanced dualizing complex of A. By the previous section, it is interesting
to view the functor Dy &, — as a generalization of the Nakayama equivalence. Unless A
is Frobenius, it no longer induces an equivalence of categories of graded left A-modules.
However, it induces an equivalence of the following derived categories.

Theorem 9.1. (11] (Fozby equivalence) If A is a noetherian algebra having a balanced
dualizing complez D4, then there is an equivalence of categories

D, ®% - : P(A) = Z(A),

where Z(A) is the full subcategory of D*(grmod A) consisting of complexes hamng finite
injective dimension.
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Although we do not know how to generalize the Nakayama automorphism to an arbi-
trary algebra, the following may be an interesting idea. Let A be a noetherian algebra
having a balanced dualizing complex D4. Then it is known that A satisfies Gorenstein
condition if and only if there exists a graded algebra automorphism ¢ : A = A such that
D, is isomorphic to a “shift” of A in the derived categories of graded A-A bimodules.
We may consider ¢ as a generalization of the Nakayama automorphism because if A is
a Frobenius algebra of Loewy length n and v : A = A is the Nakayama automorphism,
then we have seen that D4 & ¥ A(n) as graded A-A bimodules.

REFERENCES

[1] D. Anick, A counterezample to a conjecture of Serve, Ann. of Math. 115 (1982), 1-33.

[2] M. Artin and W. Schelter, Graded algebras of global dimension 3, Adv. in Math. 66 (1987), 171-216.

[3] M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. in Math. 109 (1994), 228-287.

[4] A. Beilinson, V. Ginzburg and W. Soergel, Koszul duality patterns in representation theory, J. Amer.
Math. Soc. 9 (1996), 473-527.

[5] 1. N. Bemnstein, I. M. Gelfand, and S. I. Gelfand, Algebraic bundles over P® and problems in linear
algebra, Funct. Anal. Appl. 12 (1979), 212-214. ’ '

[6] T- H. Gulliksen, A change of rings theorem with applications to Poincaré series and intersection
multiplicity, Math. Scand. 34 (1974), 167-183.

[7] R. Martinez-Villa, Koszul algebras and the Gorenslein condition, Representation of algebras, Lect.
Notes in Pure and Appl. Math. 224, Marcel Dekker (2002), 135-156

{8] R. Martinez-Villa and A. Martsinkovsky, Cohomology of tails, Tate-Vogel cohomology, and noncom-
mutative Serre duality over Koszul quiver algebras, preprint.

9] R. Martinez-Villa and M. Saorin, Koszul equivalences and dualities, Pacific J. Math. to appear.

[10] R. Martinez-Villa and D. Zacharia, Approzimations with modules having linear resolutions, J. Alge-
bra, to appear.

[11]) I. Mori, Homological properties of balanced Cohen-Macaulay algebras, Trans. Amer. Math. Soc. 355
(2003), 1025-1042. -

[12] 1. Mori, Rationality of the Poincaré series for Koszul algebras, preprint.

[13] 1. Mori, Koszul duality for noncommutative projective schemes, in preparation.

{14] I. Mori and S. P. Smith, Bézout’s theorem for non-commutative projective spaces, J. Pure Appl.
Algebra 157 (2001), 279-299.

[15] 1. Mori and S. P. Smith, The Grothendieck group of a quanium projective space bundle, preprint.

[16] J. B. Shearer, A graded algebra with a non-rational Hilbert series, J. Algebra 62 (1980), 228-231.

{17] S. P. Smith, Some finile dimensional algebras related to elliptic curves, in “Representation theory of
algebras and related topics” (Mexico City, 10904) CMS Conf. Proc. 19, Amer. Math. Soc., Providence,
RI (1996), 315-348.

[18] J. T. Stafford and J. J. Zhang, Homological properties of {graded) noetherian PI rings, J. Algebra
168 (1994), 988-1026.

[19] M. Van den Bergh, Ezistence theorems for dualizing complezes over non-commutative graded and
filtered rings, J. Algebra 195 (1997), 662-679.

[20] A. Yekutieli, Dualizing complezes over noncommutative graded algebras, J. Algebra 153 (1992),
41-84.

[21] A. Yekutieli and J. J. Zhang, Serre duality for non-commutative projective schemes, Proc. Amer.
Math. Soc. 125 (1997), 697-707.

DEPARTMENT OF MATHEMATICS
Tne UMVERSITY OF TOLEDO
ToLepo, OH 43606-3390

E-mail address: imoriQutnat.utoledo.edu

84—



ON MODULES OF G-DIMENSION ZERO OVER NON-GORENSTEIN
LOCAL RINGS

RYO TAKAHASHI

1. INTRODUCTION

Throughout this note, we assume that all rings are commutative and noetherian, and
that all modules are finitely generated.

G-dimension was defined by Auslander [1] and was deeply studied by Auslander and
Bridger [2]. This is a homological invariant for modules analogous to projective dimension.

A Cohen-Macaulay local ring is called to be of finite Cohen-Macaulay representation
type if there are only finitely many isomorphism classes of indecomposable maximal
Cohen-Macaulay modules. Such a ring has been well researched for a long time. In several
cases, all the isomorphism classes of indecomposable maximal Cohen-Macaulay modules
over such a ring have already been classified completely. (See [14] for the details.)

" Over a Gorenstein local ring, a module has G-dimension zero if and only if it is a maxi-
mal Cohen-Macaulay module. {(Recall that a Gorenstein ring is always Cohen-Macaulay.)
Hence a Gorenstein local ring has only finitely many isomorphism classes of indecom-
posable modules of G-dimension zero if and only if it is of finite Cohen-Macaulay rep-
resentation type. Thus we are interested in a non-Gorenstein local ring which has only
finitely many isomorphism classes of indecomposable modules of G-dimension zero, espe-
cially interested in determining all the isomorphism classes of indecomposable modules of
G-dimension zero over such a ring.

Let R be such a ring. Our guess is that the only isomorphism class of indecomposable -
module of G-dimension zero is the isomorphism class of R. In other words, we guess that
the following holds:

Conjecture 1.1. Let R be a non-Gorenstein local ring. Suppose that there exists a non-
free R-module of G-dimension zero. Tlhen there exist infinitely many isomorphism classes
of indecomposable R-modules of G-dimension zero.

Indeed, over a certain artinian local ring having a non-free module of G-dimension zero,
Yoshino [16] actually constructed a family of modules of G-dimension zero with continuous
parameters.

For a ring R, let us denote by modR the category of all finitely generated R-modules,
and by G(R) the full subcategory of modR consisting of all R-modules of G-dimension
zero. The main result of this note is the following theorem, which extends [16, Theorem
6.1].

Theorem 1.2. Let R be a henselian non-Gorenstein local ring of depth zero. Suppose that
there ezists a non-free R-module in G(R). Then the residue class field of R does not admit
a G(R)-precover as an R-module. In particular, the category G(R) is not contraveriently
finite in modR. :

The detailed version (8] of this nate has been submitted for publication elsewhere.
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It is easily seen that this theorem gives a positive answer for Conjecture 1.1 if the depth
of the local ring R is zero:

Corollary 1.3. Let R be a henselian non-Gorenstein local ring of depth zero. Suppose
that there exists a non-free R-module of G-dimension zero. Then there erist infinitely
many isomorphism classes of indecomposable R-modules of G-dimension zero.

We should remark that the above corollary especially asserts that Conjecture 1.1 holds
if R is artinian.

2. OUTLINE OF THE PROOF OF THEOREM 1.2

Throughout this section, R is always a commutative noetherian local ring with residue
class field k. All R-modules considered in this section are finitely generated.

We define (—)* to be the dual functor Hompg(—, R) from modR to itself, and denote by

® M the nth syzygy module of an R-module M. To begin with, we recall the definition
of G-dimension.

Definition 2.1. Let M be an R-module.

(1) If the following conditions hold, then we say that M has G-dimension zero, and

write G-dimgM = 0.
i) The natural homomorphism M — M** is isomorphic.

ii) Ext‘k(M, R) =0 for every i > 0.
iii) Exth(M*, R) =0 for every i > 0.

(2) If G-dimg(Q}xM) = 0 for a non-negative integer n, then we say that M has G-
dimension at most n, and write G-dimpM < n. If such an integer n does not exist,
then we say that M has infinite G-dimension, and write G-dimgpM = co.

As follows, G-dimension possesses many properties similar to those of projective di-
mension. For the proofs, we refer to [2], [6], [7], and [13].

Proposition 2.2. (1) The following conditions are equivalent.
i) R is Gorenstein.

i) G-dimpM < oo for any R-module M.
iii) G-dimgk < oo.

(2) Let M be a non-zero R-module with G-dimgM < oo. Then G-dimpM = depthR —
depth, M.

(3) Let0 - L - M — N — 0 be a short ezact sequence of R-modules. If two of
L, M, N have finite G-dimension, then so does the third.

(4) Let M be an R-module, and n a non-negative integer. Then G-dimp(QRM) =
sup{G-dimpM — n,0}.

(5) Let M,N be R-modules. Then G-dimg(M & N) = sup{G-dimgM, G-dimpN}.

Here we introduce the notion of a cover of a module.

Definition 2.3. Let X be a full subcategory of modR, and let ¢ : X — M be a homo-
morphism from X € X to M € modR.

(1) We call ¢ an X-precover (or a right X -approzimation) of M if for any homomorphism
¢ : X' > M with X’ € X there exists a homomorphism f : X’ — X such that
¢ =4[
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(2) Assume that ¢ is an X-precover of M. We call ¢ an X'-cover (or a right minimal X-
approzimation) of M if any endomorphism f of X with ¢ = ¢f is an automorphism.

A full subcategory X of modR is said to be contravariantly finite in modR if every
M € modR has an X-precover.
The following proposition helps us to see whether a given precover is a cover or not.

Proposition 2.4. [15, Lemma (2.2)] Let X be a full subcategory of modR, and let
0-NSx& M

be an ezact sequence in modR where ¢ is an X -precover. Suppose that R is henselian.
Then the following conditions are equivalent.
i) ¢ is not an X-cover.

ii) There ezists a non-zero submodule L of N such that (L) is a direct summand of
X. : :

Let X be a full subcategory of mod?. We say that X is closed under direct summands
provided that for any object M of X and any direct summand N of M we have N is also
an.object of X. Note by Proposition 2.2.5 that the category G(R) is closed under direct
‘summands. Using the above proposition, we can easily prove that the existence of an
A'-precover in fact implies the existence of an X-cover if X is a full subcategory of modR
" which is closed under direct summands. Hence we have the following.

Corollary 2.5. Let X be a full subcategory of modR which is closed under direct sum-
mands. Suppose that R is henselian. Then an R-module admils an X -cover if and only
if it admits an X -precover.

‘We say that a full subcategory X of modR is closed under extensions if for any short
exact sequence
02L-oM-oSN-0
in modR with L, N € X, we have M is also an object of X. Note by 2.2.2 and 2.2.3 that
the category G(R) is closed under extensions. The lemma below is so-called Wakamatsu's

Lemma, which plays an important role in the notion of a cover. For the proof, see [11] or
(12, Lemma 2.1.1].

Lemma 2.6 (Wakamatsu). Let X be a full subcategory of modR which is closed under
extensions, and let
0N XS M
be an ezact sequence in modR where ¢ is an X-cover of M. Then Exth(X',N) =0 for
any X' € X.
Now, we shall give the outline of the proof of our theorem.

OUTLINE OF THE PROOF OF THEOREM 1.2. Let R be a henselian non-Gorenstein local
ring of depth zero such that there exists a non-free module in G(R). Suppose that the
residue field & of R has a G(R)-precover as an R-module. We want to derive contradiction.
By Corollary 2.5, there exists a short exact sequence

0L32Z23k>0
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of R-inodules such that = is a G(R)-cover. Dualizing this sequence, we obtain an exact
sequence

0ok 52 5L
Set C =Im(6*), and let a : Z* — C be the surjection induced by 8* and 8 : C — L* be
the natural embedding.
We shall show that the homomorphism a : Z* — C'is a G(R)-cover of C. Fix X € G(R).
To prove that any homomorphism X — C is factored as X — Z* = C, we may assume

that X is non-free and indecomposable. Applying the functor Homgp(X, —) to the above
exact sequence, we get an exact sequence

Homg(X,x*) Homp(X,0%)
_— EEEE——

0 —— Homg(X,k*) Homp(X, Z*) Homp(X, L*).

We can prove that the homomorphism Homp(X,#*) is a split epimorphism. Since
Homp(X,8*) = Homg(X, B) - Homp(X,a) and Homp(X, B) is an injection, the homo-
morphism Homp(X, 8) is an isomorphism. Therefore Homp(X, c) is a split epimorphism,
and hence it is especially a surjection. This means that the homomorphism a : Z* — C
is a G(R)-precover of C. Assume that « is not a G(R)-cover. Then Proposition 2.4 shows
that £* and Z* have some common non-zero summand. Since k* is a k-vector space, the
R-module Z* has a summand isomorphic to the R-module &, and hence k € G(R) by
Proposition 2.2.5. It follows from Proposition 2.2.1 that R is Gorenstein, which contra-
dicts the assumption of the theorem. Therefore a must be a G(R)-cover of C.

Thus we can apply Lemma 2.6, and get Ext}(Y, k*) = 0 for every Y € G(R). Since the
local ring R has depth zero, that is to say, k* is a non-zero k-vector space, every module
in G(R) is free, which is contrary to the assumption of our theorem. This contradiction
proves our theorem. O
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TILTING COMPLEXES ASSOCIATED WITH
A SEQUENCE OF IDEMPOTENTS

MITSUO HOSHINO AND YOSHIAKI KATO

This note is a summary of our paper ([HK3]).

Rickard [Ri2] showed that the Brauer tree algebras with the same numerical invariants
are derived equivalent to each other. Let A be a Brauer tree algebra corresponding to a
Brauer tree whose edges are labelled 1, 2, ... , n. Note that there exists a partition of
the edges {1, ..., n} = EpU--- U E}, where E, consists of the edges i for which there
exists a sequence of edges iy, 7), ..., i, = © such that i is adjacent to the exceptional

# -vertex and for any 0 < r < I, i, # .4 and i,, i,4; have a vertex in common. He

constructed a tilting complex P* € K®(P,) such that PP = 0 for j > 0 and j < —1,
P~J € add(®;cg,_;eiA), where ¢; € A is a local idempotent corresponding to the edge 1,
for 0 < j <! and Endk(mos-4)(P*) is a Brauer “star” algebra with the same numerical
invariants as A. On the other hand, Okuyama [Ok] pointed out recently that for Brauer
tree algebras A, B with the same numerical invariants there exists a sequence of Brauer
tree algebras By = A, By, ..., By = B such that B,,, is the endomorphism algebra of
a tilting complex for B, of term length two defined by an idempotent. See Kénig and
Zimmermann [KZ] for another example of derived equivalences which are iterations of
derived equivalences induced by tilting complexes of term length two. We will formulate
these results. _

Let A be a noetherian ring and e, e, ..., & € A a sequence of idempotents such
that add(epAs) = Pa, €41 € €de; for 0 < i < | and Ext)(A/AeiA, e;A) = 0 for
0 < § <i <l First, we will show that there exists a tilting complex P* € Kb(P,)
such that P =0 fori > 0 and i < —!, P~* € add(e;A) for 0 < i <l and H¥(P*) €
Mod-(A/Ae;A) for 0 < j < 1 < I (Proposition 1.1), and that such a tilting complex
P* ig essentially unique. Next, we will show that there exists a sequence of rings By =
A, By, ..., B; = Endk(Mod.4)(P") such that for any 0 < i <!, By, is the endomorphism
ring of a tilting complex for B; of term length two defined by an idempotent (Theorem
1.2). Furthermore, in case A is a selfinjective artin algebra over a commutative artin ring
R and add(e;A4) = add(D(sAe;)) for 1 < i < I, where D = Hompg(~, E(R/rad R)),
we will show that EndgpMod-4)(P°) is a selfinjective artin R-algebra whose Nakayama
permutation coincides with that of A (Proposition 2.3). Finally, we deal with the case
where A is a finite dimensional algebra over a field k£ and add(e;A,) = add(D(4Ae;)) for
1 <i <, where D = Hom,(—, k). We will construct a two-sided tilting complex which
corresponds to P* (Section 3). Simultaneously, we will provide a sufficient condition for
an algebra B containing A as a subalgebra to be derived equivalent to A (Theorem 4.1).

Throughout this note, rings are associative rings with identity and modules are unitary
modules. Unless otherwise stated, modules are right modules. For a ring A, we denote
by A°P the opposite ring of A and consider left A-modules as A°P-modules. In case A
is a finite dimensional algebra over a field k, we denote by A® the enveloping algebra

The detailed version has been published in another place.



A°? ®, A. Sometimes, we use the notation X, (resp., 4X) to signify that the module
X considered is a right (resp., left) A-module. We denote by Mod-A the category of A-
modules and by P, the full additive subcategory of Mod-A consisting of finitely generated
projective modules. For an object X in an additive category .A, we denote by add(X)
the full additive subcategory of A consisting of objects isomorphic to direct summands
of finite direct sums of copies of X. For an additive category A, we denote by K(A)
the homotopy category of cochain complexes over .4 and by K®(.A) the full subcategories
of K(A) consisting of bounded complexes. In case A is an abelian category, we denote
by D(A) the derived category of cochain complexes over A. Also, we denote by Zi(X*),
2"(X*) and H'(X") the i-th cycle, the i-th cocycle and the i-th cohomology of a complex
X°, respectively. Finally, we use the notation Hom*(—, —) (resp., — ®" —) to denote
the single complex associated with the double hom (resp., tensor) complex. We refer to
[RD], [Ve] and [BN] for basic results in the theory of derived categories. Also, we refer to
[Ril, Ri3] for definitions and basic properties of tilting complexes and two-sided tilting
complexes, and to e.g. [Br|, [Ri3], [Ri4], [Ro], [RZ] and so on for recent progress.

1. General case

In this section, we will show that a certain sequence of idempotents e, €), ..., ¢ in a
- ring A defines a tilting complex P* € K®(P,) of term length [ + 1 and that there exists
a sequence of rings By = A, By, ..., Bi = Endkmod-4)(P") such that for any 0 < ¢ < I,
Bi4, is the endomorphism ring of a tilting complex for B; of term length two defined by
an idempotent.

Let e, €), ... be idempotents in A such that add(epA) = P, and e;) € e;Ae; for all
i>0. ’

Proposition 1.1. Assume A is right noetherian. Let | > 0 and assume
Ext),(A/Ae;A, e;A) = 0 for 0 < j < i < 1 . Then there ezists a tilting complex
P* € KP(P,) such that PP =0 fori > 0 and i < ~I, P~ € add(g;A) for 0 < i < I
and H7(P*) € Mod-(A/Ae;A) for0<j<i<l.

Theorem 1.2. Let | > 0 and assume Ext’ WAJAe;A e,A) =0 for0 < j<i<l.
Let P* € K®(P,) be a tilting complex such that P° = 0 fori > 0 andi < —1 -1,
P € add(e;A) for 0 <i <1+ 1 and H7(P*) € Mod-(A/AeiA) for 0 < j <i<l+1.
Then the following hold.

(1) There ezists a tilting complez P* € K®(P,) such that P' =0 fori >0 andi < —1,
Pt € add(e;A) for 0 < i < I, H¥(P*) € Mod-(A/Ae;A) for0 < j <i <! and
e¢+,A[l] is a direct summand of P*. Furthermore, we have a distinguished tnangle
in K®(P,) of the form

Pl P 5P >
u’itk P = .I:’_,-l (23] eH.[A.

(2) Let B = Endgmod.4)(P*) and f € B the composite of canonical homomorphisms
P* = e, Alll & P°. Then Homp(B/BfB, fB) = 0 and there ezists a tilting
complez Q° € K*(Pp) such that @ =0 fori # 0, -1, Q™! € add(fB), H°(Q )€
Mod- (B/BfB) and EndK(Mod B)(Q ) = Endx(M,d A)(P‘)
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2. The case of artin algebras

In this section, we will apply the results of the preceding section to the case where A is
an artin algebra over a commutative artin ring R. We set D = Homp(—, E(R/rad R)).
According to Proposition 1.1, we have the following.

Proposition 2.1. Letey, €, €2, ... be idempotents in A such that add(egA) = P4 and
i1 € ejAe; fori > 0. Let I > 0 and assume add(e;A4) = add(D(4A¢;)) for 1 < i< 1.
Then there ezists a tilting complez P* € K®(P,) such that P =0 fori> 0 and i < -1,
P~ € add(e;A) for 0 <i <l and H¥(P*) € Mod-(A/Ae;A) for0<j<i<l.

Proposition 2.2. Let ey, €, €3, ... be idempotents in A such that add(epA) =
and ey € e;Ae; for i > 0. Let | > 0 and assume add(e;Ay) = add(D(AAe;)) for
1 <i<i+1. Let P € KX(P,) be a tilting complez such that P* = 0 for i > 0 and
i< —=1l-1, P € add(gA) for 0 < i <1+ 1 and H'J(P‘) € Mod- (A/Ae‘A) for
0<j<i< l + 1. Then the following hold.

(l) There ezists a tilting complez P* € K®(P,) such that PP =0 fori> 0 andi < ~|,

P~ € add(e;A) for 0 < i < I, H3(P*) € Mod-(A/Ae;A) for 0 < j <i <1 and
e All] is a direct summand of P*. Furthermore, we have a distinguished triangle
in K®(P,) of the form

Pll» P> P >

with P = P_'—l 3] el+14.

(2) Let B = Endgmod-4)(P*) and f € B the composite of canonical homomorphisms
P* = e 1A[l) & P°. Then add(fBp) = add(D(pBf)) and there ezists a tilting
complez Q" € K*(Pg) such that @° =0 fori # 0, —1, Q™' € add(fB), HY(Q") €
Mod-(B/BfB) and Endkmod-8)(Q") = Endk(Mod-4)(P°).

Consider next the case of A being selfinjective. Let {e, ..., e,} be a basic set of
orthogonal local idempotents in A and Iy = (1,...,n}. Set v = D o Homu(—, A).
Then there exists a permutation o of Iy, called the Nakayama permutation, such that
v(e;A) = ey A for all i € I,

Proposition 2.3. Let [y D I, D I; D --- be a descending sequence of nonempty o-
stable subsets of Iy and et = Z iel, € for i 2 0. Then for anyl > 0O there exists a tilting
complez P* € K®(P,) such that P' =0 fori> 0 and i < — 1, P~* € add(e 4) for 0 <
i <1 and H3(P*) € Mod-(A/Ae A) for 0 < j < i < |. Furthermore, Endk(mod-4)(P*)
is a selfinjective artin algebra whose Nakayama permulation coincides with o.

3. Two-sided tilting complexes
Let A be a finite dimensional algebra over a field k£ and D = Hom,(—, k). Our aim is to
construct two-sided tilting complexes which correspond to tilting complexes constructed in

Proposition 2.1. According to Proposition 2.2, we have only to deal with tilting complexes
of term length two.
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We will first construct a two-sided tilting complex T* corresponding to the following
tilting complex S°. Recall that an idempotent e € A is called local if eAe is a local ring.
Let {e), ..., e} be a basic set of orthogonal local idempotents in A and J the Jacobson
radical of A. We fix a nonempty subset Jy of I = {1, ..., n} and define S* as the mapping
cone of the multiplication map

p: @Aei&‘e;A-) A,
i€l
We set e = Z,-e,o éi, B = Endk(Mod-4)(S*) and d; = dimy e;Ae; for i, j € Jo. We assume
the following conditions are satisfied:

(a1) there exists a permutation o of Iy such that e; A4 & D(4Ae,(y) for all i € I;

(az) e.-Je,,(.-) # 0 for all i € Ij; and

(a3) eiAeifeiJe; = k for all i € I.

Proposition 3.1. The following hold.

(1) S° € K®(P,) is a tilting complez with HY(S*) € Mod-(A/AeA).

(2) The left multiplication of A on each homogeneous component of S° gives rise to an
injective k-algebra homomorphism ¢ : A — B.

“(3) a(B/A)A = ®; jer,(ade; ®x ejA4) ), where

dji"2 ifi=.j=‘7(j),
ai; =<di;—1 ifj#a(j) andi€ {j, 0(5)},
dj' otherwise.

(4) For anyi € Iy, &;Bp = ®;er,Homy(mod-4)(S", eo ) A1)+, where

_ {d,-.-—l if i = o(j),

Hai dj; otherwise.

Proposition 3.2. For any i € I there ezists a local idempotent f; € e;Be; such that
fiBp & HomkMod-4)(S°, €o(iyA[1]). Furthermore, the following hold.

(1) fiBp % f;Bp unlessi =j.

(2) f.-BB =] D(BBf,,(")) fOT allie Io.

"(3) fiBf; = e;Aej for alli, j € Iy,

(4) e;Bp = $,-¢_:10ij3("") foralli€ I

(5) fiBa & ®jer,e;As™ for all i € I,

4. Derived equivalent extension algebras

Let A be the same as in Section 3. We will show that an algebra B containing A as
a subalgebra satisfying (3) of Proposition 3.1 and (1) ~ (5) of Proposition 3.2 is derived
equivalent to A.

More precisely, let B be a finite dimensional k-algebra containing A as a subalgebra and
for each i € Iy take a local idempotent f; € e;Be;. We assume the following conditions
are satisfied:

(b1) a(B/A)a = i jet(aAe: @ €jA4) ),

(bz) f.BB 2 ijB unless ¢ = ] and f‘-BB o D(BBf,,(i)) foralli € Io;
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(b3) f:Bf; = eiAe; for all i, j € Iy,
(by) e;Bp = GB,-e;of,-BB(“"f) for all 7 € Iy; and
(bs) fiBa & ®jcr,e;Aa“ for all i € k.

Theorem 4.1. Denote by T* the mapping cone of the multiplication map

§: @DaBfi®eAs — pBa.

i€l

Then T* is a two-sided tilting complez with T* = §* in K(Mod-A) if

dj; — 2 ifi = j = a(j), . :
S . e g dji - 1 if i = a(j),
ai; = dji — 1 if j #0(j) andi € {5, 0(4)}, 5 =5 {d’" otherusise
dj; otherwise, » )
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Let’s use cyclotomic polynomials in your lecture for your students !

Kaoru MOTOSE

In this paper, using cyclotomic polynomial, we will look again proofs
of some fundamental theorems on finite fields and rational integers. We
will suggest some applications to a code and a cipher (cryptography).
Moreover, we will present some relations between cyclotomic polynomials
of prime order and quadratic Gauss sums. If you can find some materials
in this paper for your students, please use those in your lecture.

Cyclotomic polynomials of order n is defined by

®.z)= [] (@-¢), where (a=e* and1<k<n.
(k,n)=1
Classifying roots of " — 1 by orders, we obtain 2" — 1 = []y, Pa(z). We
can see also ®,(z) € Z[z] from the induction on n, the above equation
and the division algorithm for monic polynomials in Z|z|.

1. Orders of elements.

Let ¢ be a prime divisor of a Mersenne number ®,(2) = 27 — 1 where
p is prime. Then p is the order |2|, of 2 mod g and so p < ¢ because
29" = 1 mod q and so p is a divisor of ¢ — 1. This shows that there
exists infinitely many prime numbers. In this argument, p = |2|, is most
important. We can generalize this to the next theorem. This proof is
very easy but this theorem is fundamental for cyclotomic polynomials.

Theorem 1. Let R be a commutative ring containing Z/8Z. Assume
®.(a) = 0 for a € R. Then n = &|a|, where |a|, means the order of a
ande > 0.

Proof.  Since ®,(z) divides 2™ — 1, we have a® = 1. Hence |a|,
is a divisor of = and so we can write n = #|a|, - t where £ does not
divide t. We set s = €|a|, and assume t > 1. Then o’ = 1 and noting
Pa(z)9(z) = H=L = (2°)'' + -+ + (z°)* + 2° + 1 for some g(z) € Z[z],
we have a contradiction that £ divides ¢ from the next equation

0= 3. ()g(a) = (@) '+ (&) 2+ -+ (VP +a’+ 1=t

! The detailed version of this paper has been submitted for publication elsewhere.
This paper was financially supported by Fund for the Promotion of International
Scientific Research A-2 and B-2, 2003, Aomori, Japan.
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From this result, we can prove a special case of Dirichlet theorem with
respect to arithmetic progressions, namely, the set A = {ns+1| s =
1,2,--- } contains infinite primes. Setting po = 1, let px be a prime
divisor of ®p,_,n(pe—1n) for k = 1,2,--- and set Ry = Z/peZ. Then it
follows from the above theorem that p, € A for k=1,2,---.

The next proposition is an easy consequence of the above theorem.

Proposition 1. Let G be a finite subgroup of the multiplicative group
of a field K. Then G is cyclic.

Proof. We set m = |G|. Then G is contained in the set of roots of
™ — 1 in K which has at most m elements. Thus, we obtain ™ — 1 =
[Taeg(z — a). Hence, ®,,(x) has a root § € G since $,,(z) divides ™ —1.
If K is of characteristic p > 0, then p is not a divisor of m because
z™ — 1 has no multiple roots, and 5o m =.|8|, by Theorem 1. If K is of
characteristic zero, then our assertion is trivial.

In many primality tests, it is essential to find the orders of elements of
commutative rings. Thus Theorem 1 is important. A cipher is considered
like RSA from the next proposition.

Proposition 2. If d is a divisor of ®,(a) and d is not divided by the
mazimal prime divisor of n, then ™! = 1 mod 4.

Proof. Let p be a prime divisor of d and so of ®,(a). Then n = |a,
is a divisor of p — 1, equivalently, p = 1 mod n. Hence d = 1 mod n Since
" = 1 mod d, we have our result.

The next theorem follows from Theorem 1 and an inequality (see [2])
(a+1)°™ > d.(a) > (a ~ 1)*".
Theorem 2 (Bang). Ifn > 3,a > 2 and (n,a) # (6,2), then there
erists a prime p with n = |al,.
2. Factorizations of cyclotomic polynomials over fields

It is fundamental that cyclotomic polynomial is irreducible in Q[z].
We can see from this that &,(z) is irreducible over Q({m) for (n,m) =1
where {, = e . The next theorem state about irreducible factors of
cyclotomic polynomials over arbitrary fields.
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Theorem 3. Let K be an arbitrary field. Then every irreducible factor
f(z) of Bn(z) in K|z] has the same degree (L : K| where L is the minimal
splitting field of ®,.(z) over K.

Proof. We assume the characteristic p of K is positive. Let f(z) be an
arbitrary irreducible factor of ®,(z) in K(z], let @ € L be a root of f(z)
and let m be the order of a in L. Then n = p*m with (m,p) = 1 from
[2, Theorem 1]. Thus, we can see from the equation ™ — 1 = [] 4 ®a(z)
and [2, Theorem 1] that

Pm(z) = [[(z - a*), where (k,m)=1and 1L k< m.
k
Let 8 € L be an arbitrary root of ®,(z). Then the minimal polynomial
of 8 over K is an irreducible factor of ®,(z). Thus § = o' for some ¢
from the same argument in the above. Hence we have L = K(a) and so
deg f(z) = |L : K). In case p = 0, our result is trivial.

The above theorem is important for finite fields. The next corollary
can be proved from the above theorem (see also [2]).

Corollary. Let q be a power of a prime p. If p is not divisor of n,
then ®.(z) € F,[z] is a product of irreducible polynomials of the same
degree |QIn-

Examples. 1. We have &7(z) = (z®+z +1)(z® + 2% + 1) over F'; by

3 = |2|;. This factor is used often as an exercise in the code theory.
2. We obtain

Poa(z) = (z" +2° +2" +28 + 2+ + 1) (" + 20+ 28+ 2P 2+ 224 1)

over F from 11 = |2]p3 by ®1;(2) = 2" — 1 = 23. 89. These factors are
generator polynomials of Golay code. This code was used in planetary
probe Voyagers. On the other hand, this code is closely related to Mathieu
Group.

We can find an irreducible polynomial of degree n over an arbitrary
F, and for every n from the proof of the next proposition.

Proposition 3. Let p be a prime and let ¢ be a power of p. For an
arbitrary n, There exists an irreducible polynomial of degree n in Fyz).
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Proof 1. It follows from n = |[g|gn-y that ®,m_y(z) € Fylz] has an
irreducible factor of degree n.

Proof 2. In case n > 3 and (n,q) # (6, 2), then we can find a (prime)
divisor r of ®,(q) with n = [g|,. Hence ®.(z) € F,[z] has an irreducible
factor of degree n. In case n = 2, Pg41(z) € Fy[z] has an irreducible
factor of degree 2 because 2 = |g|,41. In case n = 6 and ¢ = 2, we obtain
Pg(z) = P3(2?) = 2% + 23 + 1 over F; is irreducible from 6 = |2J.

Examples. 1. We have ®,4_,(z) = $y5(z) = (z* +23+1)(z* +2+1)
over F,. These factors are primitive polynomials of order 24 — 1 = 18.
The class of z is a generator of Fy,.

2. It follows from 4 = |2|s that ®s(z) is irreducible over F,.

3. A method of a factorization of a number

Let n be a number, let 7 be the product of distinct prime divisors of
n, let p be a fixed prime divisor of m and let m' = . We can see easily
the next equations

 ®n(z) = Bm(z") and Pm(z) = [T &p() T
d|m’
where p is Mdbius function. The above equation and the next proposition
show us that factorizations of ®,(a), especially, cyclotomic polynomials
of prime orders are essential in factorizations of numbers (see [2]).

Proposition 4. For a natural number n, let a and m be natural num-
bers such that (am,n) = 1 and a™ = 1 mod n. Then n = [Iym(n, Pa(a)).

4. Discriminants of cyclotomic polynomials of prime orders
and quadratic Gauss sums

We set ( = e’ for an odd prime p. Let x be a linear character of
the multiplicative group F, of a prime field F;,. We consider Gauss sums
9(X) = Zier; ('x(t), the following matrices A and character vectors x
defined by

¢ ¢ e x(1)

A c? (4 42(p-1) x(2)
= : : : : » X = :

¢rl e Ll )’ x(p — 1)
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Trace of A is g(n) — 1 (see [3]) where 7 is the quadratic character. The
next is easy but important.

Lemma 1. We have |A?| = (—1)*F p*~? and Ax = g(X)X.
_3
Gauss’ result g(n) = i";‘l"\/ﬁ follows from computing value |A| by
two ways, namely, by Vandermonde determinant |A| and by using the

canonical form of A with respect to linear characters from Ax = g(x)X
(see [3]). The next theorem follows from the discriminant |A|? of ®,(z).

Proposition 5 (Quadratic reciprocity). Let p and q be distinct odd
primes and let (g) be a Legendre symbol. Then (g) = (-1)F % (5)'.

Proof. We have |A[* = |A?| = (=1)%p*~? by Lemma 1. Hence we
have the next equation since p — 2 is odd.

A1 = (AP = ()R R = (1) T (f;) mod g.

Let A®) = (¢***) be the matrix of k-th powers of all entries in A4, letr be a
primitive root of p, and let o, be a cyclic odd permutation (1,c;,.. ., cp—2)
where ¢, = r* mod p. Then we have |A")| = sgn(o,)|A| = —|A|. Thus,
setting r* = ¢ mod p, we can see

A = |A9)] = |4 = (<1)")A4] = (g) 14| mod ¢Z[¢).

We product |A| on both sides of the above equation and divide by the
integer |A|*> # 0 mod q. Then we have

(b= ) mar
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ON CALCULATIONS OF MODULAR IRREDUCIBLE CHARACTERS
WITH THE HELP OF COMPUTERS

KATSUSHI WAKI

ABSTRACT. Let p be a prime. We denote p-modular system by (K, R, F) where F is an
algebraically closed field of characteristic p. Let G be a finite group. It is not so easy
to clculate of irreducible modular characters correspondent to simple FG-modules from
ordinary characters correspondent to simple KG-modules. I will introduce a standard
way written in [2] for the calculation of irreducible modular characters without a con-
crete construction of simple FG-modules. In the appendix, I also show a log of short

demonstrations of the calculations of the decomposition matrix for the block of defect 2
in J; by GAP[3].

1. NOTATION

For an element z € G, o(z) denotes the order of z. Then we call

z : psingular & plo(z)
z : pregular & p fo(z)

Let Irr(G) (IBr(G)) be a set of irreducible ordinary (Brauer) characters of G. Let C(G)
be a set of all class functions of G. For simplification of description, for any ¢ € IBr(G),
() is defined 0 on p-singular elements z. So we can see that IBr(G) is a subset of C(G).

Let Z be a set of integers and N be a set of natural numbers. Let X be a subset of
C(G) then we define (X)z be a set of all Z-linear combinations of X. We can also put N
instead of Z. For example, (Irr(G))n is a set of all ordinary characters of G and (IBr(G))n
is a set of all Brauer characters of G.

It is well-known that Irr(G) (IBr(G)) is Z-basis of (Irr(G))z ((IBr(G))z))-

Moreover for an ordinary character y, Let

o . | x(z) if z is p-regular
X(z) = { 0 else

Then X is in (IBr(G))n. In particular, we can find positive integers d,,, for x € Irr(G)

such that ¥ = Z dy,+- We call the matrix {d,,} xeler(c) the decomposition matrix of
9€IB(G) velBriG)

G. Thus if we get the decomposition matrix, we can get all irreducible Brauer characters.

Let &, be the projective indecomposable character with respect to an irreducible Brauer

character . Then IPr(G):={d,|¢ € IBr(G)} is a set of all pro_]ectlve indecomposable

characters of G. For A, u € C(G), Scalar product (), u) is — T Z,\(z)u(z) For any

z€G

¢ € IBr, &, = Z dyp + X- Thus we can get the decomposition matrix if we get all
x€lrr(G)
indecomposable projective characters in B.
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2. BasiC SET AND SYSTEM OF ATOM

In this section, we introduce two Z-basis of a set of Z-linear combinations of characters.
We can get all irreducible Brauer characters from these Z-basis. We start to show the
elementary theorem.

Theorem 2.1. For &, € IPr(G) and ¢ € IBr(G),
(q)'m ¢') = 6‘N‘
Next proposition is used to find characters which is NOT projective characters.

Proposition 2.2. For ® € (Irr(G))n, if ®(z) = 0 (Vz : p-singuler ), and (D,¢) 2 0
(Vo € IBr(G) ) then ® is a projective character.

Let B be a p-block of G. We denote Irr(B), IBr(B) and IPr(B) sets of characters of
Irr(G), IBr(G) and Irt(G) in B, respectively. The matrix Dg = {d,,} xeirs) is called

velBr(B)
the decomposition matrix of B.

Let s be the number of irreducible ordinary characters in B. Let ¢ be the number of
irreducible Brauer characters in B.

-Definition 2.3. Let BS and PS be Z-basis of (IBr(B))z and {IPr(B))z, respectively. We
call BS is a basic set of IBr(B) if and only if BS C (IBr( ))n and PS is a basic set of
. IPr(B) if and only if PS C (IPr(B))n

We denote M;(Z) a set of t x t-matrix over Z.

Lemma 2.4. Let BS and PS be Z-basis of (IBr(B))z and (IPr(B))z. Let t x t-matriz
U :=(BS, PS) = {{p,®) | ¢ € BS, ® € PS} Then both BS and PS are basic sets if and
ondy if U=' € My(Z). In paticular, if U is the identity matriz, BS equals IBr(B) and PS
equals IPr(B).

Definition 2.5. Let BA and PA be Z-basis of (IBr(B))z and (IPr(B))z, respectively.
We call BA is a system of atom of IBr(B) if and only if Yy € IBr(B); ¢ € (BA)x and
PA is a system of atom of IPr(B) if and only if V& € IPr(B); ® € (PA)n.

Next lemma is used to check indecomposability of projective characters.
Lemma 2.8. For any ® € (IPr(B)}n, if ® € PA then ® € IPr(B).

Definition 2.7. Let BS be a basic set of IBr(B). We call BS is special if any characters
in IBr(B) are liftable s.t. Y € BS; 3x € Irr(U) ¢ = x on p-regular elements.

Last lemma help us to get outline of decomposition mat.rix.

Lemma 2.8. If B has a special basic set of IBr(B) then Dg can be like
/1 0

*

—

L IR R MK K
* ¥ X% *
* * W |®
* * ¥ |
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3. CONSTRUCTION OF BS, PS, BA AND PA
3.1. How to make BS.

Lemma 3.1. Let S C {IBr(B))n. Then S is a basic set of IBr(B) if and only if Vx €
Irr(B), X € (S)z and S is linearly independent over Z.

The algorithm to get a basic set of IBr(B) is the following. Let Irr(B) = {x1,X2,--- , Xs}
Assume that we have a set of k Brauer characters B = {f,... , 8} such that B is linearly
independent over Z and there is a number r £ s such that {X1,... ,Xr} C (B)z

Step 1 if r = s then B is a basic set and finish else goto Step 2.

Step 2 if r < s and Xr41 € (B)z then r := r + 1 and goto Step 1 else goto Step 3.

Step 3 if Xrt1 € (B)q then add By := Xo11 to B, r:=r+1, k:= k +1 and goto Step 1
else goto Step 4.

Step 4 if Xr41 € (B)g — (B)z then

. .k ,
(i) Find the smallest integer m; > 0 such that m; i1 = Z z06; € (B)z.
i=]

(ii) Let m be the minimum in {ged(m,,2;) |1 £ 5 S k}.

(iii) Find a, b € Z such that m = am, + bz; for a number j of m = ged(m,, z;).
(iv) Let ¢; be the minimum of {z € N | z + bz;mT! 2 0} for i 5 ;.

(v) Let B; = b + aB; + D _ c:bs

i) '
Then mlﬁ,- =mf;+m, Z(c;+bz.-m,”)ﬁ,- isin (B)x and is a Brauer character. Thus
i#s
B; is a Brauer character, too. So replace §; as §; in B then {Xi,...,Xsm1} C (B)z.

Let r := r + 1 and goto Step 1.

3.2. How to make PS.

Theorem 3.2. Let Mz be a set of all mazimal subgroups of G and Py == {4 | Y €
IPr(H), H € Mz}. Then (IP(G))z = (Pwm=z)z.

From this theorem, we can make PS from {¥g | ¥ € Py} with the same way in 3.1.
{x|x € Ire(B)}.

3.3. How to make BA and PA. Assume that we have succeed to make BS = {¢p,, ...}
and PS = {®,,... &:}. Find subset BA := {®,... ,®;} C (IBr(B))z such that (¥}, ®;) =
d;;. Find subset PA := {o},...,9i} C (IPr(B))z such that (p},;) = &;. We can get
the next lemma from Theorem 2.1.

Lemma 3.3. Above BA and PA are systems of atoms of IBr(B) and IPr(B).
Thus good BS and PS make better BA and PA. In the next section, we show that BA

and PA make better BS ans PS, repectively. And the best BS and PS are IBr(B) and
IPr(B) from lemma 2.4. '
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4. INDECMPOSABLILITY CHECK OF PROJECTIVE CHARACTERS
t
Definition 4.1. Let ® be a projective character and ¢ = Zn.-tp‘? (n; 2 0). We call &’

=1

t
is a part of & if &' = Zn:-tp‘? (0 £ n{ £ ).
=1
Theorem 4.2. V&': ¢ part of ®; 3¢ : a Brauer character such that {®',¢) < 0 or
(® - ¥',0) <0 then & is indecomposable.

Let Br (Ps) be all Brauer (projective) characters which we got.

4.1. Subtract indecomposable projective characters from decomposable one.
Let I be a suset of {1,...,t} such that Vi € I; ®;: indecomposable projective character.

Definition 4.3. For i € I and j &€ I, Let m;; be the maximum of {n € N | Vp €
Br,{p, ®; — n®;) 2 0}. We call this m;; a possible multiplicity of ®; in ®;.

i
Definition 4.4. Let i € I and ¢ € BS such that {p,®;) > 0 and ¢ = Zn.@: (n 2 0).
' =1

We call ¢’ a bit of ¢ with respect to & if ¢’ satlﬁes the following conditions.

(a) ¢ = ZMI" (0 S 7} S my).

(b).ifj € I then n); = §;; else n; £ my;.
(C) V¥ € Pr, (‘p,vll’) goand (‘P"“P',‘I’) g 0.

Lemma 4.5. For iel , let B; be the irreducible Brauer character corresponds to ®;. If
@ € BS and (ip, ;) > 0 then B; is a bit of  with respect to ®;. In paticular, if ¢ has only
one bit with respcet to ®; then this bit is the irreducible Brauer character corresponds to
;.

ForicTandj¢gl,
m(i, j, ) := min {(¢’, ®;) | ¢ is a bit of ¢ with respect to &;}

Theorem 4.8. Fori € I and j & I, ®; — Maz{m(i,j,¢) | ¢ € BS, (p,®;) >0} ®; is a
projective character.

EXAMPLE

( Calculation of the decomposotion matrix of the defect 2 block in J; )

GAP4, Version: 4.3fix4 of December 20, 2002, i1686-pc-linux-gnu-gcc
gap> Read("BrauerCT2.g");

gap> ct:=CharacterTable(“J4");;

gap> sub_ct:=List (Maxes(ct){[1,2]},CharacterTable);;

gap> BB:=FindProjectiveCharacters(ct,sub_ct,3,20);;

This is 1 th - try.

This is 2 th - try.

gap> DisplayBlocksInfo(BB[1]);

There are 20 blocks.
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+++ Block [J4]B1 of defect 3 has 14 irr. char. and 9 irr. Brauer char.
+++ Block [J4]B2 of defect 3 has 14 irr. char. and 9 irr. Brauer char.
+++ Block [J4]1B3 of defect 2 has 9 irr. char. and 5 irr. Brauer char.
+++ Block [J4]1B4 of defect 1 has 3 irr. char. and 2 irr. Brauer char.
+++ Block [J4]1B5 of defect 1 has 3 irr. char. and 2 irr. Brauer char.
+++ Block [J4]1B6 of defect 1 has 3 irr. char. and 2 irr. Brauer char.
+++ Block [J4]1B7 of defect 1 has 3 irr. char. and 1 irr. Brauer char.
+++ Block [J4]B8 of defect O has 1 irr. char. and 1 irr. Brauer char.
+++ Block [J4]1B9 of defect O has 1 irr. char. and 1 irr. Brauer char.

+++ Block [J4]B10 of defect 0 has
+++ Block [J4]1B11 of defect O has
+++ Block [J4]1B12 of defect O has
+++ Block [J4]1B13 of defect O has
+++ Block [J4]1B14 of defect O has
+++ Block [J4]1B15 of defect O has
+++ Block (J4]1B16 of defect O has
+++ Block [J4]1B17 of defect O has
+++ Block [J4]B18 of defect 0 has
+++ Block [J4]1B19 of defect 0 has
+++ Block [J4]1B20 of defect 0 has
gap> B2A:=ShallowCopy(BB[1][31);;

irr. char. and
irr. char. and
irr. char. and
irr. char. and
irr. char. and
irr. char. and
irr. char. and
irr. char. and
irr. char. and
irr. char. and
irr. char. and

[ T T T N Y
P Y T N S Sy gy

irr. Brauer char.
irr. Brauer char.
irr. Brauer char.
irr. Brauer char.
irr. Brauer char.
irr. Brauer char.
"irr. Brauer char.
irr. Brauer char.
irr. Brauer char.
irr. Brauer char.
irr. Brauer char.

+++
+4+
+++
+++
+++
+++
+++
++4+
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++

gap> SetBS(B2A);; SetPS(B2A);; SetBA(B2A);; SetPA(B2A);; SetPIM(B2A,10);;

gap> DisplayProjectiveCharacters(B2A);
+++ Block [J4]1B3 of defect 2 has 16 proj. characters. +++
Irr: 14 21 25 27 28 30 31 35 41 : Indec. Flag

e T T
i: L1 . . .11 .o1) 2 (x)
2: [ 11 .11 2 2 2]:
3: [ 1 33 3 4 407]
4: [ 1 2 2 2 3 3 58]
5: [ 1 .01 . 1 11 : (%
6: [ .1 31 3 1 4] :
7: 0 1 2 3 2 4 3 6]
8: [ 21416 3 7]
9: [ . . 3 2 3 2 6 5 8]
10: [ 1 6 5 3 210 6 14 10]
11: [ 2 5 6 5 810 13 16] :
12: [ 3 6 5 4 810 14 15] :
13: [ 1 3 4 5 5 9 812 14] :
14: [ 6 7 3 3 910 16 13]
15: [ . 2 8 5 4 7 12 15 17]
16: [ 2 6 5 4 7 12 10 15 16]
gap> B2A.rank;
5

gap> TryToSubstractIndecProjectiveCharacters(B2A,5,6,10);
1

gap> AddProjRec(B24A,LinearCombBfProj((1,-1],B2A.proj{[6,51}) ,false);;
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gap> SetBS(B2A);; SetPS(B2A);; SetBA(B2A);; SetPA(B2A);; SetPIM(B2A,10);;
gap> DisplayProjectiveCharacters(B2A);

+++ Block [J4]B3 of defect 2 has 16 proj. characters. +++

Irr: 14 21 25 27 28 30 31 35 41 : Indec. Flag

e it T e S et et T
[+ . . .1 1] : (%)

2] :

6]
5] :

11 : (®
3 . 3]:
3 1 4]
6 3 7]
6

6

[y

2
4

[ o |
-
-
- NN
N W -
- NN -
w
=W wN -

5 8]
14 10]
13 16]
10 14 15]
8 12 14]
10 16 13]
12 15 17]
16: [ 2 6 5 4 712 10 15 16]
gap> AddProjRec(B2A, L1nearComb0fProj([1/3] B2A.proj{[6]1}),false);;
gap> SetBS(B2A);; SetPS(B2A);; SetBA(B2A);; SetPA(B2A);; SetPIM(B2A,10);;
gap> DisplayProjectiveCharacters(B24);
+++ Block [J4]1B3 of defect 2 has 14 proj. characters. +++
Irr: 14 21 2527 28 30 31 35 41 : Indec. Flag

L e N T s R B W W W Yo W W]
oOwWwmno -

O~N PP WN -
WO WK == .
B WO WD WW:
~ND WO N -

-

o

N

e D e et D bt el el R b e ettt
1: Lt . . . 11 . . 11 : (=
2: [ .11 . 11 2 2 2]:

3: [ . 1 2 2 2 3 3 5] :

4: [ . 1 .1 . 1 1] : (®
5: [ . .1 01 0 1] s (w)
6: [ . 2 1 416 3 7]:

7: . 323 2 6 5 8]

8: [ 1 6 5 3 210 6 14 10)

9: [ 2 6§ 6 5 810 13 16]

10: [ 3 6 5 4 810 14 15]

11: [ 1 3 4 5 5 9 8 12 14]

12: [ . 6 7 3 3 910 16 13]

13: [ 2 8 5 4 712 15 17]

14: [ 2 6 5 4 7 12 10 15 16]

gap> TryToSubstractIndecPrOJect1veCharacters(B2A 5,3,10);

2

gap> AddProjRec(B2A,LinearCombOfProj([1,-2],B2A.proj{[3,5]}),false);;
gap> SetBS(B2A);; SetPS(B2A);; SetBA(B2A);; SetPA(B2A);; SetPIM(B2A,10);;
4 th proj. char. in PS is indec. because it is in PA.

5 th proj. char. in PS is indec. because it is in PA.
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gap> DisplayProjectiveCharacters(B24);
+++ Block [J4])B3 of defect 2 has 12 proj. characters. +++
Irr: 14 21 25 27 28 30 31 35 41 : Indec. Flag
e it et e e e el e e e i St
L+ . . .11 . . 11:
11 . 112 :
1

~

2 :

2 3 3]:
1 .1 1] : (%)
11
3 71:
2 5 8] :
10 14 10] :
8 10 14 15] :
9 10 16 13]

11: 7 12 15 17]

12: [ 2 6 12 10 15 16] : :
gap> TryToSubstractIndecProjectiveCharacters(B2A,4,3,10);
2
gap> AddProjRec(B2A,LinearCombOfProj([1,-2],B2A.proj{[3,41}),false);;
gap> SetBS(B2A);; SetPS(B2A);; SetBA(B24);; SetPA(B2A);; SetPIM(B24,10);;
gap> DisplayProjectiveCharacters(B2A);
+++ Block [J4]1B3 of defect 2 has 8 proj. characters. +++
Irr: 14 21 25 27 28 30 31 35 41 : Indec. Flag

N
-

-

1

WO ~NO0O b WN =
OO

10:

L W W T e e e W W W |
NOWOO -

AN WN -

S NnwmwN -

N Wb WD

———t e S e e e e e e
1: L1 . . .11 . .11 (®
2: [ 11 . 112 2 2]:
3: [ 1 . . .1 11]: ®
4: [ 1 .1 .1 1] : (®
s: [ . .1 .01 L 1] s ()
6: [ 1 6 5 3 210 6 14 10] :
7: L . 6 7 3 3 910 16 13]
8: [ 2 6 5§ 4 712 10 15 16]

gap> TryToSubstractIndecProjectiveCharacters(B2A 3,2,10);

1
gap> AddProjRec(B2A,LinearCombOfProj([1,-1],B2A.proj{[2,31}),false);;
gap> SetBS(B2A);; SetPS(B2A);; SetBA(B2A);; SetPA(B2A);; SetPIM(B2A,10);;
gap> DisplayProjectiveCharacters(B24);
+++ Block [J4]B3 of defect 2 has 8 proj. characters. +++

Irr: 14 21 25 27 28 30 31 35 41 : Indec. Flag

Y Y S SN ST O ALY S SNSRI

1: [ 1 . . . 11 . . 1] : (=*)

2: L .1 . . 1111 1) :

3: [ . 1 101 1) 0 ()

4: { . 1 1 1 1] :  (#)

5: ( . 1 01 11 ¢

6: { 1 6 5 3 210 6 14 10] :

7 [ 6 7 3 3 910 16 13]
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8: [ 2 6 5 4 7 12 10 15 16]
gap> TryToSubstractIndecProjectiveCharacters(B2A,5,2,10);
1
gap> AddProjRec(B2A,LinearComb0fProj([1,-1],B2A.proj{[2,5]}),false);;

gap> SetBS(B2A);; SetPS(B2A);; SetBA(B2A);; SetPA(B2A);; SetPIM(B2A,10);;

gap> DisplayProjectiveCharacters(B2A);
+++ Block [J4]1B3 of defect 2 has 5 proj. characters. +++
Irr: 14 21 25 27 28 30 31 35 41 : Indec. Flag

D e i el e e st Tt -—
1: [ 1. . . 11 . . 11 :
2: [ i . . .1 . 1 .3 (%
3: [ 1 . . . 1 1 11 : (%
4: [ 1 .1 . 1 1] @ (%)
5: { 1 . 1 . 1] ¢ (*)
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Self-Duality of Quasi-Harada Rings and Locally
Distributive Rings *

Kazutoshi Koike

Abstract

Recently Y. Baba [1] proved that a QH ring (quasi-Harada ring) R has a self-
duality if gRg is a local serial ring with some condition, where g is an idempotent
of R with gR a minimal faithful right R-module. Motivated by this result, we
also investigate self-duality of QH rings and obtain several results including an
improvement of the result of Y. Baba and applications to self-duality of locally
distributive rings.

T B4 [1] {3 i QH 3] (quasi-Harada IR) @ self-duality {2 2WTHFSEL, 4§ A 2°
& B St (#+) %177 local serial RTH UL, A D Auslander I (FIRERBORIZH L
THRERERHMFLEOENOACHERBR L L TEXE NI R) id self-duality % b
DIEERLE. TOERIIOWT, BEI [0 (x+) 2FLERWD?] L) ER%
8%, AW QHR®D self-duality DIWFFEL BT L 7275, bo b —BMLBTVWAIVWALHE
REBLIIENTE, TORELT () T2 local EDFE LTI EMTE L.

UTFZoHBERTH, TXTORBEMETE LS, TXTOMBIBEMNTHD LT3,
IN#E M (23 LT, €D radical, socle, BARK L, £h¥h J(M), S(M), E(M) TET.

1 WAWAL YT XANDRD self-duality

FPRINCE T &F L self-duality DEHEEXBVWHLTBI . RR, S LT, Morita
duality ¥ € 5 W HIMNEE sUR MHFHET A L &, RIX SITH Morita dual TdH 3 &\,
SOMERTIE, BRES K RICEoTRI LTS, B RC ROL X, Ritself
duality ¥ 0 X\, self-duality D—#{b& LT, ROFIR, = R, Ry,...,Ran = R
T RERE . ERLERBVDONEET HL &, Ritalmost self-duality ¥
boEv. self-duality % E® 2 WRMEE RUR 22T, ROFEFBOREMET e 1253
LT, S(eU)=eR/J(eR) DB Y LDk &, pUpid weakly symmetric self-duality %

EHD LV, T, ROFEBEDAFTNILHLT, ply(I)=IHRYLDL E, rUs

*The detailed version of this note will be submitted for publication elsewhere.
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it good self-duality #FEH D L 2. T T Tlg Iy (3K annihilator 2 ¥, pUp H*
good self-duality % EH N i, weakly symmetric self-duality % €3 5. almost self-duality,
weakly self-duality, good self-duality {3 {E¥.® corner IRIZM{E L, good self-duality & F
FRUOMET S, ST, RRDcorneriR&ideRe (el RONFT) DIKORTH 5.
KIS BOFEDER L % 3 locally distributive IR QUIROEH X 5 2 TH . M
TVFUYRRIZ, EEOFEENMET e 25t LT eRp, rRe M BN (T bbb 8RS it
HOENFEM) 2 L &, locally distributive TH 5 &2, B 6 DI serial IR locally
distributive IR TH 5. F/ETVF YRR, EROEEHITENHE RIMBESEZAN
(quasi-injective) Tdh 3 & 3 & QH ® (quasi-Harada I8) TH2 &), (K QHROH
SREHRO—MZILE LT, B - B#2 Lo TEH S, ) A HRLMHA QH
BRIZQF-3TH2. ERILVEHEF22LI1L, EQHRIIEQF-2THS. T T,
semiprimary I8 R 96 QF-2 TH % L {d, EEOBEHNERENE R INEHSIE#i%Z socle ¥
boZtiund, ' |
FTTIAMON TS self-duality DB AT, ERHRO—HERERIZTLDHTHL,
CEEFF L ORSAEEIRLIONDTHS.

Lt — 55
©) (W) (8) (A)
good weakly self-duality | almost
self-duality | symmetric self-duality
. self-duality
1 ) QF &} X O
(2) EHBR X O
(3) EQHR X ?
(3) (+ 477 NnidHRME) X Or
1 (4) serial 3 O
© (5) * locally distributive Bt | ? & ? et ? ?
(5" (+ % serial) O | |
(5") (+ 5 QF-2) ? & ? & ? O
(6) =&TAF R 9 |2 & ? ?

TORIIBVT, P, 1578 [TXTo QF Rid self-duality b 2] &)
ZEERLTWVA, (G) good self-duality, (W) weakly symmetric self-duality, (S) self-
duality, (A) almost self-duality iX, ZOMUIFHL ko TVAHDT, 12020 FIHIL, %
DEMOOREHT S, T/, 1TFWHIOXIE, ONEE, T4bbH [weakly symmetric
self-duality 2 b 22 %V QFRAMFET S]] LWITLERLTVE. (DL X QFR
DE247SH, 247 WHIE DR, $7:247 AFIDK H R almost self-duality DFF
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FEIZ2WTi, FhEh Kraemer (6], MNF - K% (3], HE (4, 5] ¢BHWoZ L. ) EH
Bt almost self-duality(24T A %) £ b 226, EHRO—AXILTH 5 QH IRD almost
selt-duality (377 AFU) ARIEIC & 5. S hICHTARERBONEHo72, £ QHR
KAFTVRERBEOATHS &) RFL AT 5L, almost self-duality % &2 (3'17
APl SEEHBATES. (2B, 217STIOHRIFTSHDBUIC L Z>TWNS, )

—7, QF R IEA T sell-duality 22 & 1L N T 5 serial BT, FEPRICIE good self-
duality * b2 (447 G 5). locally distributive B i serial RO—LTH 2 v 56, £
self-duality 2RI E 2 53¢, CHIIHEDFHE [T XTOELT VF VRIS sell-duality
£252] (Tibb [LOoRDO64TSHIROTHAH] ) LEHEICHBLTW S, EL£TH
F YR i locally distributive RESLRD 7 S AL DT, REOFRNELITNE, T
T D locally distributive B self-duality 2 32 (T2bb, 5{7SHIROTHZ) L
2% 3%, COMEBRRBRTHS. S REHL, locally distributive BiZ, 5 QF-2 %
152+ hif almost self-duality ¥ 2 (5" FFA FI) S & &, 251275 serial $RET it
good self-duality % 2 (5’17 G 7)) T & £7RL 7. (locally distributive I, TLBRLH
BOFRIZOVWTIL, Xue[7|D4EEXEROZL, )

B, TOERT e, EFOEED dulity DEEOHBENFABTHS - L ERLTY
5. CITH AW, SRIOMREICBVTHE - KRB 0FEEAVTE
EVWRLTHIDOTHED, FBERTIIINALRMALZY,

2 diagonaliy complete % 8843 IR Morita duality

BT, &BICAASH. SEOHRIZEBWT, HEEDH diagonally complete & &1F1F7:5H 5
BOBFIRVKEEELBRYL R L. RERROBAREL TS, ROBEXEMETOE
2% {e1,....ea} T, @, e;Re; CR LB bDWEEST B LS, R 12 RO diagonally
complete 2 AR THAEL V). 2D {e),...,e,} KBTE%E1E, R IZREFAR
RLICLZOHARFEEATVWAILLFEETH S, diagonally complete 2§53 D
Morita duality I22W T, XM H iLo.

EIE 1. MHINEE sUR 3 Morita duality 2EH 2L L, {e1,...,en}, {fi,.- -, fa} EEN
FHhR SOEXMETORERT, HillLTS(U) & e;R/J(eR) RN D HEHE
SAMBRREALTHDEILbDETE. QL eiRe; X &1 R D diagonally complete % #8
SRR IHLT, § =@y, lsplpveleiRe) LB, T0kE, SR RT, RS
X @, eiRe; ¥ &Y R O diagonally complete 28I R L @, S 8L SO
diagonally complete 2E83Refk L DM 1M 1 I EEDS.

F* 2. B D Morita duality % good self-duality i3 diagonally complete &Eﬂﬁ‘ﬁk bl g
T 5.
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3 EQHIREMIEE

EQHRBRROME AT L0 HELEHERAT 2O00RA(R) & T(R) HdH5.
1 2HE A(R) = Endg(E(Rg)) L EHH. THIZDOWVTIX, ROMYLI A E 2 #HH A
B0 Lo,

WE3. EQHRRISHLT, S={acA(R) |a(R) <R}, I ={acAR)|a(R) =0}
& BT, SiA(R) ® diagonally complete 2 8AR, 113 SOALF7NVTHY), RS/
AR D Lo,

SEDHETAR) bBUEQHRICR D Z EMGh o/, RWEHRBRO L XI2iX, A(R)
RITE{SOEHRICLZY, SRIDEIELIIREESND, COBHEORRR=S/I
i1, wbwd [EHROFTHIERR] Iibi6kv,

E*kXQHBRROEXBHNETNOELFZEL, f={ccE|S(Rr)e#£0} LBE,
) 12ORI(R) % T(R)= fRFLEDA. T(R)SBUEQHRIZL S (B - B#[2,
Proposition 8(1)]). f &X#&NZ, g=3 {e€ E | eS(rR) # 0} L BIFIE, Th ORI
DV, ROMFEAED L.

factor

S ri—:s R
gl Usoreer
Endr(E(RR)) = A(R) % TI(R)
=1 I

(RM®QF-30L &) gRg X' fRf
T =T “R" 12 Morita equivalent, “factor ring” I3FAIR, “d.c.subring” I3 diagonally
complete 288451, “corner ring” {3 corner BTHH T L KT, ZOENRIL, corner &
T(R) 12 R & h /K &) A(R) & Morita dual Td ), A(R) ® diagonally complete % &5
ROFARME L TRIBERTTESLI L, RMQF-INDEEIZIZgRg % A(R) Db H 2
ATORVWILERLTWS,

EOERICBNT, RAQF-3THIY, gRISHAREEMET, gRgit A(R) & Morita
equivalent T& 5. —7 serial 313 good self-duality % 2. L72d>T, 2L LOR
RINBOohZROEHEE, BHETHIIBHROER (1, Theorem 5] ¥ M. AL,
Q(R) I R OBKEBREKRT.

EIE 4. £ QHI R good self-duality # b 22 & &, RQL.(R), A(R), T(R) (RAf
QF-3D L & gRg b)) D 1 DD good self-duality 2 b2 & LiZF{ETH 5.

Z QHRIIE 7 VF B TK Morita duality %  22f, HicoWwTHXREB.
FEIP 5. £ QHRIIA Morita duality b 5, FICETVF I/ MTHS,
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EQHIRRIMLT, [ k4 KD TR =TYR),TY(R),T*R),... £ I,
FTOEHFLY, WFRIOBREIZET L, 15 Kasch I} (L F 0 HAHAGIMBEN A socle 2B
2EH0R) KHETLHN, FRIIQFRTHH I EMGHNS. BRI, A ERAMD $
T, R=A%R),A}(R),A%(R),... +EL L, ROERLEL,

FE 6 EQHIRRICHL T, KA ILD.

dusl dual dual dual

M FI2OHLT, (R = TA Y R) = - = "I\R) = THR)T, Thbtdh
EQHRTH 2.

(2) &i> 1H LT, A'(R) D diagonally complete 285RS; &, S DA FT NI A
FIELT, AW R) S/ b D,

() H2m20NFELT, AR)ST™R) L&D, ThEHIEQFRTHS.

ZOERI, EHROBE LEHEIKE, TXTOEQHRI QF R, SMETHETH S =
EERLTVS., CORREBRTHIERDE IS,

) — R

n U
Sy A(R) =~ TI(R)
N u U

Sm-1(R) —» : :
n U U

dual dgl I.\m_zA(R) déal Pm_l(R)
U U

Sm - A™YR) ®
n U

dual
~

A™(R) ramyg) % ... ¥ rzr) % R

T ZT “U” It corner B, “N” X diagonally complete 2B SR, “»" KR THB T
EEBRT S,
LA >TEQHRDUHAT, ZORKDEMOBOTIDEETF & T A% (corner TR it
£533) b, ETH o EORE% L5 (diagonally complete %2 #8535 & #& BRI
F¥5) b0, QFRIRH SN,

4 self-duality NDIEH

B2 self-duslity ~DEA 2HORKDO *) L2V THRTBL.
E QHRIIE QF-2 T %51, locally distributive RIS 2V TIIH DK Y IrD.

R 7. locally distributive 5 QF-2 RIIE QHIRTH 5.

Fr#ll serial 32 corner T b Ffll serial T 2. F7:, Kl serial 2 QF BRI M serial &
%1, good self-duslity ¥ 2. L7AoT, #iRE7 & EOREK, R2L hRIPEY LD,
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ER 8. T T locally distrbutive 45 serial B good self-duality % 4 2.

ATFTNVIARMBISIRD L VIR, LoBRAXOMT£2TY, EE LA2M%HT, 1
FTVNRRBOL &, almost self-duality DIFEEIIHB Y LAMHTH 5, T/-HRKFH
R OB locally distrbutive IRD A 77 WMIZBRB L v, Lo TROEHR %155,

FIR 9. 47T NURAREL 2%V &S % QH BT almost sell-duality £ $ 2. 452, &
REFB DK QH IR locally distrbutive 5 QF-2 112 almost self-duality % & 2.

IhonERIE, RROTFROREINLRILE [F-XTDlocally distributive JRid self-duality
00 OMSTHLBELRLES. 23 ) QFROBBIEBE L TROZBR LB,

FEI 10. R % locally distributive &5 QF-2 3R, {e),...,e.} % ROE&E#&W%TB@E#‘
FREL, S(RR)&; A0 THB L) h e, DEABEMET S,

(1) m < 2 % 612 R i good self-duality % & 2. #$i2 S(Rz) #* homogeneous % & i R i
good self-duality % $ 2.
" (2) n < 3% 51f R i self-dualiy % $ 2.

BEVH

[1] Y. Baba. On self-duality of Auslander rings of local serial rings. Comm. Algebra,
30(6):2583-2592, 2002.

[2] Y. Baba and K. Iwase. On quasi-Harada rings. J. Algebra, 185(2):544-570, 1996.

[3] J. Kado and K. Oshiro. Self-duality and Harada rings. J. Algebra, 211(2):384-408,
1999. :

[4] K. Koike. Examples of QF rings without Nakayama automorphism and H-rings with-
out self-duality. J. Algebra, 241(2):731-744, 2001.

[5] K. Koike. Almost self-duality and Harada rings. J. Algebra, 254(2):336-361, 2002.

[6] J. Kraemer. Characterizations of the existence of (quasi-) self-duality for complete
tensor rings. Verlag Reinhard Fischer, Munich, 1987.

[7] W. Xue. Rings with Morita duality. Springer-Verlag, Berlin, 1992

Okinawa National College of Technology
2-19-2 Ohigashi Nago Okinawa 905-0016 JAPAN
E-mail address: koike@okinawa-ct.ac. jp

-115-



On Sgp(H)-blocks II'!

Y OSHIMASA HIEDA

1. INTRODUCTION

Let G be a finite group, p a prime divisor of the order of G and (K, R, k) a p-modular
system, i.e., R is a complete discrete valuation ring with maximal ideal (7), K is the
quotient field of R of characteristic 0 and k(:= R/(w)) is the residue class field of R of
characteristic p. Moreover, we assume that K contains the |G|th roots of unity.

For a subset X of G, X denotes the sum of all elements of X in the group algebra oG,
where 0 is R, K or k. R

We consider the Hecke algebra S,(H) := End.g(HoG) for a subgroup H of G.

Asey = H /|H| is the idempotent of K'G (which is the central primitive idempotent
of KH correponding to the trivial character 1y of H), Sx(H) = enKGepy, where we
identify f € Sx(H) with f(ey) € ey KGey as usual.

For x € Irr(G), let e, be the central primitive idempotent of KG corresponding to x
and put ¥ := {x € Irr(G); (xj.» L )n # 0}. Then we have that {e,ey; x € ®§} is the
set of all central primitive idempotents of Sk (H) in KG (see [C-R, (11.26) Corollary}]).

As Sp(H) C K ®p Sp(H) = Sk(H), for a central idempotent ¢ of Sg(H), there exists
a non-empty subset 3 of ®% such that ¢ = Y yepexen- Here the element of this form is
denoted by £z and if &5 is a centrally primitive, 8 (or 4Sr(H)) is called an Sp(H)-block
(cf. Definition 2.1).

Also, we have Sg(H)/mSr(H) = Si(H) as HRG is a permutation module. Hence the
set of Sr(H)-blocks corresponds bijectively to the set of S;(H)-blocks.

On the other hand, the multiplication induces the K-algebra homomorphism ¢ from
Z(KG) to Z(Sx(H)). Using the map ¢, G.R.Robinson [Ro] has proved that Z(Sa(H)) =~
Ag(H) as R-algebras, where Ag(H) denotes the endomorpism ring Endn[GxG](RGH RG).
Then so each Sg(H)-block corresponds to a (central) primitive idempotent of Ag(H)
and to a unique indecomposable direct summand Mg of RGH RG as R[G x G}-modulue.
Therefore we can define a defect group for each Sg(H)-block in G x G (see Definition 2.2
and Remark 2.2).

Now we recall that for any Sg(H)-block 8 there exists a unique p-block B such that
B c Irr(B) (see Proposition 2.3). Also if ep is a central primitive idempotent, i.e.,
a block idempotent, of RG with the condition ¢(eg) # 0, then ¢(eg) = Eﬂem £p as
¢(es) € Z(Sa(H)), where B is the suitable non-empty subset of Sg(H)-blocks. Hence
Irr(B) N &G = 3 4 B is a (disjoint) union of Sp(H)-blocks.

In this note, we shall exhibit some results on Sg(H)-blocks (which are mainly proved
in [Ro] and [H-T]) and show the following example :

LThe final and detailed version of this note will be submitted for publication elsewhere.
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1
Example 8 Let p be an odd prime, G := 2, and H := 2, for P <t < p, where 21,

denotes the alternating group of degree n. Then
(1) Irr(Bo) N 9§ = {[p — #,1%],;;0 < i < p —t}, where [p — i,1¥] is an irreducible
character of Sp.
(2) Bo=TIrr(By) N <I> and §y(f) € Sylp(G x G).

The notation is almost standard. Concerning some basic facts and terminologies used
here, we refer to (C-R] and [N-T] for example.

2. DEFINITIONS AND G.R.ROBINSON’S RESULTS ON Sg(H)-BLOCKS

At first we recall the definition of Sg(H)-blocks by G.R.Robinson [Ro] (he call them
Agp(H)-blocks), which is equivalent to our definition (see section 1).

‘Definition 2.1. ([Ro]) For any central primitive idempotent € of Sg(H) (or Ar(H)), there
exists a minimal non-empty subset 8 of ¢ which satisfies the following two conditions :

(a) € = ¢(eg), where eg := Zex .
x€f
(b) = 1l Zx(Hg)x(l) €Rforamy g€ G.
x€B .
We call such sets Sg(H)-blocks (Ar(H )-blocks) of irreducible characters of G.

Remark 2.1. (1) The above condition (b) is equivalent to the next condition :
&y Gl Zx(Hx)x(l) € Rfor any z € H\G/H, where H\G/H is a complete

x€8
set of representatives for (H, H)-double cosets of G.

" (2) There exists a unique Sg(H)-block for any x € ®§. In particular, the trivial
character 1 of G is always in @ﬁ for any subgroup H of G. Then there exists the
Sr(H)-block which has 1g. So such Sg(H)-block is called the principal Sp(H)-
block and is denoted by Go.

According to [Ro), we define defect groups for Sp(H)-blocks.
Definition 2.2. ([Ro]) For any Sg(H)-block B, there exists a minimal subgroup D of
GxGand ) e Enan(RGH RG) with the condition : 'I\'G"G(A) = gg.

Then D is called a defect group for 8 and denoted by 84 (0).

Remark 2.2. ([Ro, the above remark of Lemma 2.1]) By the theory of G-algebras, we have

(1) éx(B) is a p-subgroup of G x G and uniquely determined up to G x G-conjuga.cy
(2) 64(PB) is a vertex of Mg.
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The next proposition tells us some relations between p-blocks and Sp(H)-blocks.

Proposition 2.1. ([Ro, Remark of Lemma 2.1]) If H = {1}, then Irr(B) is an Sg({1})-
block for any p-block B of G. Moreover, a defect group of an Sg({1})-block Irr(B) is the
diagonal subgroup §(B)? := {(z,z) € G x G;z € §(B)}, where §(B) is a (usual) defect
group of B.

The following property is one of the characterization of p-blocks.

Corollary 2.2. For any p-block B of G, Irr(B) is a minimal subset of Irr(G) which

1
satisfies the following condition : Gl Z x(z)x(1) € R for anyz € G.
x€lrr{ B)
Proof. We take H = {1}. Then the statement is clear from Definition 2.1 and the
above proposition. O

Noﬁv we exhibit some important and useful results by G.R.Robinson in [Ro]

Proposition 2.3. ([Ro, Lemma 2.1,Lemma 2.3(i),(iii),Corollary 2.4})

16(6)|
(1) For any Sp(H)-block B and z,y € G, m Zx(:r)x(y) €R.

. 161 (B)| 2
In particular, iC x G %x(l) € R.

(2) B is contained in a single p-block B of G in the usual sence, and if B has a defect
group D, then 6;(B) is contained (up to conjugacy) in D x D.

(3) Let C := coreq(H). Then there is a bijection between the set of Sg(H)-blocks of G
and the set of Sr(H/C)-block of G{C. In particular, if C = H, i.e., H is normal
in G, then the Sgp(H)-blocks of G are precisely the p-blocks of R[G/H].

(4) For the principal Sp(H)-block By,80 = {1¢} if and only if H contains a Sylow
p-subgroup of G.

Corollary 2.4. (see |H1, Corollary 3]) The followings hold.

(1) If Xores x(1)? is prime to p for an Sp(H)-block B, then a defect group of 8 is a
Sylow p-subgroup of G x G. In particular, if H contains a Sylow p-subgroup of G,
then a defect group of fo is a Sylow p-subgroup of G x G.

(2) If x € ¥ is in p-block B of defect 0, then {x} = Irt(B) is an Sr(H)-block and
whose defect group is unit element {(1,1)} of G x G.

3. OTHOGONALITY RELATION

In this section we assume H is a p’-subgroup of G and consider only those blocks such
that ¢(eg) # 0.
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In this case ey € RG, i.e., HRG = ey RG is a projective RG-module and kH is a
semisimple k-algebra.

For any ¢ € IBr(G), let S, (resp. P,) be an irreducible kG-module (resp. an indecom-
posable projective RG-module) corresponding to ¢ and ¥§ := {e € IBr(G); ku|S,, 5 }-
Here we mention that ¥, = {¢ € IBr(G); P,Jlen RG} by Robinson’s reciprocity. We let
furthermore B;* := {¢ € IBr(B); P,les,(enRG)} for 0 < i < ¢, where B = {B;}_, (see
section 1).

Proposition 3.1. (see [H-T, Proposition 3]) The followings hold.

(1) IBe(B)N¥§ = Uizo 5"
(2) The decomposition matriz Dg of B has the following form :
0 0 Dg‘

D 0 - 0
0 D,,, 0
0 0 -0
where D' denotes the set of the first |IBt(B) N US| columns of Dg and Dg” the
rest. ‘

(3.1) Dp= = (Dg'|Dg"),

LI B NI B R B

Corollary 3.2. (see [H-T, Lemma 7 and Corollary 8]) Ij &G = Irr(G), then Irr(B) is an
Sg(H)-block for an Jp -block B. Moreover, if Irr(B) C 8%, then Irt(B) is an Sp(H)-block.

Remark 3.1. Let G := 25:the alternating group of degree 5, Cs := {(1 2 3)) € Syl3(G) and

= 3. (So Cj is not a ¥'-subgroup. ) Then & = Irr(G). But Irr(By) = fp U By, where
ﬁo = {1¢} and B; = {x2, x3} with x2(1) = 4 and x3(1) = 5. Then the above statement is
not true in general.

In the rest of this note &, (resp. 2,) denotes the symmetric (resp. the alternating)
group of degree n. For a partition of n the Young diegram associated with A is denoted
by [A] and X denotes the conjugate of A. (So [X] is the transposed diagram of [A].) Also,
the same notation [A] means an irreducible character of G, corresponding to the Young
diagram [A]. (For example [n] := [(n)] means the trivial character 1s,, t0o.) Also By
denotes the principal p-block of G.

Using the above notations, we have the following examples.

Example 1. Let G = &,, H:={(12)) and p=3.

Then ®§ = Irr(G) \ {[1°]} = Bo U 51 U Bz, where o = {[4],[2?]} = Irr(Bp) N 8§, 6, =
{I3,1]} = Irr(B,) and B2 = {[2,1%]} = Irr(B;). Moreover, éx(f) € Syls(G x G) and
ou(4) = {(1,1)} for i = 1,2 by Corollary 2.4. Also the decomposition matrices Dg, and
Dg, are followings :

[4] /1|0
- [4]
on = (31 o~- 44



Example 2. (see [H-T, Remark 12] and [H1, Example 10])

Let G := G5, H := {(12)(34),(13)(24)) and p = 5. Then Irr(B,) Nd§ = G U B, with
Bo = {[5],[4,1]} and B, = {[2,13],(1%]}. Moreover, 6u(8;) € Syls(G x G) (i =0,1) by
Corollary 2.4. Also the decomposition matrix of By is the following form :

5] /1000
4,1 1100
Dg, =313 |0 1 1 0] =
[213]0 0 11
[15] \o 0 0 1

So the decomposition matrices of Sg(H)-blocks in By are followings:
_ I8 (1 _3Nn
Dﬂo‘[4,1] 1)Pa = [1%] \1/"

The next theorem is the orthogonality relation for the SR(H)-blodc.

Theorem 3.3. ([H-T, Theorem 5]) Let 8 be an Sp(H)-block. Then we have

Zx(n:e")x(y) =0 for anyy € G—Gp and x € G such that (z, H) is a p'-subgroup.
x€P

Remark 3.2. (see [H-T, Remark 12] and [H1, Remark 6-1]) .
(1) If H = {1} in the above theorem, we get the second orthogonality relation for the
(usual) p-block.
(2) We recall Example 2 and take z := (45) € Gy and y := (12345) € G — Gy
in the above theorem. Then Hz C HzH C Gy but ({H,2) = G ¢ Gys. This
means that the assumption, (z, H) is a p/-subgroup, is not satisfied. Moreover,

> xepo X(zen)x(y) # 0. So the above theorem is not true for any p-regular element
z €G.

(3) Question Does the following statement hold?

Zx(xey)x(y) = 0 (mod(x)) for any € G, and y € G — Gp.
x€B

4. SOME EXAMPLES OF THE PRINCIPAL Sgp(H)-BLOCKS

We use the same notations in section 3.

Example 3. ([H2, Example 1]) Let H := G and chark = p.
(1) ¢ = {15}-
(2) o = ¥§ and 6¢(B) € Sylp(G x G).
Example 4. ({H1, Example 12]) Let G := 6, and H :=&,,, (n 2 2).
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(1) G = {In},[n - 1,1]}.
(2) (a) If p does not devide n, then By = {|n]} and é4(B) € Syl,(G x G).
(b) If p devides n, then By = {[n],[n — 1, 1]}(= ®%).
In particular, if p is odd prime, then 84(5;) € Syl,(G x G).

For the alternating groups the same statements hold. (We notice that we correct the
range of n in [H2, Example 5|.)

Example 5. (cf. [H2, Example 5]) Let G := 2, and H :=%,_,, (n > 4).

(1) 9§ = {1¢,x}, where x(1) =n—1.
(2) (a) If p does not divide n, then 8, = {la} and dy(Bo) € Sylp(G x G).
(b) If p divides n, then B = {1g, x} (= ®%).
In particular, if p is odd prime, then §4(8;) € Syl,(G x G).

If G is the symmetric group of degree p, then we have the following two examples.

Example 6. (|H1, Example 11]) Let G := &,, H := &; (1 <t < p) and chark = p. Then

(1) o= Irr(Bo)nd»G_{[p—z 1;0<i<p-t}

(2) d4(Bo) =Gxc PIj( P 2<t i P where Pis a Sylow p-subgroup of G.

Example 7. ([H2, Example 7]) Let p be an odd prime, G := &, and H := 2, for
}%l <t<p

(1) Irr(Bo) N @G = {[p~4, 1,0 <i<p—-t}u{i + 1,19 1,0<j < p—t}.

(2) Bo={lp-1,1%0 <i < p-—1t} and 8,4(B) € Syl,(G x G).

One of the purposes of this note is to show the next example.

Example 8. Let p be an odd prime, G := 2, and H := 9, for ptl <t <p. Then

+

2

(1) Ire(Bo) N @G = {[p — 1,1%),5;0 < i < p — t}, where [p — 4,17] is an irreducible
character of S,.

(2) = Il‘l‘(Bo) N ‘I’ and Jy(ﬂo) € .S'yl,,(G X G)

Proof. We may assume that ¢ # p by Example 3. Put G := S, and By (resp. ﬁo)
denotes the principal p-block (resp. the principal Sgp(H)-block) of G. At first we mention
that [p — 1,1%),; = [i + 1,177*7),, is irreducible for any 0 < i < p—1t as ptl
and [i + 1,17~"-] is the conjugate of |p — , 1.

(1) As Irr(Bo) N &G = {X)5: X € Irr(Bo) N &8} and Example 7(1), the assertion holds.

(2) We may only prove the first half because the later half follows from Example 7(2).
Now put I = {[p—¢,1%];[p— ¢,1¥]|, € o} C Bo- So we may show that J = G, by (1). As
p>2foranyze H\G/H

<tsp
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1 e e 1 -
& 2 XHDXW) = g ge_;m(Hx)mc(l) = 3G > x(Hz)x(1) € R,

1G] xe! x€Po

where x := X|o- Also, —i-l > XHz)X(1) € R for I' := {[i + 1,17 [p — 4, 1] € I}.
zer
L« oo
Therefore — Z X(Hz)x(1) e RasINTI' =0.
zelor .
On the other hand, for 7 := (12) € §/G, = 3" %(HeN(1) = -—= 3 R(HR ().
|G| xel |G| Xer
Then —.1.— E %(Hz7)X(1) = 0. Hence I U I’ is a union of Sp(H)-blocks of G as
gelur
H\G/H = {z,zT;z € H\ G/H}. Thus fy C IU I'. Moreover, fy C I since fpNI' =0.
This means I = f; and the assertion holds. O
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ON RINGS WITH THE SAME SET OF PROPER IDEALS

Yasuyuki Hirano and Hisaya Tsutsui

Abstract: We investigate pairs of rings with a set of common ideals.

In 1980°s, a series of papers appeared in Canadian Journal of Mathematics ([1],{2]) that
investigated pairs of commutative rings with the same set of prime ideals. We consider
some generalizations of the study in the noncommutative setting. Throughout, all rings
are assumed to be associative (but not necessarily commutative) with an identity element.
The term “subring ” will be used for a unital subring. Thus, not only a subring inherits its
binary operations from its ov&q'ng, but also they have the same identity element,

Consider H = Homg(V, V), where V is a véctor space over R with dimg (V) = R,, (wois

the first limit ordinal). The center of H is isomorphic to R and hence, it has subfields X
and Fsuchthat K ¢ Fand FZ K. Let M ={f e Homg(V,V)|dim f(V)<N,}. Then
S=M+K and R= M + F are an example of a pair of rings with the same set of prime
ideals. Further more, S and R have infinitely many ideals and all of their proper ideals
are prime ideals. A curiosity therefore arises for a pair of rings with the same set of
proper ideals. By our first theorem, the only possible pairs of subrings of a commutative
ring with the same set of proper ideals are fields.

Theorem 1. Two distinct subrings R and S of a ring are division ring if and only if they
have the same set of proper right ideals.

Proof. Since R# S, they cannot have two distinct maximal right ideals in common. Let
M be the unique maximal ideal of R and S, and suppose that 0« 2 € M. Then, since R
and S have the same set of proper right ideals, we have aR =aS. Further, sincel—nr is
invertible for any m e M, we must have aR = aS # aM. Thus aS/aM is a one-
dimensional vector space over the division ring S/M and aS/aM =aR/aM is also a
one-dimensional vector space over R/M . This is a contradiction since R/M = S/M.

Thus, M =0 and hence R and S are division rings. O

We now state two propositions on a pair of rings with an ideal in common.

Proposition 1. Let R and S be subrings of a ring and suppose that they have a common
ideal 1. If Pis a prime ideal of R, then P ={a€ S| lal < P} is either S or a prime ideal
of §.

! The detailed version of this paper has been submitted elsewhere.
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Proposition 2 Let R and S be subrings of a ring having a common ideal I. If P isa
primitive ideal of R, then P ={ae S|lal g P} is either S or a primitive ideal of S .

Our second theorem yields that a pair of rings has the same set of prime ideals if and only
if they have the same set of maximal ideals. We denote the set of prime ideals of a ring R
by Spec(R); the set of maximal ideals of a ring R by Max(R); and the set of primitive
ideals of a ring R by Prim(R).

Theorem 2. LetR# S be subrings of an arbitrary ring. Then the following statements
are equivalent:

(a) Max(S) 2 Max(R)
(b) Max(S)c Max(R)
(c) Spec(S)= Spec(R)
(d) Prim(S) =Prim(R)

Proof. If Max(S) 2 Max(R), then R has a unique maximal ideal M. Let N be another
maximal ideal of S. Then since S= M+ N, there exist me M and ne N suchthat 1 =m
+n.Butthen n=1-me R\M and hence RnR = R. Hence, M* =MRnRM c N .

Since N is a prime ideal of S, this is a contradiction. Therefore, Max(S) = Max(R) = {M}.
This shows the equivalence of the statement (a) and (b).

Suppose now that Max(S) = Max(R) ={M}and let P = M be a prime ideal of R. Then,
by Proposition 1, P={aeS|MaM c P} is a prime ideal of S . Since M is the unique
maximal ideal of S, we have Pc M, and so P is an ideal of R. Since MPM c P, we
obtain P c P, and therefore P =P is a prime ideal of S. Since a primitive ideal is prime,
the equivalence of the statement (a), (b), and (d) can be shown similarly by using
Proposition 2. O

For aring T, let S(T) be the set of all subrings S of T with Spec(S) = Spec(T). We note
that if T is a ring with unique maximal ideal M, then

S(T)={p""(S)|S is a simple subring of T/M) where p:T — T/ M is the canonical
epimorphism.

A ring is called fully idempotent if every ideal of R is idempotent. A commutative fully
idempotent ring is Von Neumann regular. However, the class of fully idempotent rings
strictly contains the class of regular rings.

Proposition 3. let R and S be fully idempotent subrings of a ring. Then R and S have the
same sel of proper ideals if and only if R and S have the same set of prime ideals.
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We are in a position to give a few examples.

Example 1. An example of a pair of rings having the same set of maximal (therefore
prime) ideals but the set of proper ideals are not identical,

Let R=Q(v3)@R and §=Q(v2)®R be additive abelian groups with multiplication
defined by (g, b)(c, d) = (ac, ad + bc) . Then R and S have a unique maximal ideal
M=00R. Let / =00Q(v2). Then /isan ideal of S but not of R. I

Example 2. An example of a pair of rings that have a nonzero ideal in common but.the
set of prime ideals are not identical. '

Let K be afield, and K[x] and K[y] be two polynomial rings over X . Consider the ring
S = K[x]® K[y] and its subring R = {(a + xf(x),a) € S|ae K, f(x) € F[x]}. ThenR
and S have common ideal / = {(x/(x), 0)| f(x) € K[x]}. Clearly P ={(0,0)} is a prime
ideal of R, but it is not a prime ideal of §.[1

Example 3. An example of a pair of rings that are not fully idempotent but have the
© same set of prime ideals.

Let R be the ring consisting of countable matrices overR of the form

An

where ac R and A4, is an arbitrary mxm matrix over R and m is allowed to be any
integer.
4

- - — 0
Let S =M +F where F is a subfield of the center of R and M =

Let S=S®M and R =R @ M be additive abelian groups with multiplication defined
by (@, b)(c, d)={(ac, ad + bc). Then, S and R have the unique common maximal ideal

M ={(m, m)|m,m € M} and hence, they have the same set of prime ideals. However,
the ideal 7 = {(0, m)| m € M} is not idempotent. O
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Next, we investigate properties that pass through a pair of rings with common ideals.

By Theorem 2, if two subrings R and S of a ring have the common maximal ideal, then
they have the same set of prime ideals. Thus, in particular, if S is prime, then so is R. For
aring R, let B(R) denote its prime radical, and.J(R) denote its Jacobson radical. Using

Propositions |1 and 2, one can prove Lemma 1 below and hence Proposition 4 holds.
Lemma 1. Let R and S be subrings of a ring having a common ideal 1.

{a) If B(R)c I, then [IB(S)I ~Ic B(R).

(&) If J(R)c 1, then IB(S)I nI cJ(R).

Proposition 4. Let R and S be subrings of a ring having a common ideal 1.

(a) If R is a semiprime ring and if ry(1)=€,(I) =0, then S is a semiprime ring.
(b) If R is a semiprimitive ring and if ro(I)=£€,(1)=0, then S is a semiprimitive ring.

Let Rc S be rings with a common ideal /, and let P be a prime ideal of R with/ & P.
Then “lying over” holds, i.e., there exists a prime ideal Q in S such that QR =P, (See
for example Rowen [4]).

Proposition 5. Let Rc S be rings with a common ideal 1. If P is a prime ideal of S
withl & P, then PR is a prime ideal of R.
Using Propositions 2, one can prove Lemma 2 below and hence Proposition 6 holds.

Lemma 2. Let Rc S berings with a common ideal 1. If B(S)c I, then
B(RynI c B(S).

Proposition 6. Let R< S be rings with a common ideall . Then if S is a semiprime ring
and if 1 is an essential ideal of S, then R is a semiprime ring.

A ring all of whose (two sided) ideal is idempotent is called a fully idempotent ring. A
fully idempotent ring is in particular, a semiprime ring.

Proposition 7. Let R and S be subrings of a ring having the common maximal ideal M,
Then if R is fully idempotent, then so is S and in this case they have the same set of
proper ideals.

Every right ideal of a von Neumann regular is idempotent. A ring all of whose right ideal

is idempotent is called a filly right idempotent ring and has received some attention in
the literature.
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Proposition 8. Let R and S be subrings of a ring having the common maximal ideal M.
Then if R is fully right idempotent, then so is S and in this case they have the same set of
proper ideals.

The next natural question is whether or not the “regularity” passes through two rings
having the common maximal ideals.

Example 4. Let I denote the n-th Weyl algebra over a field of characteristic zero. It is
well known that ¥ is a simple Noetherian domain, and hence ¥ is an Ore domain, Let D
denote the filed of fraction of . Let R be the set of countable matrices over D of the
form

where a € D and 4,, is an arbitrary mx mmatrix over D and m is allowed to be any

integer. Let § be the same set of matrices except a € W. Then R and S have the unique
maximal ideal M that consists of countable matrices of the form

4

While it is easy to see that R is a von Neumann regular ring, S is not von Neumann
regular since §/ M >~ I : a simple Northerian but not an Artinian ring. O

Neither the descending nor the ascending chain condition passes through a pair of rings
with the same set of ideals in general.

Proposition 9. LetR C S be rings with the common maximal ideal. If S satisfies a
polynomial identity, then R is right Noetherian if and only if S is right Noetherian and
S/M is finitely generated right R/M-module.

For a right R-module M and an ideal / of a ring R, consider P, (M) ={me M|ml =0}.
M s said to be splitin P, if P,(M)is a direct summand of M, and 5, is said to be
splitting if every R-module M splits in P, For a non-zero ideal / of a prime fully right
idempotent ring R, Theorem 1.3 of Hirano-Tsutusi [3] yields that £ is splitting if and
only if R/I is semisimple Artinian. Therefore, Example 4 shows that *“ F, splitting
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property” does not in general pass through a pair of rings with the same set of proper
ideals.

Proposition 10, Let R and S be non-prime subrings of a ring having the common
maximal ideal M. Then P, is splitting for every ideal I of R if and only if F, is splitting
Jor every ideal 1 of S.
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Finitely Cogenerated Distributive Modules*

Yasutaka SHINDOH (i £%&#)
FR16%FE£1 8708

="

In this paper we consider a generalization of Vémos’s proposi-
tion which asserts that finitely generated artinian and distributive
modules are cyclic. Also, we show its duality as an answer to the
problem which is shown by him (See [Vam78]).

1 #HA

TOXHERTIE, 2T A" 135%5ICHD ) DL WER D | non-zero identity
b5, £T? module i unitary 7 left A-module £33,

DLW OPDBRIZOVTERT 5, module ¥ distributive & IF
HRDiE, £ submodule £4K1Z X 3 lattice At distributive law Zii7z ¥
LETHD, 227 module M| & My 3 unrelated pair X KT EHH O
i, UTo&GX@lTLETHE,

Li/Ny 2 LofNo k725 X 9 72 submodule DFY N; < L; < M;
(=1, B Li=N DD L=N, LD,

BT o 2 20 remark (Remark 2 1 [Ste74, Proposition 1.3] T& 3) &
[Erd87] @3 RA 6., distributive module BB NHFEIZ 3V T unrelated
pair LW BEMERLEWLMLETND I EXFGN D,

Remark 1. module M {22t LCUTOLFREVICHiTH 5,

(1) M 1 distributive T&H 2,

(2) fEED M @ submodule N {23t L. N & M/N (% distributive &
/Y

(3) N & M/N % distributive TH D, D unrelated pair X %4 X 9
%t M @ submodule N #*#ET 5,

*This is not in a final form. This note is a summary of the paper [Shi0X]
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Remark 2. M; (i € I) % distributive module & 75, ¥7°. M X £D
direct sum E L7 &, BTFOLRSIREVICEME % 5,

(1) M 1 distributive TH 3,
(2) EFEDRe B subscript i,j € I 123 LT, M; & M; {3 unrelated
pair ¥ %,

B 7% module X 1231 LT module M 2L TFOLRELE LTS
E. M % X-cyclic L5,

YoctomaxmyIma = M THB L &, epimorphism a €
Homa(X,M) HFET %,

T, ARICBTORMGLBALTWALE, M % X-cocyclic LIF5,

Mpettom 1. x) KerB = 0 TH B & &, monomorphism § €
Homa(M, X) ?HIET 5,

Bl &5 A ic “A-cyclic® & “cyclic” IREVMZEM % &ETH 5, Section 2 12
BWT. X-cyclic module & X-cocyclic module D #AE ML EF Iz >V T
Zz25,

module M % semilocal L¥:-5DiL, factor module M/Rad(M) »f
semisimple ® & & Téh 5 (Rad(M) & M @ Jacobson radical)e Section 3
KBWT, ThHDBBEE> TLUTO theorem 255, ik (Vam78)
DEHERO—fELL 2500, 72, Rt kb bNEFATVS, %
12 [Vam78] TRV SW-MEORRMEMEF LB LA WRS,

Theorem 1. distributive module M 128 LT, ELTAH b Lo,

(1) M 1%, finitely generated semilocal THNIL, £ projective mod-
ule P23t LT P-cyclic TH 5,

(2) M 13, finitely cogenerated THIIL, {LED injective module Q 1=
1} LT Q-cocyclic Th 5,

CoHELOBMIL, LR theorem ¥ HEM L TEBICERYBAIE
THhb,

2 X-cyclic module & X-cocyclic module

TYPDOILLUTO 2 20D lemma ¥Td, TN oHDERIIEBNESIC
P EMHRBLEA D,

Lemma 2. 2 20 non-zero module M & X iZxt LT, BLTOLRM4IRE
Wiz Iﬁlﬁg’eﬁ) A °
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(1) ZaEHomA(X.M) Ima # M

(2) €TD a € Homa(X, M) 1ML T ar =0 X3 &5 %, non-
zero module V & non-zero homomorphism k € Homu(M, V) 5
ET 5,

(3) Homa(1x,) : Homa(X,V) = Homa(X, M) ; v — yp * surjec-
tive L 2B L )%, module V & surjective T’ v homomorphism
¢ € Homa(V, M) »FEY 5,

Lemma 3. 22 non-zero module M & X IZH LT, UTO&H#IRE
WICEETH 5,

(1) Npenom(m,x) KexB # 0 '

(2) €T B € Homa(M, X) ISHLT A8 =0 %2723 &5 %, non-
zero module W & non-zero homomorphism A € Hom4(W, M) »FF
ET %,

(3) Hom4 (¥, 1x) : Homa(W, X) = Homa(M, X) ; & — ¢d B¢ surjec-
tive L% 3 L 9%, module W & injective T%\> homomorphism
¥ € Homy (M, W) 2 HFET 5,

T, INGD lemma M LT, EAFD 2 2 proposition #5345,
Proposition 4. 2 2 non-zero module M & X 123 LT, LT D%
HREVWKFEETSH %,

(1) M it X-cyclic TH 5,

(M E X BRUTOELLh—FORMEXiIT,
e epimorphism ag € Hom, (X, M) PEIET 5,
oM & X i3 Lemma 2 DMLY,

Proposition 5. 2 20 non-zero module M £ X {23 LT, LLFTD%
HFREWIFE/TH 5,

(1) M & X-cocyclic ThH b,
QM & X BDTFoYbodh—n&ktLib/ T,
o monomorphism By € Hom(M, X) MHIEY %,
oM &t X 13 Lemma 3 D&% T,
LR, G, DTIRY (R0 %) IG5 5, Thid “cyclic”
& “X-cyclic” DBVO—BERTODEFZ L MRS,

Example 1. § 2 simple module My, My, M3 {2DWTHZX D, D&
&, M, & M, (L isomorphic TH D, M3 iX¥h 6 & isomorphic TX VY
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66X, WFMREDILD, 1272 L. M % My, Moy, My @ direct sum &,
N % M,My O divect sum L35,

(1) M i3 My-cyclic ThH O, N i3 M O epimorphic image ThH 5 A,
N & M -cyclic Tiiz\v,

(2) M i3 My-cocyclic TH Y, N i M O submodule THHA, N it
My -cocyelic Tld v,

ZDFORBIZ, LT D remark b RLTH ¢,
Remark 3. —{%M0 &L LTUTEK N L2,

(1) £T® module i3 O-cyclic T Y 0-cocyclic T b, i

(2) simple module & 0 (3EED module X 123 L T X-cyclic T
X-cocyclic Téh 5,

(3) £TD local module REFE D module X 25t LT X-cyclic T 5,

(4) £T® colocal module IXEED module X 234 L T X-cocyclic T
H%,

3 Theorem 1 OFEHICDOWT

BOPDHIZLLT O remark ([Ste74, Proposition 1.2] & F%N b D) 2
DVTHRTEI I,
Remark 4. module M % module M; (i € I) ? direct sum &£ T %, TN
L&, DToRGREWIIEETH 5,

(1) TDR% 5 subscript 1,7 € T I LT, M; & M; i unrelated
pair i’tﬁ—ro

QHNK =0 kiifet I OEE D finite subset H, K 2% LT,
Dren Mn & By M 13 unrelated pair ¥ %7

(3) M DHERD submodule N 12 LT, N = @, (N N M) DL
T %,

= 0 remark 6. BT proposition %185 = L AHES,

Proposition 6. 2 20 module X &£ M = @, M; 120w T#H 23,
EBDRL B subscripti,j € {1,...,A} {23 LT M; & M; %% unrelated
pair T4 61, BIFA® DL,

(1) €T subscripti € {1,...,h} 233 LT epimorphism c; € Hom4(X, M;)

MEHEET 5% HiL, epimorphism a € Homa(X, M) HFIET 5,

(2) &TD subscripti € {1,...,k} 2L T monomorphism B; € Homa(M;, X)

PHELES 5 % b, monomorphism 8 € Homy (M, X) #HFHET 5.
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CDERDE ., LLTFD corollary 285 Z LA5HHR S,

Corollary 7. 2 20 module X & M = @, M; 1I20WTEL B,
WORL D subseripti,j € {1,...,R)} 2 LT M; & M; 5 unrelated
pair B T4 61, LLTFARED Lo,

(1) fEFED subscripti € {1,...,h} XML T M; H* X-cyclic Chb%bh
. M b X-cyclic Tdh b, .

(2) FEE D subscripti € {1,...,h} I3 LT M; #* X-cocyclic T 5%
L, M b X-cocyclic Thab,

EIZLLF® remark %51,

Remark 5. P % projective module. M % module. N # M & small
submodule &35, D& X, epimorphism a € Hom4(P, M/N) DL
T5ubid, a=on (LZL n i3 M 26 M/N ~O natural epimor-
phism) & 7% % epimorphism o € Homa(P, M) »#FIET %,

Remark 6. Q % injection module. M %* module, N % M ) essential
submodule £ ¥ %, ZMD& &, monomorphism 8 € Hom (N, Q) D H1E
TALGIE, =1 (7270 o 1 N D& M ~O canonical injection)
& %2 % monomorphism ' € Homa(M, Q) 1T %,

Z?remark 6, LLTD lemma 21§23 2 L AILES,

Lemma 8. P % projective module. M * module. N ¥ M @ small
submodule L T 5, TDL &, M H P-eyclic ThHar I bt M/N »* P-
cyclic THHZ L IREWIIATSH 5,

Lemma 9. Q % injective module. M % module. N * M O essential
submodute L 32, TDL &, M  Q-cocyclic ThbrI Et t N » Q-
cocyclic THAZ LRBEWICRMETH 5,

DEOERD S, LT D P-cyclic module & Q-cocyclic module (2[4
T HEEL proposition ¥ 185 Z L AHES,

Proposition 10. P % projective module. M % module. N ¥ M @
small submodule £ 325, COL &, UTOEFREVIIEMTH 2,

(1) M {% P-cyclic TH 5,
(2) AT D 2 00%M £i672% X 5 % decomposition M/N = @, M;/N
PEET 50
o R HEHED subseript 1,7 € {1,...,h} WTHIFLT, M/N
M;/N & unrelated pair %% ¥,
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e £TD M/N,...,My/N & P-cyclic Th 5,
Proposition 11. Q ¥ injective module, M % module. N ¥ M @
essential submodule £ 3%, CDL &, UTOLRKREVWICFHETSH 5,

(1) M X Q-cocyclic TH %,
(2) LT o 2 o0& %ii7+ & 5 % decomposition N = @, N; #*
HFET 5,

o R DERD subscripti,je {1,..., A} IKHLT, N & N; &

=]

unrelated pair ¥ % 7o

¢ &TDH M,...,Ny & Q-cocyclic ThH 5,
S ETOREMNG. Theorem 1 2185 = LAk,
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GLOBAL DIMENSION IN LEFT SERIAL ALGEBRAS

MORIO UEMATSU

Let A be a finite dimentional basic conected algebra over an algebraically closed field
k, and n is the number of the non isomorphic simple right modules of A. If A is serial
and gl.dim.A is finite, then gl.dim.A < 2n —2 and {(4) < 2n -1 (3]

If A is quasi-hereditary, then the global dimension gl.dim.A is less than or equal to
2n —~ 2, and the Loewy length I{A) of A is less than or equal to 2" — 1[4]. If A is serial
and gl.dim.A is finite, then gl.dim.A < 2n — 2 and I(A) < 2n — 1. On the other hand,
Yamagata constructed the algebras of large global dimension with few simple modules
[5], and Deng constructed the algebras of arbitrary finite global dimension with n > 2
arbitrary [1]. So, if we consider the relationship between gl.dim.A and n, we need some
conditions on algebras. In this note we show that the algebra whose quiver contains
unique oriented cycle has global dimension less than or equal to 2n — 2 if it has finite
- global dimension. Moreover, in case of quasi-hereditary algebras, we compute the global
dimension of an algebra whaose quiver contains some essentital oriented cycles.

1. THE ALGEBRA WHOSE QUIVER CONTAINS AT MOST ONE ORIENTED CYCLE

First we fix some notations. Let Q4 be the quiver of A, {1,2,--- ,n} be its vertices,
and {ej,--- ,e,} be the set of corresponding primitive idempotents of A.

A vertex i of Q4 is called a sink(resp., source) vertex if all arrows which contain 1 have ¢
as ending(resp., starting) point. If vertex i is a sink vertex, then Ae; is a simple projective
module. Dually, if vertex i is a source vertex, then e;A is a simple injective module.

Lemma 1.1. Suppose that Qa has a sink or source vertex, that is there is a primitive
idempotent e of A with simple projective module Ae or simple injective module eA. Let
B = A/AeA. Then

gldim. A < gldim.B+1,

I(A) <I(B)+1,

and these bounds are sharp.

Proof. The second inequality is trivial. For the first, assume that Ae is simple projective.
Since AeA is direct sum of Ae, 4AeA is projective as left A-module. Let 4X be an
arbitary left A-module. If 4AeAX # 0, AeAX is direct sum of Ae and projective. Hence,
proj.dim., X < projdim.a(X/AeAX). If AeAX =0, X is a B-module. It is enough to
show that if X is a B-module, then

proj.dim.4 X <1+ proj.dim.pX.

This is the same as the Statement 1 of [4].
In case of eA is simple injective, we can show by duality. O

Remark 1.1. In the above Lemma, the word “simple” can be replaced by “semi simple”.

Lemma 1.2, If A is an algebra whose quiver has no oriented cycles then gl.dim.A < n—1.
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Proof. If there are no sink vertices, each vertex is the starting point of some arrow. Then
there exists an infinite chain of arrows and this forms an oriented cycle.

So we may assume that n is a sink vertex. Set B = AfAe,A. Since B has no oriented
cycles, using Lemma 1.1 we complete the proof. O

Example 1. In the above lemma, the bound of global dimension is sharp. Let A be an
algebra defined by the following quiver with relations {4104 = 0(1 < i < n - 2)}.

¢4 [« 4 Qp-1
1_1.2—2....L,n

Then the global dimension of A isn — 1.
Next theorem is due to Gustafson[3].

Theorem 1.3 (Gustafson). Let A be a serial algebra. If the global dimension of A is
finite, then

gl.dim.A < 2n~2,

l(A)<2n-1,

and these bounds are sharp.

Serial algebras have at most one oriented cycle. So, next theorer. is generalization of
Theorem 1.3.

Theorem 1.4. Let A be an algebra whose quiver contains at most one oriented cycle. If
the global dimension of A is finite, then

gl.dim A <2n -2,

{(A) <2n-1,

and these bounds are sharp.

Proof. Using Lemma 1.2, we may assume @ 4 has unique oriented cycle. If Q4 has a sink
or source vertex, take the corresponding idempotent e and make new algebra B = A/AeA.
Then Qg contains one oriented cycle and by the Lemma 1.1 gl.dim.A < gl.dim.B + 1.
We continue this process until we get the algebra U that has no simple projective nor
simple injective module. Then Qy is the following shape.

1—2—-—m

U must be a serial algebra. So the Theorem 1.3, gl.dim.U < 2m -2 and {(U) <2m -1
where m is the number of the non isomorphic simple left modules of /. Using Lemma 1
repeatedly, we can prove the theorem.

For the sharpness of bounds, these are the same as the Gustafson's Example[3]. O

If A is a left or right (not necessarily both) serial algebra and has finite global dimension,
the condition of the theorem holds. So the following corollary is the direct consequence
of the Theorem 1.4.

Corollary 1.5. Let A be a left or right serial algebra. If the global dimension of A is
finite, then
gl.dim. A <2n -2,
l(Ay<2n-1,
and these bounds are sharp.
More over if one of the equality holds, A is a serial algebra.
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2. QUASI-HEREDITARY ALGEBRAS WITH SOME ORIENTED CYCLES

Let N be the Jacobson radical of A. Anidempotent e is said to be a heredity idempotent
of Aif eNe =0 and AeA is projective as a right A-module.

Let {e), ez,- - ,e,} be fixed ordering of the complete set of primitive orthogonal idempo-
tents of A. An algebra A is said to be quasi-hereditary algebra with respect to this ordering
if forany 1 <t < n, & is a heredity idempotent of A/Ae,1 A, where €5 = ej+ejp1+- - -+ep
for 1 < 7 £ n and €,4, = 0. Such a sequence called a heredity sequence.

The following lemma is due to Dlab and Ringel[4].

Lemma 2.1. Suppose that A has a heredity idempolent e. Let B = AjfAeA. Then
gl.dim.A < gl.dim.B + 2
[(A) <2(B)+1.

We call an oriented cycle is essential when it is made by the distinct vertices.

Theorem 2.2. Let A be a guasi-hereditary algebre with m essential oriented cycles. Then
gldimA<n+m-1, '

[(A) 2™ (n—-m+1),

and these bouds are sharp.

Proof. If Ae, is simple projective or e, A is simple injective, we use Lemma 1.1 and

consider the algebra B = A/Ae,A. Then B is again quasi-hereditary algebra with respect

to {e1,€2, -+ ,en—1} which has same number of essentital oriented cycles. Otherwise, if n

is not sink nor source vertex, then n is belong to some essential oriented cycle. In this case,

we use Lemma 2.1 and consider the algebra B = A/Ae,A. B is again quasi-hereditary

algebra with respect to {e),ez,--- ,€,-1} that has m — 1 or less essential oriented cycles.

We continue these processes. Second case does occur at most m times. So we conclude
that

gldimA<2m+(n-m)=n+m -1,
(A< 2™(n—-m+1).
O

Remark 2.1. In the above theorem, we may assume m < n — 1. Since otherwise these
bounds exceed 2n — 2 and 2™ — 1 respectively.

Corollary 2.3. Let A be a left serial quasi-hereditary algebra. Then gl.dim.A < n and
{(A) < 2n -1, and these bounds are sharp.

Example 2. Let A be a serial algebra of second type with relation {ai10s =0(1 <i <
n — 2),a1an, = 0}. Where n > 3 and ¢; is an arrow fromitoi+1 (1 <i<n-1), and
@, is an arrow from n to 1. Then S, (the simple module corresponding to the vertex n
) is of projective dimension n and the other simple modules are of projective dimension
less than n. So gl.dim.A = n. A is quasi-hereditary with heredity idempotent e,.

Example 3 (Gustafson). Let A be a serial algebra of second type with relation {ajaz - an
0 } Then &; is of projective dimension one, for 2 < i < n, while S, is of projective dimen-
sion 2. Hence, gl.dim.A = 2, and A is quasi-hereditary. The length of Ae; is 2n — 1, and
this is the maximal length among the indecomposable projective modules of A. We have
I(A) = maz{l(e;A)} =2n - 1.
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Example 4. Let A be the algebra of

-3 a3 az

123 _"4—5

B i B

with relation {aya3 = azas = ama = Bife = B = 0,181 = fece, a2l = Saas}.
Then A is a quasi-hereditary algebra with respect to {ey, e, €3, €4, €5} and has 3 essential
oriented cycles. Aeg is simple projective module. This is the case of n=5and m =3 in
Theorem 2.2, and gl.dim.A = 7. This shows that the bound of global dimension is sharp.

Example 5. Let A be the algebra of

1&2&5

| l"\l”’

4-2-3

with relation {aya3 = azae = a4 = 0,60, = ﬁlﬁa = 0,01 = a2 = 0}. Then Aisa
quasi-hereditary algebra with respect to {e), ez, €3, e, €5, €6} and has 2 essential oriented
cycles. Aeg is not simple. Projective dimension of Sg is 7. Indeed,

Pb—P—Ph—P—PoF—P®Ph—FP—F—S5—0

is the minimal projective resolution of Ss. Where P; and S; are coressponding inde-
composable projective module Ae; and simple left module Ae;/Ne; respectively. This is
maxmal among S;, so gl.dim.A = 7. This is the case of n = 6 and m = 2 in Theorem 2.2,
and gl.dim.A=7=6+4+2—1 is maximal.
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Let k be a commutative ring containing Q and let A be a commutative
k-algebra containing k. A k-linear mapping d: A — A is called a k-derivation
of A if it satisfies the Leibniz rule: d(ab) = ad(b) + bd(a).

Let d be a k-derivation of A. W denote by A? the kernel of d, that is,

A? =Ker d = {a € A; d(a) = 0}.

- This set is a k-subalgebra of A which we call the ring of constantsof d. If A
is a domain and k is a field, then we denote by Aq the field of quotients of A
and we denote also by d the unique extension of d to Ag. In this case AJ is a

" subfield of A containing k.

Let D be a family of k-derivations of A. Then we have the ring of constants
AP = Ny4ep A? = {a € A; d(a) =0 for all d € D}. We will mostly consider
derivations of a polynomial ring in a finite set of variables. In such a case the
rings of the form A are not interesting for us. It is known ([23], [22]) that in
this case every ring AP is of the form A? for some k-derivation d of A.

If d is a derivation of A, then we denote by Nil(d) the following subset of
A:

Nil(d) := {a € A; 3,50 d*(a) =0}.
This subset is also a k-subalgebra of A and we have: k C A? C Nil(d) C A.
We say that a derivation d is locally nilpotent if A = Nil(d).

Assume now that A = k[X] := k[zy,...,2,) is the polynomial ring over
k. In this case we know a description of all k-derivations of A. If d is a k-
derivation of k[X], then we have the polynomials f; :=d(x,),..., fu := d(z,),

~139-



belonging to k[X], and then
d=fige+- + fage.

Every k-derivation d of k[X] is uniquely determined by a sequence (fi,..., fu)
of polynomials from k[X]. If d is a k-derivation of k[X], then d is locally
nilpotent if and only if z,, ..., z, € Nil(d).

Locally nilpotent derivations of polynomial rings play an important role
in algebra and algebraic geometry. It is well known that many open famous
problems may be formulated using derivations or locally nilpotent derivations
and their rings of constants. On the list of such problems are: the cancella-
tion problem, the embedding problem, the linearization problem, the Jacobian
conjecture, tame generator conjecture, the fourteenth problem of Hilbert and
others (see, for example, [17], [12], [10]). On this lecture we present some old
and new results concerning the fourteenth problem of Hilbert.

Let k be a field of characteristic zero, n > 1, k[X] := kl[z), ..., z,] the poly-
nomial ring over k, and k(X) := k(z,,...,z,) the field of rational functions
over k. Assume that L is a subfield of k(X) containing k. The fourteenth
problem of Hilbert is the lollowing question ([21]).

Is the ring L N k[X]| finitely generated over k?

In 1954 Zariski ([29]) proved that the answer is affirmative if tr.deg,L < 2.
It is known, by a famous counterexample of Nagata ([21]), that if tr.degL > 4,
then it is possible to obtain a negative answer. If tr.deg,L = 3, then the
problem is still open."

Assume that d is a k-derivation of k[X]. Then we have the field L :=
(k[X ]")0, the field of quotients of the constant ring k[X]¢, which is a subfield
of k(X) containing k. The intersection L N k[X] is equal to k[X]?. So, in this
case, the fourteenth problem of Hilbert is the following question.

Is the ring k|X]? finitely generated over k?

In this question k is of characteristic zero. If char{(k) > 0, then it is easy
to show ([25]) that the answer is affirmative. So, let again char(k) = 0. Using
the above mentioned result of Zariski it is not difficult to show (see [25]) that
if n € 3, then the answer is affirmative. What does happen for n > 47

In 1993 Derksen ([7]) showed that the ring from the Nagata counterexample
is of the form k[X]? for some derivation d of k[X] with n = 32. Thus, he proved:

Theorem 1 (Derksen). There ezists a k-derivation d of k[X] := k[z, ..., T3]
such that k[X|? is not finitely generated over k.
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If G is a subgroup of Aut,(k[X]), the group of all k-automorphisms of k[ X],
then we denote by k[X]€ the subalgebra of invariants of G, that is,

k[X]C = {f € k|X]; o(f) = f for all 0 € G}.
In 1994 the author, inspired by the above Derksen theorem, proved:

Theorem 2. If G C GL,(k) is a connected algebraic group, then there exists -
a k derivation d of k[X] such that k[X]¢ = k[X]°.

In 1990 Roberts ([27]) gave a new counterexample to the fourteenth prob-
lem of Hilbert with n = 7. In 1994 Deveney and Finston ([9]) realized the
Roberts counterexample in the following form.

Theorem 3. Let d be the k-derivation of k[X] := k[z,, T2, T3, ¥1,Y2, Y3, V4l
defined by d(z,) = d(z;) = d(z3) =0 and

diy) =1z}, dly) =13, d) =13, dw)=(z12275)%

Then the ring k| X]® is not finitely generated over k.

Using this theorem one can easily deduce that if n » 7, then there always exists
a k-derivation d of k[X] such that the ring of constants k[X]? is not finitely
generated over k.

Observe that the derivation d from the above theorem is locally nilpotent.
This derivation has no slice. We say that a locally nilpotent k-derivation d of
a k-algebra A has a slice if there exists an e¢lement s € A such that d(s) = 1.
It is well known (see for example [12] or [22]) that if A is a finitely generated
k-algebra and d is a locally nilpotent k-derivation of A having a slice, then the
ring of constants A¢ is finitely generated over k.

Similar examples of derivations for n > 7 one can find, for instance, in [16]
and [13]. Later, in 1998, Freudenburg ([14]) constructed a locally nilpotent
derivation with the same property for n = 6.

Theorem 4 (Freudenburg). Letd be the k-derivation of
k|X] := k[z1, 22, %1, ¥2, 3, Ya] defined by d(z,) = d(z2) =0 and

dyp) =2}, dly) =23, dy) =23, dyl) =iz
Then the ring k[X]? is not finitely generated over k.

In 1999, Daigle and Frendenburg ([4]) gave a similar example with n = 5.
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Theorem 5 (Daigle and Freudenburg). Let d be the k-derivation of the
polynomial ring k[ X] := k[e, b, z,y, z] defined by d(a) = d(b) =0 end

d(z)=a? dy)=az+b, d(z)=y.
Then the ring k| X|¢ is not finitely generated over k.

Observe that also in this case the derivation d is locally nilpotent. So,
if n < 3, then k[X]? is always finitely generated over k, and if n > 5, then
there exists a k-derivation (even locally nilpotent) of k[X] with non-finitely
generated ring of constants.

For n = 4 the problem is open. In this case there is no counterexample
for arbitrary derivations and we do not know if k[X]|? is finitely generated
for locally nilpotent derivations. In the last case we know, by the result of
Maubach ([19]), that k[X]? is finitely generated if d is locally nilpotent and the
polynomials d(z,), d(z2), d(z3) and d(z,) are monomials. Recently Daigle and
Freudenburg ([6]) proved that the ring of constants of any triangular derivation
of k[z,,2,, T3, z4] is finitely generated over k. We say that a derivation d of
k[X] is triangulerif d(z;) € k[z,,...,zi]| foralli = 1,...,n. Every triangular
derivation of k[X] is of course locally nilpotent.

Let d be a k-derivation of k[X| = k[z,, ..., 2,), where k i3 a ring containing
Q. If k| X]% % k and k[X]? is finitely generated over k then we denote by (d)
the minimal number of polynomials in k[X] < k which generate k[X]? over k.
Moreover, we assume that y(d) = 0 iff k[X|? = k, and v(d) = oo iff k[X]¢
is not finitely generated over k. We already know from the previous section
that there exist a natural number n and a k-derivation d of k[X] such that
7(d) = co.

If k is not a domain, then there always exist k-derivations of k[X] (even
for n = 1) with non-finitely generated ring of constants. It follows from the
following proposition which we may find in [12].

Proposition 6. Assume that k contains fwo nonzero elements a and b such
that ab = 0. Let d be the k-derivation of k[X] defined by: d(z,) = az,, d(z;) =
0, ..., d(z,) =0. Then y(d) = o0.

More ezactly, k[X)? = k[zs,Z3, ..., Tn, b7y, b2d, 023, .. .

If d = 0, then it is clear that y(d) =n. If n =1, k is a domain and d # 0,
then of course y(d) = 0. Now we assume that k is a domain, d # 0 and n > 2.

It is known ([28], [11]) that if k is a field then every Dedekind k-subalgebra
of k[X] is a polynomial ring in one variable over k. As a consequence of this
fact we obtain
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Theorem 7. Let d be a nonzero k-derivation of k[X], where k is a field of
characteristic zero. If tr.deg(k[X]?) < 1, then y(d) < 1

It follows from the above theorem that if k is a field of characteristic zero
and d is a nonzero k-derivation of k[z,y], then y(d) < 1. The same is true
when k is a UFD.

Theorem 8 ([1]). Let k be a UFD containing Z. If d is a nonzero k-
derivation of k[z,y], then y(d) < 1

If k is not a UFD (even if k is noetherian), then the followmg proposition
shows that Theorem 8 does not always hold.

Proposition 9 (Berson). Let k := C[t?,%]. Consider the k-derivation d of
klz,] defined by :
d(z) =, d(y) =

Then k is not a UFD, and k[z,y]? is not ﬁmtely generated over k.

Observe that the derivation d from the above example is locally nilpotent.
Similar examples of locally nilpotent derivations of k[z,3] with non-finitely
generated rings of constants one can find in [2].

Now let n = 3. We already know from if % is a field, then y(d) < oco.
" However in this case the number ~(d) is unbounded. Strelcyn and the author
([26]) proved that if n > 3 and r > 0, then there exists a k-derivation d of k[X]

~ such that y(d) = .

In some cases the number y(d) is bounded. As a consequence of Theorem 8
we obtain that if k is a UFD containing Z and d is a nonzero k-derivation of
k[z,y, 2] such that d(z) = 0, then y(d) < 2. For locally nilpotent derivations
over a field the number v(d) is also bounded.

Theorem 10 (Miyanishi [20]). Ifd is a nonzero locally nilpotent derivation
" of k[z, y, 2|, where k is a field of characteristic zero, then k[z,y, z]% = k[f, 9]
for some algebraically independent polynomials f, g € k[z,y, z].

There exists also the following homogeneous version of this theorem.
Theorem 11 ([30], [3]). Let d be a nonzero homogeneous locally nilpotent
derivation of k[z, y,z]. Assume that the degrees of z,y,z are positive. Then

klz,y,2]¢ = k[f, g], for some homogeneous polynomials f,g € k[z,y, 2]

Note also the following recent two results for n = 4.
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Theorem 12 ([8]). If k is a field of characteristic zero and d is a nonzero
triangular derivation of k|z,, 22,23, %4] with a slice, then y(d) = 3.

Theorem 13 ([5]). For any integern > 3 there ezists a triangular derivation
d of k[z1,Z2, 23, T4] such thatn < y(d) < n+1.

Various facts and results concerning this subject we may find also in {12],
(18], (15], [24], [22].
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STABLE EQUIVALENCES INDUCED FROM
GENERALIZED TILTING MODULES

TAKAYOSHI WAKAMATSU

1. INTRODUCTION

In the paper [5], for a genuine tilting module T4, H. Tachikawa and the author con-
structed a stably equivalent functor mod-T(A) S mod-T(B), where T(A) = A x DA
and T(B) = B x D B denote the trivial extension algebras. Y. Miyashita [2] and the
author (7] independently defined generalized tilting modules and, in the papers (8, 9], the
author constructed a stably equivalent functor mod-T(A) > mod-T(B) for a generalized
tilting module gT,4 under some conditions, as a generalization of the above result with
Tachikawa. M. Auslander and R. Buchbeitz [1] developed the theory of approximations of
modules. To construct stably equivalent functors, the author also considered approxima-

“tions of modules independently by different name. We call a faithfully balance bimodule

8T a generalized tilting module if the condition Ext"(gT,pT) = 0 = Ext™(T4,T,) is
- satisfied for any n > 0. Miyashita’s generalized tilting module is a generalized tilting
module gT4 in our sense with a restriction pd(gT), pd(T4) < oo. J. Rickard [3] de-
fined tilting complexes and developed the theory of triangulated equivalences of derived
categories of module categories. He observed that the existence of stable equivalence
mod-T(4) = mod-T(B) for a Miyashita’ tilting module T4 follows from his theory.
However, there are many generalized tilting modules with infinite projective and injec-
tive dimension, hence, our construction of stable equivalences does not follow from the
Rickard’s theory in general. In the paper [10], the author proved that any symmetric
algebra A with separable factor algebra A/rad A can be constructed as A(p, %) from an
admissible system (4Ma, ,%) (see the next section for definitions of these) if it has no
semisimple direct factors. The description of symmetric algebra as the form A(yp, %) is a
generalization of trivial extension algebra, because the algebra A(y, %) is identical with
Ax DA if M =0. In that paper, we gave a way of transforming the algebra A{ip, ) into
A{¢7,¥7) by using generalized tilting modules pT,4 and constructed stably equivalent
functor mod-A(yp, %) > mod-A(p”, ¥7), under quite restricted conditions. The purpose
of this paper is to construct such equivalences under reasonable conditions.

Troughout this paper, all algebras and modules are finite dimensional over the ground
field K. The duality functor Homg(?, K) is always denoted by D.

2. SYMMETRIC ALGEBRAS

2.1. Let K be a field and A a finite dimensional K-algebra. We call a pair (i, ) of
A-bimodule homomorphisms

Q: AM@AMs— sM,

THE DETAILED VERSION OF THIS PAPER WILL SUBMITTED FOR PUBLICATION
ELSEWHERE. )
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and
Y: aM ®4Ma— 454
an admissible system for a quasi-Frobenius algebra if the following three conditions are
satisfied:
(S-1) The homomorphism ¢ is associative and nilpotent.
(S-2) The homomorphism ¥ is p-associative in the sense that the equality
P(ip(m) @ mz) @ m3) = P(my @ p(m, @ m3))

holds for any elements m,, ma, my € M.

(8-3) The module 45, is an injective cogenerator and the homomorphism % is non-
degenerate in the sense that one of the conditions y(m®M) =0 and Y(M®m) =0
implies m =0 for m € M.

It is easy to check that the algebra A(p,¥) = A® M & S becomes a quasi-Frobenius

algebra with the multiplication

(a,m,s)- (d', ™', s') = (ad’,am’ + ma’ + p(m @ m’),as’ + sa’ + Y(mm')).

2.2.  An admissible system (p,) for a quasi-Frobenius algebra is called an admissible
system for a symmetric algebra if the injective cogenerator 4S5, is isomorphic to the
module 4 D A4 and the condition

(S-4) P(m @ m')(1,) = Y(m’' @ m)(14)

is satisfied for any elements m, m’ € M,

Proposition 1. [10] For an admissible system (@, %) for a symmetric algebra, the corre-
sponding algebra A(p,¥) = AOM @D A is always symmetric. Conversely, any symmetric

algebra A with separable factor algebra A/ rad A is of the form A(p,¥) for a suitable ad-
missible system (¢, ¥) whenever it has no semisimple direct factors.

It should be noted that for a given symmetric algebra A there is a wide choice of
subalgebras A and admissible systems (¢, ¥) over A to express as A = A(yp, 1) generally.

2.3.  We next consider to transform the symmetric algebras A(¢p, %) by using bimodules.
Let gT,4 be a bimodule and ( 4 M4; ¢, %) an admissible system for a symmetric algebra.
We put

8(MT)p = pT ®4 Homa(T, M)p
and define two homomorphisms
T p(MT®s MT)p = a(MT)p

and
Y7 : p(MT ®p MT)p —» pDBp
by
Pt @' ® M) =t®e(f(t)® f'(7))
and v
Pt N[ @ ) =v(f(t) ® F'(7))14),
respectively.
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Proposition 2. The following assertions are equivalent:

(1) (MT; 0", 97) is an admissible system for a symmetric algebra over B.

(2) The homomorphism %7 is non-degenerate.

(3) The homomorphism Opp : MT = T ® 4 Homa(T, M) — Homs(T,T ®4 M) defined
by Orm(t® f)=(t® f(?) = (' = t® f(t')) is bijective.

The third condition in the proposition does not depend on the choice of the algebra
homomorphism B — End(T}). Therefore, from an admissible system (M; ¢, 3) satisfying
the conditions, we can construct many symmetric algebras A(p7,%7) by using any algebra
homomorphisms B — End(T4). Note that the conditions are always satisfied if the
bimodule 4 M, is of the form @L.R AL ®x Ra.

24. In order to define a stable equivalence between A(yp, %) and A(pT,%7) for a tilting
module T}, satisfying some conditions, it will be necessary to describe modules over such
symmetric algebras by using modules over smaller algebras. Let X be a right module over
the symmetric algebra A = A(p, ). Then, since A is a subalgebra of A, X can be seen
as a right module over A and we have two A-homomorphisms

a: X® s My— X4
and
B:X®iDAs— X4
by a(z®@m)=z-mand f(z®s)=2z-sforelementsz€ X,me M and sc DA. It is
easy to check that the followiong condisions are satisfied:
M1l a-(a®@M)=a- (X®@p)+L-(X®P): X @1 MM - X.
(M-2) 8- (B®DA)=0: X® 1 DA®:sDA— X.
M3) a- (BOM)=0:X®1DA®s M - X.
(M-4) B- (@a®DA)=0: X@ M®.DA— X.
Conversely, for any module X, and two homomorphisms a : X ®4 M, — X4 and

B: X®4D As = X4 satisfying the above conditions, we can define a A-module structure
on X by

z-(a,m,s)=ze+a(z@m)+P(z®s)

for elements z € X and (a,m, s) € A. Therefore, we may identify a module X, Wwith
a module X4 which possesses two homomorphisms « and S satisfying the four conditions
above. We call X, the underlying module and two homomorphisms a and 8 the structure
maps.

3. GENERALIZED TILTING MODULES

3.1. Wecall a bimodule 5T, a generalized tilting module if it satisfies the following two
conditions:

(GT-1) pT4, is faithfully balanced, i.e. B = End(T,) and End(sT) = A.
(GT-2) Ext*(sT, sT) = 0 = Ext"(Ta,T4) hold for all = > 0.

We call an exact sequence
00X, To2T1 > -

a left dominant T-resolution of X 4 provided
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(L-1) Ty, € add(T,) for any k=0, 1, ---, and
(L-2) The functor Hom4(?,T') preserves the exactness.
Dually, an exact sequence

a3 T 9Ty X4 0

is called a right dominant T-resolution of X 4 if the conditions below are satisfied:

(R-1) T, € add(Ty) for any £ =0, 1, ---

(R-2) The functor Hom4(T, ?) preserves the exactness.

We denote by Cog(T,) the class of all A-modules with left dominant T-resolutions and,
similarly, by Gen(T,) the class of all mudules with right dominant T-resolutions. Define
the module classes C(T4) and D(T4) by

C(Ty) = n Ker Ext™(T4,?) NGen(Ta), D(T4) = n Ker Ext™(?,T4) NCog(T,).

n>0 n>0

Proposition 3. [7,8,9] The functors Hom( gTa,?) and (? ®p T4) induce an equivalence
C(T4) = D(DTg). Dually, the functors Hom( 4D Tg,?) and (? ®4D Ts) induce an equiv-
alence D(T4) = C(DTg). Moreover, defining the classes PC and IC for a module class C
by PC = {W | VC € C,Ext">*(W,C) = 0} and IC = {V | VC € C,Ext™>°(C,V) = 0},
we have PC(T4) C D(T4), ID(T4) C C(T4) and TPC(T4) = C(T4), PID(Ts) = D(Ty).
Purther, we have the equivalences ID(T,) = PC(DTp) and PC(T,) = ID(DTs) by
restricting the above equivalences.

3.2. For an admissible system (M}, 1) over the algebra A and a generalized tilting mod-
ule 5T, we want to know when the induced system (M7, 7 ,97) becomes an admissible
system over the algebra B.

Proposition 4. Let gT,4 be a generalized tilting module and (¢,v) an admissible system
for a symmetric algebra defined over ;M,. Assume that the modules My and T @4 M4
are members of the class C(T4). Then, the following assertions are equivalent:

(1) The homomorphism Orp : T ® 4 Homa(T, M) — Homu(T, T ®4 M) is bijective.

(2) The sequence

«+ = Hom,(T, P, ® 4 M) = Hom,(T, Po @4 M) = Homuy(T, T ®4 M) - 0

is exact, where --« — P, = Py = T — 0 is a projective resolution of T4.
(3) Q(T) ®4 My € C(TR) for alln> 0.
(4) The functor (? @4 M,) sends the modules in the class PC(T,) into C(Ty).

In the case pd(T4) < oo, we can say more.

Proposition 5. Let gTa be a generalized tilting module with pd(T,) < oo and (p,¥)
an admissible system for a symmetric algebra over ;M,. Then, My € C(T,) implies
O (T)®a My € C(T,) for alln > 0. Therefore, the condition T ®4 M, € C(T4) and the
bijectivity of the homomorphism Or p follow automatically.

3.3. Approximations. In order to define stable functors in the next section, we will need
to use approximations of modules with respect to the tilting modules gT4 and 4D Tjs.
To define the kernel functor Ker: mod-A — mod-T', we will use PC(T4)-approximations
of A-modules. Dually, to define the cokernel functor Cok : mod-I' — mod-A, we wﬂl use
ID(D Tg)-approximations of B-modules.
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For a module X4, a homomorphism W 5 X is called a right PC(T4)-approximation
of X if (1) W € PC(T4) and (2) Hom(W’,v) is surjective for any module W’ in the
class PC(T,). Since the class PC(T,) contains a generator A,, if X has a right PC(T,)-
approximation homomorphism « it must be surjective. Further, since PC(T,) is closed
under extensions, we have Kery € C(T4) = IPC(T,). Conversely, from an exact sequence

0-oV-oW3Xo0
with V € C(T,) and W € PC(T,), we have a right PC(T,)-approximation v of X as
easily seen. We denote by
Cok(C(T4), PC(T4))
the class of all modules X4 with right PC(T,)-approximations. The module class
Ker(ITD(D T), D(D Tp))

is defined in the dual manner. Hence, the class Ker(ZD(D T3), ’D(D Ts)) c01151sts of all
modules Yp for which there are exact sequences

0-YSHso Q-0
. with S € ID(DT3) and Q € D(D Ts).
Proposition 6. [I] The conditions
Cok(C(Ty), PC(T4)) = mod-A and Ker(ITD(DTs), D(D Ts)) = mod-B
hold under the one of the assumptions. below:

(1) Both pd( gT) and pd(T4) are finite.
(2) A or B is representation-finite.

4. CONSTRUCTION OF STABLE EQUIVALENCES

4.1, Let ( 4M4, 9, ) be an admissible system for a symmetric algebra over A. Through-

out this section, we assume that T, is a tilting module satisfying the following conditions:

(1) The equality Cok(C(Ta), PC(T4)) = mod-A and Ker(ZD(DTp), P(D Tg)) = mod-B
hold.

(2) The modules M4 and T ®,4 M, are in the class C(Ty).

(3) The homomorphism 074 is bijective.

Then, by Proposition 2, (MT, T, 97) is also an admissible system for a symmetric algebra

over B. We put A = A(p,¥) and " = A(p7,%7T). The main purpose of this paper is to

show that thie stable categories mod-A and mod-T’ are equivalent. Put pNp = M7 and

AUg = Hom,(T, M) = Hompg(T, N).

Proposition 7. The following are true:
(1) pN and pN ®p T are in C(gT).
(2) The homomorphism
6rn : Homp(T,N)®p T — Hompg(T,N®3pT), g®t— (t'— g(t') ®t)
is bijective.
(3) The system (M, @, ) is identical with (MT)T, ()T, (¥7)T).
(4) The isomorphisms s M4 = AU®pg T, and gNg = gT ®4 Ug hold.
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Therefore, we have
A=A Ue®sT)®(DT®sT)
and
r=Be®(T®aU)®(T®,:DT).
Then, fromIF'@pT =T (TRAURsT)®(TR,DT®pT) = T®4 A, we get a bimodule
rOA=rI'®sT=T®4Ax.

4.2. Cokernel Functor. Let (Yp;0,7) be a '-module and

00Ye S S(Y)= Q)0

an exact sequence with S(Y) € ID(DTs) and Q(Y) € D(DTs). We define a A-
homomorphism

by :Y®pT =Y @ 0> HomB(DT,S(Y)) ®4A

by using the structure maps o, 7 and the ZD(D Tg)-approximation homomorphism 4.
We observe that the module Homg(D T, S(Y)) ®4 A as an A-module is isomorphic to
the direct sum of three modules Homg(D T, S(Y)), Homg(D T, S(Y)) ®4 (U ®5 T) and
Homg(DT,S(Y))®4(DT®pT). Three components of the map ¢y are defined as follows:

Y ®5 T 5 Homa(DT,Y) ""3™ Homg(D T, S(Y)),

Y@ T Y S(Y)®s T =$" Homp(DT,S(Y)) ®4 DT ®5 T
and
o* HoﬁU,&) =
Y ®3 T = Homp(U,Y) Homg(U,S(Y)) > Homg(DT,S(Y))®, U ®p T,

where 7* and ¢* are the adjoint maps of 7 and o and the isomorphism Homg (U, S(Y)) 3
Homg(DT,S(Y)) ®4 U ®5 T is given by composing the isomorphisms

HomB(DT) S(Y)) ®a HomB(Ul DT) - HomB(U, S(Y))7 f®g — f g
and Homg(D T, S(Y)) ®4 Homg(U,DT) = Homg(DT,S(Y)) ®4 U @5 T.

Proposition 8. The map &y : Y @ © = Homg(D T, S(Y)) ®a4 A is an injective homo-
morphism of A-modules.

By the above result, we have a A-module Cok(Y) = Cok(fy) from any -module Y, by
using its structure maps o, 7 and left ZD(D T'g)-approximation homomorphism 4. It is
checked that the correspondence Y — Cok(Y) defines a functor Cok : mod-T' = mod-A,
which we call the cokernel functor. Further, we have

Proposition 9. The ﬁmctor_ Cok : mod-I"' = mod-A induces a functor mod-I" — mod-A.
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4.3. Kernel Functor. The kernel functor Xer : mod-A — mod-I'" is defined in the dual
manner. For a A-module (X4, &, ), using an exact sequence

05 V(X)»WX)DX >0

with V(X) € C(TA) and W(X) € PC(T,), we first define a surjective homomorphism of
I'-modules

Px : Homg(I', W(X) ®4 DT) = Homy (6, X) = Homx(T, X).
Three components of the map px is given by

Hom(T, Homa(D T, W(X) @4 DT)) ™%

Hom

Homa(T, W(X)) """ Hom (T, X),

W(X)®4DT "B X@4DT 5 Homy(T, X)
and
D Homa(W(X),DU) = W(X) @, U"S X ®, U % Homa(T, X),

where we used the isomorphisms

Homg(T @, DT, W(X)®4DT) = Homu(T, Homg(DT,W(X)®,DT))
and

w: Homg(T ®, U, W(X)®4 DT) = DHom(W(X),DU).

The isomorphism w is the composition map of the canonical isomorphism

Homg(T ®4 U, W(X)®4 DT) = D(Homuy(T,DU) ® g Hom4(W(X), T))
with the inverse of the dual of

Hom (T, DU) ®p Hom (W (X),T) = Homs(W(X),DU) (f®g = f-g).

Then, the correspondence X + Ker(X) = Ker(px) defines a functor mod-A — mod-T
and it induces the kernel functor mod-A — mod-T" of stable categories.

4.4. Stable Equivalence. We have now two functors Cok : mod-I' — mod-A and
Ker : mod-A — mod-T". In order to prove the equivalence mod-A = mod-I' by using
those functors, we have to study ZD(D Tz)-approximations of the B-modules of the form
Ker(X)p and also PC(T4)-approximations of the A-modules of the form Cok(Y)4. We
will describe only ZD(D T )-approximations of the modules Ker(X) since the arguments
are symmetric. First, we have an exact sequence

0 - Ker(X) = Homi (T, W(X))® W(X) @1 U & W(X)®, DT — Homx(T, X) — 0.
Since W(X) € PC(Ta) C Cog(Ta), we have a commutative diagram

0 0
1 1
0 - VX) » WX) - X =20
I ! !
0 - VX)) » T(X) - WBX) - 0
1 1
Wi(X) = Wi(X)
1 1
0 0
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with W, (X) € PC(T4) and Vi(X) € C(T4). Therefore, we have an exact sequence
0 = Homy (T, W (X)) = Hom4(T, X) & Hom4 (T, T(X)) = Hom4(T,i(X)) = 0
and get the
0 = Ker(X) = Hom4(T,T(X)) @ W(X) @4 U ® W(X)®4, DT — Homu(T, V(X)) = 0.
From the ID(D T )-approximations
0 = Hom4(T, T(X)) = S(Homx(T,T(X))) = Q(Hom4(T,T(X))) = 0
and
0 W(X) @, U = S(W(X)®aU) = QW(X) @4 U) = 0,
we obtain an exact sequence
0 — Ker(X) = S(Hom4(T,T(X))) ® SW(X)@ . U)@W(X)®4DT =2 Q=0
for which the sequence
0 = Hom(T, V(X)) = Q = Q(Hom(T, T(X))) ® QW(X)®4U) =0

is exact. The left and right terms in the sequence are members of the class D(D Tp) which
is closed under extensions. Hence, the middle term Qp is also in D(DTg) and, therefore,
the momomorphism

Ker(X) = Homa(T,W(X)) @ W(X)®4,U ® W(X)®4DT

is a left ZD(D T'p)-approximation of the module Ker(.X)g. Then, using the above approx-
imation of Ker(X), we can calculate the module Cok(Ker(X)).

Proposition 10. The module Cok(Ker(X)), is isomorphic to the direct sum of X, with
projective modules

Homg(D T, S(Homu(T, T(X)))) ®4 Ay and Homg(DT,S(W(X) ®4U)) ®4 Ax.
Conbining the above result with its dual, we have

Theorem 11. Let (4Ma, p, ) be an admissible system for a symmetric algebra and pT4
a generalized tilting module with the properties

(1) Ker(ZD(DTs), D(D Ts)) = mod-B, Cok(C(T4), PC(T4)) = mod-A,

(2) My, T®s My € C(TA), and

(3) Orn : T ® 4 Hom(T, M) = Homa(T, T ®4 M) is bijective.

Then, for the symmetric algebras A(p,¥) and A(¢T,¥T), we have an equivalence of stable
module categories mod-A(p, ¥) =~ mod-A(pT, ¢7).

5. TiLTING COMPLEXES

5.1. For a (generalized) tilting module T, with pd(gT), pd(T4) < o0, J. Rickard [3]
showed the eistence of derived equivalences D*(A) = D(B) and D*(T(A)) = D*T(B)),
where T(A) = Ax D A and T(B) = B x D B stand for trivial extension algebras. He also
proved that the existence of a derived equivalence D*(A;) = D*(A,) implies the existence
of a derived equivalence mod-A, = mod-A; for selfinjective algebras A; and A;. Therefore,
for a (generalized) tilting module gT4 with pd(gT), pd(T4) < o0, the existence of a stable
equivalence mod-T(A) = mod-T(B) follows from his results stated above. In that paper,
le actually proved that the projective resolution P* of T4 becomes a tilting complex with
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B 2 Endpe(4y(P*) and, similarly, the induced complex P* ® 4 T(A) becomes also a tilting
complex with T(B) & Endpsza)y(P* ®4 T(A)). In this section, we remark that those
results are still true in the case of symetric algebras A(yp, %) of admissible systems (y, ¥).

5.2. For an algebra A, by A-modules we always mean finitely generated A-modules as
before. Denote by K(A) the homotopy category of all complexes consisting of A-modules.
For bounded complexes P* and Q°* consisting of projective modules, we have

Homps( 4)(P*, Q) = Homg4)(P*, Q°).

We start with a simple observation.
Proposition 12. Let P* and Q°* be bounded complezes consisting of projective A-modules
and AV, an A-bimodule. Then, we have an isomorphism

Homg4)(P*,Q° ®4 V) = D Homg(4)(Q*, P* ®4DV)
which is natural on P* and Q°.
Corollary 13. Let A be a Frobenius algebra with Nakayama automorphismv € Aut,((A),
i.e. AAx = DA, and P*, Q* bounded complezes consisting of projective modules.

Then, we have Endy4)(P*, Q’) Homy4)(Q°, Py). Terefore, if A is symmetric then so
" 18 Endx(A)(P )

By the above corollary, as endomorphism rings of bounded complexes consisting of pro-

jective modules, we can construct many symmetric algebras from a given symmetric alge-
bra. Now, we back to the consideration of the induced complexes. Let P* be a bounded
complex consisting of projective A-modules. For an admissible system (4 Ma;,%), we
have the induced system

(Endieay(PyHOmi(4)(P*, P* © 4 M)Endgay(Poys o™ "),
where the maps ¢ and ¥** are defined as follows: First we define a natural map c from
Homy(a)(P*, P* ®4 M) ®kndyay(P+) Hompe()(P*, P* ®4 M)
to Homy4)(P*, P* ® 4 M ®4 M) by the correspondence f* ® ¢* — (f* ® M) - g*. Next,
we have two morphisms ¢ = Hom(P*P* ® ¢) from Home(4)(P*,P* ®a M ®4 M) to
Hom,c(A)(P°, P ®a M) and ¢’ = Hom(P’,P’ ® ‘{b) from Hom,;(A)(P’, pe ®a M ®a M)
to Homx4)(P*, P* ®4 D A). We also have an isomorphism
7 Hom,c(A)(P’, P*®4 DA) 3 DEndx(A)(P.)

by Proposition 12. Finally, we put ¢ =¢'-cand ¢ = p-9¢'-¢c

Proposition 14. The induced system (¢*,9*) over Endx(4)(P*) is an admissible system
for a symmelric algebra and the isomorphism

A", 9P") = Endic(apn(P° ®a Alp, ¥))
holds.

Let T4 be a (generalized) tilting module with finite projective dimension on both side
and P* a projective resolution of T4. Then P* is a tilting comples over A. By modifying
the proof of Rickard [3], we have

Proposition 15. Assume that M, is in the class C(T,). Then, the induced complea:
P* @4 A, ¥) is a tilting complez again over A(p, ).
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Under the assumption of Proposition 15, it is easily checked that the isomorphism
Homy(4)(P*, P* @4 M) = Homx(T,T ®4 M) holds. In this case, we also have an isomor-
phism 07,3 : T ® 4 Homa(T, M) = Homs(T,T®4 M). Then, easy verification shows that
the system (p”*,%"") is identical with (7, %T). Therefore, we have an isomorphism

A", 97) = Endeaun(P* ®4 Alp, ¥)).

In the paper [3], J. Rickrd also proved that any Brauer tree algebra can be transformed
into a star algebra which is uniserial, by using tilting complexes. We observe here that
such transformations are realized by applying our construction successively. In fact, any
Brauer tree algebra can be represented as an algebra A{p,%) of an admissible system
(w,%) over an iterated tilted algebra A of type A, in such a way that there is an APR-
tilting module gT4 and the corresponding algebra A(pT,%7) is a Brauer tree algebra
whose number of radical-generators outside of the exceptional cycle in the Brauer quiver
is smaller than that of the original algebra A{y,%). Similar process is explained in the
previous paper [6].
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Foundation of the Representation Theory of Artin Algebras,
Using the Gabriel-Roiter Measure.

Claus Michael Ringel

1. The Setting.

Let A be an artin algebra (this means that A is an associative ring with 1, its
center is a commutative artinian ring and A is finitely generated as a module over its
center), we always may (and will) assume that A is connected (this means that the
center i8 a local ring). Let Mod A denote the category of all (left) A-modules and
mod A the full subcategory of all finitely generated modules. Usually, we will deal
with finitely generated modules and call them just modules, given such a module
M, we denote by |M]| its length (this is the length of any composition series, recall
that this is an invariant of the module according to the Jordan-Hélder theorem).

Our interest concerns indecomposable modules: given an arbitrary, not neces-
sarily finitely generated module A and submodules M;, M, of M, then we write
M = M; & M; provided M; N M; = 0 and M, + M, = M and call this a direct
decomposition of M; we say that M is indecomposable, provided M is nonzero and
the only direct decompositions M = M; @ M, are those with M; = 0 or Mz = 0.
Of course, any finitely generated A-module can be written as a finite direct sum of
indecomposable modules, and such a decomposition is unique up to isomorphism
(according to the Theorem of Krull-Remak-Schmidt); the reason for this uniqueness
is the fact that any indecomposable module of finite length has a local endomor-
phism ring.

The main problem of representation theory is to find invariants for modules and
to describe the isomorphism classes of all the indecomposable modules for which
such an invariant takes a fixed value. A typical such invariant is the length of a
module: the simple modules are those of length 1 (and there is just a finite number
of such modules), the information concerning the indecomposable modules of length
2 ig stored in the quiver (in case we deal with a finite dimensional algebra over some
algebraically closed field) or the “species” of A. Given any invariant +, as a first
question one may look for values of finite type: these are those values v such that
there are only finitely many isomorphisms classes of indecomposable modules M
with 4(M) = v. The invariant to be discussed here is the Gabriel-Roiter measure.

‘The Gabriel-Roiter measure was introduced (under the name “Roiter mea-
sure”) by Gabriel in [G] in order to clarify the intricate induction scheme used by
Roiter [Ro] in his proof of the first Brauer-Thrall conjecture. Gabriel’s analysis
of Roiter’s proof is a quite non-trivial achievement and it merits to add his name
to the concept. Indeed, the definition of what we call the Gabriel-Roiter measure
seems to be strange on first sight, but as we are going to show it embodies a com-
plete theory. Recall that the first Brauer-Thrall conjecture [Ri3] asserted that an
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artin algebra of bounded representation type is of finite representation type (here,
bounded representation type means that there is a bound on the length of the in-
decomposable representations, and finite representation type means that there are
only finitely many isomorphism classes of indecomposables). Roiter’s proof of this
conjecture marks the beginning of the new representation theory of finite dimen-
sional algebras. Despite the fame of the result, the actual paper of Roiter (and also
Gabriel’s interpretation) was apparently forgotten in the meantime. There was a
later proof of the first Brauer-Thrall conjecture by Auslander and it is this proof,
or its modification due to Yamagata, which usually is presented. Auslander’s proof
has the advantage that it works for artinian rings, not only for artin algebras, but
- the usual references do not even exploit this, but use it as a striking application
of the Auslander-Reiten theory for artin algebras (which it is). It is worthwhile to
recall the old proof of Roiter and the methods involved. These methods can be used
and should be used as a kind of foundation for the representation theory of artin
algebras: the Gabriel-Roiter measure seems to be an important first invariant to
be studied when dealing with the representations of an artin algebra. One of the
reasons that this has not been done may stem from the fact that both Roiter as
well as Gabriel work from the beginning only with algebras of bounded representa-
tion type (thus with algebras which are shown to be of finite representation type).
- However, and this will be our main objective, the Gabriel-Roiter measure can be
introduced and used for arbitrary artin algebras, and it unfolds its real strength
when dealing with algebras of infinite representation type! (Actually, there is a
footnote in Gabriel’s paper asserting that one may waive the restriction of dealing
with bounded representation type, but apparently this was overlooked.)

The main topic to be discussed here will be cogeneration of modules: Recall
that given two modules X,Y, one says that X is cogenerated by Y provided the
intersection of the kernels of all maps X — Y is zero. In case X is of finite length,
it is immediate to see that X is cogenerated by Y if and only if X can be embedded
into a finite direct sum of copies of Y. Cogeneration yields a kind of partial ordering
of the isomorphism classes of A-modules. Namely, there is the following observation:

Assume that X,Y are non-zero modules of finite length such that X is cogen-
erated by Y and Y is cogenerated by X, then there is an indecomposable module Z
which is a direct summand of X as well as of Y.

Proof: By assumption, there exist embeddings f: X - Y™ andg: Y = X™ for
some natural numbers n, m. Obviously, this yields an inclusion map h: X — X™™
which factors through Y™. Since for any module X the radical of the endomorphism
ring of X annihilates some non-zero element of X, we conclude that there is an
indecomposable direct summand X' with inclusion m: X’ — X’ and a projection
p: X™ = X' such that the composition phm: X’ — X’ is invertible. Since this
invertible map phm factors through Y, the module X' occurs as a direct summand
of Y™ and therefore of Y.

The Gabriel-Roiter measure yp provides a tool for a better understanding of
the cogeneration of modules. It allows to index the isomorphism classes of the A-
modules by a totally ordered set (say a set of real numbers with their usual ordering)
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so that cogenerations are possible only in the given order: Assume that X,Y are
non-zero modules of finite length and without any common indecomposable direct
summand. If and X is cogenerated by Y, then u(X) < u(Y).

- For the proofs of the Main Proposition and Theorems 1, 2 and 3, see [R5).

2. The Basic Definitions.

Let Ny = {1,2,...} be the set of natural numbers. Note that we use the
symbol C to denote proper inclusions. Let P(N,) be the set of all subsets J C N;.
We consider this set as a totally ordered set as follows: If I, J are different subsets
of N;, write J < J provided the smallest element in (J\ J)U(J\T) belongs to J. It
is easy to see that P(N,) with this ordering is complete. Also note that ] CJ C N,
implies that I < J.

The Gabriel-Roiter measure of a module of finite length will be a finite set
of natural numbers. We want to provide a more intuitive understanding of the
Gabriel-Roiter measure, in particular of the total ordering as described above. In
order to do so, we are going to embed the set Py(N,) of all finite subsets of N,
into the ordered set Q of all rational numbers (in section 5 we will extend this
embedding to an embedding of all the possible Gabriel-Roiter measures for arbitrary,
not necessarily finitely generated modules over an artin algebra into the ordered set
of real numbers). ’

Lemma 1. The map r: Py(N1) = Q given by r(I) = 3 .; 2 for I € Py(N))
is injective, its image is contained in the interval [0,1] and it preserves and reflects
the ordering.

Proof: The essential consideration is the following: Let I, J belong to P;(N;)
with ] <J. Thenr(I)=r(INJ)+r(I\J)and r(J) =r(INJ) +r(J\I). Let a
be the smallest element in J\ I. Then r(J\I) > 3% = Y .., % > r(I'\ J), since
I\ J is a proper subset of { € N, | i > a}.

For a (not necessarily finitely generated) A-module M, let u(M) be the supre-
mum of the sets {|M|,...,|M,|} in the complete totally ordered set (P(N;), <),
where M; C My C --- C M, is a chain of indecomposable submodules of M. We
call (M) the Gabriel-Roiter measure of M. Note that the Gabriel-Roiter measure
of a module M only depends on its submodule lattice: if M and N are modules
with isomorphic submodule lattices, then u(M) = u(N).

Examples. Let M be an indecomposable module of length t.
u(M) = {1} iff M is simple (thus t = 1).

u(M) = {1,2} iff M is indecomposable and t = 2.
u(M)={1,2,...,t} iff M is uniform (i.e. its socle is simple).
#(M) = {1,t} iff M is local and has Loewy length at most 2.

We will use the Gabriel-Roiter measure u (or the composition ru) in order to
visualize the category mod A. As abbreviation, let us write A = mod A. For any
finite subset I C N,, we denote by .A(J) the class of indecomposable A-modules M
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with u(M) = I, and we say that I is a Gabriel-Roiter measure for A provided A(I)
s mon-empty. Similarly, let A(< I) be the class of indecomposable A-modules M
with p(M) < I.

A(ST)

" } Q

(1)

[ O

‘ If M is an indecomposable A-module of finite length, we call any filtration
MCMC---CM,CM=M

with (M) = {|M,|,|M2],...,|M-1|, | M|} & Gabriel-Roiter filtration of M; if M is
of length at least 2 (thus t > 2) the module M;_; will be said to be a Gabriel-Roiter
submodule of M. Thus a Gabriel-Roiter filtration exhibits an iterated sequence
of Gabriel-Roiter submodules (in section 5, we will consider also Gabriel-Roiter
filtrations of infinitely generated modules, again using iterated sequences of Gabriel-
Roiter submodules). Given a proper inclusion X C Y of indecomposable finite
length modules, then X is a Gabriel-Roiter submodule of Y iff (YY) = p(X) U
{IY]}. In particular, if X is a Gabriel-Roiter submodule of Y, then for every
monomorphism f: X — Y, also f(X) is a Gabriel-Roiter submodule of Y.
Gabriel-Roiter submodules of a given indecomposable module are usually not
unique, not even unique up to isomorphism (all have however the same length).
For example, for the Kronecker quiver, all the indecomposables of length 2 are
Gabriel-Roiter submodules of the indecomposable injective module of length 3.

3. The Cogeneration Property.

Main Property (Gabriel). Let X,Y),...,Y; be indecomposable A-modules
of finite length and assume that there is a monomorphism f: X — EB:=1 Y.
(2) Then p(X) < max (Y.
{b) If max u(Y;) starts with u(X), then there is some j such that 7; f is injective,
where w;: ,;Y; = Y; is the canonical projection.

Note that (b) immediately implies:
(b") If u(X) = max u(Y;), then f splits.

The assertions (a) and (b’) have been formulated and proven by Gabriel in [G]
using the additional assumption that A is of bounded representation type.
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We conclude: add A(<I) is closed under submodules and any monomorphism
F: X oY with X in A(I) and Y in add A(< I) splits (if X is a class of inde-
composable A-modules, we denote by add & the class of all finite direct sums of
modules in X’). The latter assertion may be reformulated as follows: the modules
in add.A(I) are “relative injective” inside add A(<T).

Corollary 1. If My,..., M, are (not necessarily finitely generated) indecom-
posable A-modules, then pu(@ M;) = max u(M;).

Proof: Since M; is a submodule of M = @) M;, we have max u(M;) < u(P M;).
Conversely, u(M) is the supremum of u(M’), where M’ is a finitely generated
indecompasahle suhmodule of M, thus we have to show u(M’) < max u(M;). Now
M' C @ M|, where M] is a finitely generated submodule of M;. We can write
M = @i M;; with indecomposable modules M;;. Note that M;; is a submodule
of M;, thus u(M;;) < pu(M;). According to part (a) of Main Property, we get
#(M') < max;; u(Mi;) < max; M;, this concludes the proof.

Corollary 2. Let M be an indecomposable module and N a Gabriel-Roiter
submodule of M. Then, for any proper submodule N' of M containing N, the
embedding N C N’ splits.

Proof: First consider the case where N’ is indecomposable. Assume f’ is
not an isomorphism. Then u(N) U {|N’|,|M|} < u(M). However, by assumption
p(M) = p(N)U{|M|} and p(N)U{|M|} < p(N)LV{|N’|, M1}, a contradiction. Now,
consider the general case: Write N’ = @, N; with indecomposable modules N;.
The Main Property (a) asserts that u(N) < max u(N;) and trivially max u(N;) <
p(M). Since u(M) starts with u(N), the same is true for max u(N;), thus by (b)
there is some j such that the map =;f’ is injective, where #;: N' = Nj is the
canonical projection. Besides the monomorphisms m;f’: N — Nj, there also exists
a monomorphism N; — N’ — M. Since the latter is a- proper monomorphism,
and N; is indecomposable, we are in the first case, thus we know that w;f’ is an
isomorphism, thus f’ is a split monomorphism.

The property of the inclusion map f: N = M in Corollary 2 may be called
mono-irreductbility, in parallelity to the Auslander-Reiten notion of irreducibility:
f is a non-invertible monomorphism and any factorization f = f”f’ of f using
monomorphisms f’ and f” implies that f’ is a split monomorphism of f” is a split
epimorphism (thus isomorphism). Irreducible monomorphism are mono-irreducible;
however there are obvious mono-irreducible maps which are not irreducible: for
example consider the path algebra of the quiver

a
e
b

The inclusion map of the simple module S(e) into its injective envelope is mono-
irreducible, however it factors through the projective cover of S(c), thus it is not ir-
reducible. Also, there is the following phenomenon: Given indecomposable modules
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X,Y, there may be irreducible monomorphisms f: X — Y and also a monomor-
phism g: X — Y which is not even mono-irreducible. For example, take the heredi-
tary algebra Aoy, let 5 be simple projective and P the indecomposable projective of
length 4. Then Hom(S, P) is 2-dimensional and the non-zero maps are monomor-
phisms. Thus the monomorphisms (up tp scalar multiplication) S — P form a
projective line; one of these equivalence classes is not mono-irreducible (it factors
through an indecomposable length 2 submodule), the remaining ones are irreducible,
thus mono-irreducible.

Corollary 3. Let N be a Gabriel-Roiter submodule of the indecomposable
module M. Then M/N is indecomposable.

Proof of Corollary 3: Assume M/N = Q) & Q2 with non-zero modules Q;, Q..
For ¢ = 1,2, write Q; = N;/N, where N C N; C M. According to Corollary 2, we
find submodules N/ of N; such that N; = N® N;. Then M = N® N, & Ng, in
contrast to the fact that M is indecomposable.

This corollary asserts, in particular, that any indecomposable module M of
length at least 2 occurs as the middle term of an exact sequence

0-+N->M- M/N=OQ,

where all three terms N, M, M/N are indecomposable. (This exact sequence has the
following additional property: its equivalence class in Ext! (M/N, N) is annihilated
by the radical of End(M/N), where we view Ext!(M/N,N) as usual as a right
End(M/N)-module.)

Also we see: If M and N are indecomposable modules with |N| < |M| and
u(M) = p(N) U {|M|}, then the cokernel of any monomorphism f: N -+ M is
indecomposable. One should be aware that there are plenty of pairs of modules
N, M such that there do exist monomorphisms fi, f2: N — M such that the kernel
of f is indecomposable whereas the kernel of f> is not (for example, let A be the
path algebra of the Kronecker quiver and let N, M be preprojective A-modules of
length 1 and 5, respectively).

One may wonder about the possible modules which occur as factor modules
M/N, where M is indecomposable and N is a Gabriel-Roiter submodule. For the
path algebra of a quiver of type A,, all these factors are serial and of length at
most 2}, a factor of length 1‘2"—‘ occurs for the sincere representation of the quiver
of type Ap (n odd) with a unique source

N

and with arms of equal length.
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4. Main Results.

‘The indecompuosable A-modules of length at most n belong to the classes A(T)
with I C {1,2,...,n}, and there are just finitely many such classes. Thus as soon
as we exhibit (as we will do now) an infinite list of Gabriel-Roiter measures for A,
this implies that A cannot be of bounded representation type. Thus, the following
theorem strengthens the assertion of the first Brauer-Thrall conjecture. In contrast
to the assertion of the first Brauer-Thrall conjecture, the statement is meaningfull
even in case A is a finite ring (i.e. a ring with finitely many elements). Recall that a
Gabriel-Roiter measure I is said to be of finite type provided there are only finitely
many isomorphism classes in A(J).-

Theorem 1. Let A be of infinite n:presentatwn type. Then there are Gabriel-
Roiter measures Iy, I for A with

h<lh<hi< -+ <PB<IP<nl

such that any other Gabriel-Roiter measure I for A satisfies Iy < I < I* for all
t € Ny, and all these Gabriel-Roiter measures I, and I* are of finite type.

We call the modules in | J, A(J;) (or the additive category with these indecom-
posable modules) the take-off part of the category A, and | J, A(I*) (or the additive
category with these indecomposable modules) the landing part of A. The remain-
ing indecomposables (those which do not belong to the take-off part or the landing
part) are said to form the central part. It is the central part which should be of
particular interest in future:

L
L] ) L3}

l; lz 13 ld A

n n

Note that for any n, there are only finitely many isomorphism classes of inde-
composable modules of length n which belong to the take-off part (since they belong
to only finitely many classes .A(l;) and any class A(J,) is of finite type). Simi-
larly, there are only finitely many isomorphism classes of indecomposable modules
of length n which belong to the landing part.

It is obvious that the modules in A(I;) are just the simple modules, those
in A(I;) are the local modules of Loewy length 2 of largest possible length. On
the other hand, the modules in .A(7') are the indecomposable injective modules of
largest possible length. For general ¢, it seems to be difficult to characterize the
modules in A(I;) or A(I*) in a direct way.

Recall that Auslander-Smalg have introduced in [AS] the notion of preprojec-
tive aad preinjective modules (act.ually with reference to the work of Roiter and
Gabriel).

Theorem 2. The modules in the landing part are preinjective.

Since modules which have infinitely many different Gabriel-Roiter measures
cannot have bounded length, we obtain in this way a new proof for the assertion
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that the indecomposable preinjective modules are of unbounded length ({AS],5.11).
But note that usually there will exist preinjective indecomposables which do not
belong to the landing part. For example, any simple module belongs to A({}), thus
a simple injective module is preinjective and in the take-off part, thus not in the
landing part. Also, there may exist preinjective modules Q such that A(u(Q)) is
infinite, as the example of the radical-square-zero algebra with quiver

O 44— O ll o

shows: take for Q the indecomposable injective module of length 2. But there may
be even infinitely many isomorphism classes of preinjective indecomposables which
do not belong to the landing part:

Example. Consider the tame hereditary algebra of tye Ax

P

Q<«—¢C

For a tame hereditary algebra, the Auslander-Smalg preinjectives are just those
modules which belong to the preinjective component.

We denote by S(z) the simple module corresponding to the vertex z, thus S(a)
is projective and S{c) is injective. The top composition factors of the preinjective
indecomposable modules are injective, all but at most one socle composition factors
are projective, the exceptional one will be of the form S(b). Now, in case the socle
is projective, then the GR-measures are as follows:

..+ > 1235689, 10 > 123567 > 1234,
the general form is
12356(89] - - - [3i — 1, 3] --- [3n — 1, 3n|3n + 1,

with n > 0. For n = 4, it looks as follows

A

and for n > 1, the GR-filtration starts with M, C M, C M;, where Mj is the
indecomposable length 3 module seen left: it is uniform, but not serial.
On the other hand, those preinjectives with S(b) in the socle have GR-measure
123|6]9] - - - [3¢]- - - [3n|3n + 2,

with n > 0. For small n > 1, we obtain the values

<. > 12369,11 > 12368 > 1235.
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Here is the picture for n =4

ANAA

now, for n > 1, the GR-filtration starts with M, C M, C M;, where M; is the
serial length 3 module seen right.

It follows that all the preinjective modules with S(b) in the socle belong to the
central part.

In contrast to Theorem 3, the modules in the take-off part are usually not
preprojective. Here is an example: Let A = k|X,Y]/(XY,X3,Y3) and A the ideal
generated by X2 and Y?2 (these elements actually form a basis of A). The take-
off part for A is the same as the take-off part for A/A and these modules are the
preprojective A/A-modules, but none of them is preprojective as a A-module.

Note that there is no dualization principle concerning the take-off and the
landing part (whereas the notions of preprojectivity and the preinjectivity are dual
ones)! If we want to invoke dual considerations, then we have to work with a
corresponding Gabriel-Roiter comeasure which is based on looking at indecompos-
able factor modules in contrast to the Gabriel-Roiter measure which is based on
indecomposable submodules. This will be done in section 7.

It is usually difficult to specify the position of the possible Gabriel-Roiter mea-
sures. But here is such an assertions, dealing with uniform modules:

Proposition. Let I' = (1,2,...,t) and 1 < s < t. Assume the following: for
any simple A-module with injective envelope Q(S) of length greater than s, there
are only finitely many indecomposable A-modules with a submodule of the form S.
Then (1,2,...,s) is a landing measure.

Proof: We show that any indecomposable module M with u(M) > (1,2,...,s)
has a composition factor of the form S, such that |[Q(s)| > s. Thus assume that
u(M) > (1,2,...,s) and take a Gabriel-Roiter-filtration of M. The first s sub-
modules in the filtration are uniform of length i with 1 < i < s. In particular,
M contains a uniform module U of length s. Let S be its socle, thus U embeds
into Q(S), and this is a proper embedding, since otherwise U = Q(S) would be a
direct summand of M. However M is indecomposable and of length greater than
s. This shows that |Q(S)] > sand S C U € M is a submodule of M. By as-
sumption, there are only finitely many such isomorphism classes. This shows that
there are only finitely many isomorphism classes of indecomposable modules M
with p(M) > (1,2,...,s), thus (1,2,..., s) belongs to the landing part.

5. Infinitely generated modules.

Up to now, we have concentrated on A-modules of finite length, however the
Gabriel-Roiter measure was introduced above for all A-modules M, not just those
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of finite length. Note that by definition p(M) is the supremum of u(M'), where M’
are the finitely generated submodules of M (or just the indecomposable ones).

We extend the notion of a Gabriel-Roiter filtration as follows: In case there
exists a (countable) chain of submodules

Mchzc---QUiM.-=M such that p(M) = {|M;| |1},

then we call this chain a Gabriel-Roiter filtration of M. Of course, a finitely gener-
ated A-module M has a Gabriel-Roiter filtration if and only if M is indecomposable.
As a consequence. of Gabriel’s Main Property we show now that also any infinitely
generated module with a Gabriel-Roiter filtration is indecomposable:

Corollary 4. Any module M with a Gabriel-Roiter filtration is indecompos-
able.

Proof: We can assume that there is given an infinite chain
Mchgc---gU,M.:M
1

such that M; is a Gabriel-Roiter submodule of M;4;, for all i > 1. Assume that
there is given a direct decomposition M = U @ V with U,V both nonzero. Note
that fUNM; =0forall i, then U =UNM=Un(JM:)=U{UNAM)=0. This
shows that there is some index s such that UNM, s 0 and also VNM, # 0. Choose
finitely generated submodules U’ CU and V' C V suchthat M\, CM' =U'@® V',
and decompose U’ = @QU;, V' = @ V; with indecomposable modules U; and V;.
Finally, choose ¢ such that M’ C M,.
Now we consider the Gabriel-Roiter measures: We get

p(M,) < max{p(Us), u(V5)} < u(My)

(the first inequality is Main Property (a), the second is trivial). Since M, and M,
belong to a Gabriel-Roiter filtration, it follows that u(A,) starts with u(M,), thus
also max{u(U;), u(V;)} starts with u(M,) and we can apply Main Property (b).
Without loss of generality, we can assume that the composition of the inclusion
M, > @,U: ® @,;V; = M’ and the projection x{ : M’ — U, is injective (where
i = 1 is one of the indices). Recall that there is a non-zero element v € V N M,.
Since M, C M' = U' ® V', we can write v = ' + o' with v’ € U’ and v/ € V'.
However u' = v —1v' € U'NV =0 shows that v = v' belongs to V’. Since v belongs
to V' = @Vj, it is mapped under 7{ to zero. This contradicts the fact that n{ is
injective.

Theorem 3. Let A be of infinite representation type. There do erist modules
which have an infinite Gabriel-Roiter filtration

M]CM2C---gUiMi=M

such that all the modules M; belong to the take-off part.

10
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Note that according to Corollary 4, such a module M is indecomposable. Also,
any finitely generated submodule M’ of M is contained in some M;, thus belongs to
the take-off part. In particular, for any natural number n, M has only finitely many
isomorphism classes of submodules of length n. In general, Theorem 3 will provide
a large number of indecomposable A-modules M, however all these modules have
the same Gabriel-Roiter measure! For example, if X is the Kronecker quiver and k
is a countable and algebraically closed field, then all the “torsionfree kX -modules
of rank 1” (see [Ri2]) occur in this way, and u(M) = {1,2,4,6,8,...}. On the other
hand, for the tame algebra of type A2, there is only one such module M, namey
the string module corresponding to

its Gabriel-Roiter measure is {1,2,4,5,7,8,...}.

The existence of infinitely generated indecomposables for any artin algebra of
infinite representation type was first shown by Auslander [A]. For a discussion of
the question whether a union of a chain of indecomposable modules of finite length
is indecomposable or not, we refer to [Ril].

Let us note that there are indecomposable modules without a Gabriel-Roiter
filtration. Of course, any module with a Gabriel-Roiter filtration is countably gener-
ated, here is an example of a countable generated indecomposable module without a

Gabriel-Roiter filtration: We consider again the tame hereditary algebra of type A2,
and take the Priifer module for the simple module S(b) which is neither projective

nor injective:
its Gabriel-Roiter measure is {1,2,4,5,7,8,...}, but there is no corresponding sequence
of submodules which exhaust all of M.

We have introduced above an embedding of P;(N,) into @. In order to deal
also with modules with are not finitely generated, we consider the set P;(N;) of all
subsets I of N, such that for any n € N,, thereis n’ > n withn’ ¢ I.

Lemma 2. The Gabriel-Roiter measure #(M) of any module M belongs to
Pi(Ny).

Proof. There is m € N, such that any indecomposable injective A-module has
length at most m. Let u(M) = {a, < a2 < :*+ < @; < ---} and assume that for
some n we have ap4¢ =an+tforallte N, Let s=m-a,

There is a chain of indecomposable submodules M), C M2 C --- C My, with
'M,l = a3 for 1 <t S n + s. Since |Mn+¢| = Qnyt = Quyt—1 +1= 'Mn+l—l| +1, we
see that My, is a maximal submodule of M, .. Since M, . is indecomposable,
the socle of M, has to be contained in Mp;¢—,. Inductively, we see that the
socle of M, . is contained in M, for any ¢ > 1, in particular, the socle of M,
is contained in My, thus M, ;, can be embedded into the injective envelope of M,.
Since any indecomposable injective module is of length at most m, the injective

11
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envelope of M, has length at most m - a,, thus |My, ;] < m:a,. But |M,,| =
|{Mn| + 8= (m+1)a, > m - an, a contradiction.

The embedding of Ps(N,) into Q (thus into R) extends to an embedding of
Pi(N,) into the real interval {0, 1]:

Lemma 1'. The map r: Pi(N,) = R given by r(I) = ¥ ;c; 3¢ for I € Pi(N,)
is injective, its image is contained in the interval |0,1] and it preserves and reflects
the ordering.

Remark: The map r can be defined not just on P;(N,), but on all of P(N,),
however it will no longer be injective (indeed, for any element I in P(N,) \ Pi((N,),
there is a unique finite set I’ with r(I) = r(I’)). Of course, one easily may change
the definition of r in order to be able to embed all of P(N,) into R: just use say
3 instead of 2 in the denominator. However, our interest lies in the Gabriel-Roiter
measures which occur for finite dimensional algebras and Lemma 2 assures us that
the definition of r as proposed is sufficient for these considerations.

5. Examples.

Example 1. The Kronecker quiver XH. We have referred to this quiver
already several times, it has vertices a,b and two arrows b — a; its representa-
tions are called Kronecker modules. There are two simple Kronecker modules, the
projective simple module S(a) and the injective simple module S(b). If M is a
Kronecker module, its dimension vector is of the from dim M = (d,,ds), where
d, is the Jordan-Holder multiplicity of S(a), and d; that of S(b). The dimension
vectors of the indecomposable modules are of the form (z,y) with |2 —y] < 1. Here
is the complete list of the indecomposable representatlons in case k is algebraically
closed:

o The preprojectives P, for n € Ny, with dimP, = (n + 1,n) and u(P,) =
© {1,3,5,...,2n+1}.
e The preinjectives Q, for n € Ny, with dimQ, = (n,n + 1) and u(Q.) =
{1,2,4,6,...,2n,2n + 1}.
o The regular modules Rj[n] for A € P!(k) and n € N;, with dim Ry [n] = (n,n)
and p(Rx[n]) = {1,2,4,6,...,2n}.
The totally ordered set of all the Gabriel-Roiter measures for the Kronecker
quiver looks as follows:

P N N LR

Here S = A({1}) = {S(a),S(b)}. Note that there are precisely two accumula-
tion points, indicated by the dotted vertical lines, they correspond to the only
two Gabriel-Roiter measures for infinitely generated modules: to the left, there is
{1,3,5,7,...}, this is the Gabriel-Roiter measure for all indecomposable torsionfree
modules; to the right, there is {1,2,4,6,8,...}, this is the Gabriel-Roiter measure

12
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for the so-called Priifer modules (an account of the structure theory for infinitely
generated Kronecker modules can be found for example in [Ri2]).

A more precise picture of the Gabriel-Roiter measures for the Kronecker algebra
is the following; here the upper sequences are the measures I, the lower numbers
the corresponding values r(I):

12467
1387 124" 1045
13 | 12 | 123
0.5 0.625 I 0.75 0.875
0.65625 0.8125 _ 0.85
0.664 0.828
0.842

In case k is not algebrajcally closed, we have to take into account field exten-
sions of k, or better indecomposable k|{T]-module of finite length N, where k[T is
the polynomial ring over k in one variable T. Any indecomposable k[T]-module
N of length n and with a simple submodule of dimension d gives rise to a regu-
lar Kronecker module with dimension vector (nd, nd) and Gabriel-Roiter measure
{1,3,5,...,2d-1,2d;4d,6d, . .. ,2nd}. Thus we see that the Gabriel-Roiter measure
for the path algebra kA of a guiver A may depend on k (and usually will).

Example 2. The tame hereditary algebra of type Az . Also this algebra
has been referred to before, we want to stress here some features which one should
be aware of. In order to list all the indecomposable A-modules, we use that A is
a string algebra. Thus the indecomposable modules are the string and the band
modules. Again, we restrict to the case of k being algebraically closed.

There is a unique one-parameter family of band modules; they are of the form
Rj[n], where A € k \ {0} and n € N,, with Gabriel-Roiter measure u(R») =
{1,2,3;6,9,---,3n}.

In order to write down the string modules, we use words in a,8,7~!; the
relevant distinction is given by fixing the vertices z,y such that the word starts in
z and ends in y (always n € Np):

zy property dimension GR-measure

aa  preprojective 3n+1 1,2,4,5,7,8,...,3n—2,3n-1,3n+1

ab  preprojective n+2 1,2,4,5,7,8,...,3n—-2,3n—1,3n+1,3n+2
ac  homogeneous 3n+3 1,2,3;6,9,...,3n

ba  regular, non-homog. 3n+3 1,2,4,5,7,8,..,3n-2,3n-1,3n+1,3n+3
bb  regular, non-homog. 3n+1 1,2,4,5,7,8,...,3n—-2,3n-1,3n+1

bc  preinjective 3n+2 - 1,2,3;6,9,...,3n;3n+2

ca  regular, non-homog. 3n+2 1,2,3;5,6,8,9,...,3n—1,3n,3n+2

cb  regular, non-homog. 3n+3 1,2,3;5,6,8,9,...,3n4+2,3n43

cc  preinjective an+1 1,2,3;5,6,8,9,...,3n—1,3n;3n+1

13
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The set of Gabriel-Roiter measures for A has the following structure:

I r F il
o~ oo ool o o ool o0 o o o lae o
s T ! |
aa 21 H be ca ce
ab ch n21
by =22
ba

Here, M denotes the class of all homogeneous modules (the bands as well as the
strings of type ac), whereas S are the simple modules.

Some observations:

(1) There are many “maximal® GR-measures J (maximality should mean that
no other GR-measure starts with I), in particular see ba, but also bc and ce.

(2) The take-off part contains all the preprojective modules, but in addition also
half of the non-homogeneous tube (namely all the regular modules which- have
the simple module S(b) as submodule.

(3) The landing part contains only half of the preinjective modules (also the
modules bc are preinjective)

(4) The GR-measure apparently does not distinguish modules which have quite
different behaviour, see aa and bb (however, aa and bb will be distinguished in
case we invoke the dual concepts, see the next appendix)

(5) There are three accumulation points I, I',I":

I={1,2,4,5,7,8,10,11,...}
I ={1,2,3,6,9,12,15,...}
I" ={1,2,3,5,6,8,9,11,12,...}

The first one I is the Gabriel-Roiter measure of the torsionfree modules; I’
is the Gabriel-Roiter measure for all the Priifer modules arising from homo-
geneous tubes; I” is that of the Priifer module containing the 2-dimensional
indecomposable regular module as a submodule.

" (6) There is one additional Priifer module, it contains the simple module S(b) as
a submodule: this module does not have a Gabriel-Roiter filtration!

6. Dualization

Dualization. Almost all the considerations presented above can be dualized
and then they yield corresponding dual results. This means that instead of looking
at filtrations

O=MyCMyC---CMy=M

with M; indecomposable for 1 < i < t, we now look at such filtrations with M/M;_,
indecomposable for 1 < i < t. We prefer to use now the opposite order on P(N;),
we denote it by <* (and <*), thus I <* J iff J < I. For a (not necessarily finitely
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generated) A-module M, let p*(M) be the infimum of the sets {|M],...,| M|}
in (P(N;),<*), where M) C My C --- C M, is a chain of submodules of M with
M/M;_, indecomposable for 1 < i < ¢, we call p* (M) the Gabriel-Roiter comeasure
of M. We say that J is a Gabriel-Roiter comeasure for A provided there exists an
indecomposable module M with u*(M) = J.

In order to visualize (P;(N,), <*), we use the embedding r*: (P;(N;),<*) = R
given by r*(I) = —r(J). Note that for any non-zero module M, we have —~1 <
r*(p(M)) < 0. (Actually, it may be advisable to rescale r and r* so that r({1}) =
r*({1}) =0and r(N;) = 1,7*(N,) = 1)

The dual version of Main Property reads as follows:

Main Property®. Let ,...,Y:,Z be indecomposable A-modules of finite
length and assume that there is an epimorphism g: @;_,Y: = Z.
(2) Then maxp*(Y;) <* p*(2).
(b) If max u*(Y;) starts with p*(Z), then there is some j such that gu; is surjective,
where u;: Y; = €, Y; is the canonical inclusion.
(b") If u*(Z2) = max p*(Y;), then g splits.

As a consequence, we see that the class of modules which are direct sums of
modules M with I <* p*(M) for some set I C N, is closed under factor modules. In
this way, one obtains a second interesting filtration of the category of all A-modules
by subcategories, now these subcategories are closed under factor modules.

Let us formulate the dual versions of Theorem 1 and Theorem 2:

Theorem 1°. Let A be of infinite representation type. Then there are Gabriel-
Roiter comeasures Jy, J* for A with

<<z o+ <))

such that any other Gabriel-Roiter comeasure J for A satisfies J; < J < J* for all
t € Ny, and all these Gabriel-Roiter comeasures J; and J* are of finite type.

We do not have a suggestion how to call the modules in |J, A(J¢) orin |J, A(J*).
The indecomposable modules which belong neither to | ), A(Jt) nor to |J, A(J*) may
be said to be form the *-central part.

Note that for any n, there are only finitely many isomorphism classes of inde-
composable modules of length n which belong to |J, A(J;) or to J, A(J*).

The modules in A(J!) are just the simple modules, those in A(J2) are the
uniform modules of Loewy length 2 of largest possible length. On the other hand,
the modules in A(J;) are the indecomposable projective modules of largest possible
length.

Theorem 2*. The modules in | J, A(J;) are preprojective.

There does not seem to exist a dual version of Theorem 3, since Theorem 3
deals with infinitely generated modules. It is the assertion of Corollary 4 which
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breaks down. For example, consider again the Kronecker quiver and let {),, be the
preinjective module of length 2n + 1. Then @Q,,_) is a Gabriel-Roiter factor module
of Qn, for n > 1, and the sequences of epimorphisms

3 Qr— Qh — Qg

may be called Gabriel-Roiter cofiltrations. If we form the inverse limits, we obtain
infinite direct sums of Priifer modules; in particular, such an inverse limit module
is not indecomposable.

7. The Rhombic Picture.

We are going to use now both the measure and the comeasure at the same
time. Given a pair (J,I) of finite subsets I, J of N,, we may consider the module
class

A(J,I)={M | M indecomposable, p*(M)=J, p(M)=1I},

thus we attach to a module M the pair (u*(M), u(M)). The possible pairs (J,I)
can be considered (via 7* and r) as elements in the rational plane Q? :

The horizontally dashed region is the central part (in between the take-off part
and the landing part); the vertically dashed region is the *-central part. The main
information one should keep in mind: The only possible pairs (J, I} of finite subsets
of N; such that A(J,I) contains infinitely many isomorphism classes, are those
which belong both to the central and the *-central part.

Example 1: The Kronecker quiver, with k algebraically closed. The pic-
ture which we obtain is nearly the same as the commonly accepted visualization, the
only exception being the position of the simple modules. One should be aware that
the commonly accepted visualization with the preprojectives and the preinjectives
being drawn horizontally and the tubes being drawn vertically in the middle was
based mainly on the feeling that this arrangement reflects much of the structure
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of the category, but for the actual position of the individual modules there was no
further mathematical justification. The rhombic picture should be seen as a definite
reassurance in this case (but it suggests deviations in other cases).

Even for the Kronecker quiver, one should be aware that there does exist a deviation,
namely the position of the simple modules. Of course, they are usually drawn far
apart, one at the left end, the other at the right end, now they are located at
the same position: in the middle lower corner. But note that the rhombic picture
for the Kronecker quiver and the algebra k[X,Y]/(X,Y)? do not differ, and the
usual Auslander-Reiten picture for the latter algebra puts its unique simple module
precisely at this position (and bends down the preprojective modules on the left as
well as the preinjective modules on the right to form half circles).

Example 2. The tame hereditary algebra of type ;1'21. Here is the
rhombic picture, for k algebraically closed:

Two modules have to be specified separately, the indecomposable modules M, M’
of length 3 and Loewy length 2: M is local, M’ uniform; note that M has type ba,
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M' type ¢b. The accumulation points I,I’,I" for the Gabriel-Roiter measure are
marked on the pu-axis; similarly, the accumulation points J,J’, J” for the Gabriel-
Roiter comeasure are marked on the u*-axis (note that J = I",J' =I',J” = I in
P(N;)). The intersection of the central and the #-central part has been dotted, this
region contains for every n € N, a P!(k)-family of indecomposable representations
of length 3n.

One immediately realizes that the rhombic picture again corresponds quite well
to the commonly used visualization, at least after deleting the simple modules. The
preprojectives and the preinjectives-are arranged horizontally, the regular modules
vertically (there is one exceptional tube of rank 2, it has four types of indecompos-
able modules, namely the types ce, ba (including M), bb and cd (inclusing M’). Let
us take apart these three parts of the category:

Preprojectives Regular modules Preinjectives
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