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Organizing Committee of The Symposium on
Ring Theory and Representation Theory

The Symposium on Ring Theory and Representation Theory has been held annually
in Japan and the Proceedings have been published by the organizing committee. The
first Symposium was organized in 1968 by H. Tominaga, H. Tachikawa, M. Harada and S.
Endo. After their retirement, a new committee was organized in 1997 for managing the
Symposium. The present members of the committee are Y. Hirano (Okayama Univ. },
Y. Iwanaga (Shinshu Univ., 1997-2004), S. Koshitani (Chiba Univ.), K. Nishida (Shinshu
Univ.) and M. Sato (Yamanashi Univ., 2004-).

The Proceedings of each Symposium is edited by program organizer. Anyone who wants
these Proceedings should ask to the program organizer of each Symposium or one of the
committee members.

The Symposium in 2005 will be held at Aichi University of Technology in Aichi Prefec-
ture for Sep. 24, and the program will be arranged by T. Wakamatsu (Saitama Univ.).

Concerning several information on ring theory group in Japan containing schedules of
meetings and symposiums as well as the addresses of members in the group, you should
refer the following homepage, which is arranged by M. Sato (Yamanashi Univ.):

http://fuji.cec.yamanashi.ac.jp/ ring/ (in Japanese)
civil2.cec.yamanashi.ac.jp/ ring/japan/ (in English)
Yasuo Iwanaga

Nagano, Japan
December, 2004
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REMARKS ON TRANSITIVITY OF EXCEPTIONAL SEQUENCES !

TOKUJI ARAYA

ABSTRACT. Let k be an algebraically closed field of characteristic 0. We denote by
C the abelian k-category which has enough projectives (or enough injectives), and
by D?(C) the bounded derived category of C.

A complex E* € D! is called ezceptional if RHom(E®, E*) = k, and a sequence
€= (---,E}, E}, |, ) of exceptional complexes is called an ezceptional sequence if
RHom(E}, E}) = 0 for all i > j.

Let C be a category modA of finitely generated modules of a hereditary k-algebra
A, or a category coh(X) of coherent sheaves of a weighted projective line X over
k. In this case, for any exceptional sequence ¢, the length of ¢ is smaller than or
equal to the rank n of Grothendieck group of C. An exceptional sequence € is called
complete if the length of ¢ is equal to n. It is shown by W. Crawley-Boevey (in the
case of C = modA) and by H. Meltzer (in the case of C = coh(X)) that the braid
group B,, on 7 strings acts transitively on the set of complete exceptional sequences.

In this talk, we consider exceptional sequences on a translation quiver I.

1. Preliminaries

COMBEEBL T T = ZA, % translation quiver & L. Ty 2 T DEARE. 7 %
translation &7 3,

EM| 11 X, YeT, 75,
L. XD5Y ~arrow 3HBLE X <Y ERT,
2. XH5Y ~pathdiHBLE, X<V LET,
3. X LY DI path BHWVWEE X =Y ERT,

BE 12 FARKA T, 2UTDXIRLT, {(neg)|1<p—g<n} LA—HT3,

IThe detailed version of this paper will be submitted for publication elsewhere.
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1. —&T®D r-orbit LOEA#®. ---,(p,p—-1),(p+1,2),(p+2,p+1),--- T 5,

2. XEFO ':ﬁl’\ X<(p1Q)1X7é(p'—qu) otg‘ X=(p1q_l) tiﬁ?'%o

X=(pa),Y =) eTo ML, X &Y DR r-ombit i 57 HOLHE+45
Bitp—g=p —¢ THHILICHEET S,

Fl13 F=ZA, DLE, RDEHIT3B,

............. {2,=2) covreraneannas(sB 1) reeneeeraeenens

NN N S

ST(1,=2) e 2,-1) e €3,0) -

/ N\ / N\ /s

............. {1,=1) e g2, 0) T

N\ / Nt oy N\ /

S 1.4 syzygy functor @: T = [y 2. Qp,q)=(g,p—n—-1) LERT 3,

Fl1s HEXeTewl, 7X, QX 3UTo LS 2aBMRcH2 2 LicEET 3,

E 20 ofRBREGEL. n ZEDBEE TS, R=k[z,y/(* -z") 2 1-X
FTERBAZERE L. modR 2HFREBRKBMN 2 R-NBEO L THEHCHIIREER>b DL
T3, X612 CMR 28K CM l#L$okywiEnHoBE T3, Ot % CMR®
Auslander-Reiten quiver DHEMEF TR VEER CM INFE2E0: 68 503 full subquiver
2T LBL. T=ZA, TH3 (cf [1])o EE 14 TEBLTVS Q2. ZORRT
D syzygy MBIZHEL T3,

B& 1.6 BEA X e T, L. ST(X), S7(X), S*(X), §7(X), A(X) , A*(X),
A-(X) #UTO X3 ICERT 3,

1. S*(X) i3 slice THH. YeSHX) 6l XY TH 3,
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2. S7(X) 12 slice THY. YeS(X) 26 Y <X TtH 3,

(1)

LS (X)=S"\{X} tT3, (ZIZT. x=+,- TH3)
4. AX)={Y el | X=Y} LT3,

5. A*(X) = Upo(AQX)USH(QX)) LT3,

6. A~(X) = U0 AQX)US(Q74X)) LT 3,

BEXeloltHL, A*(X) iZLTD L) LuBEFKIcH B LiIcERT 3,

HRLBRH, T, | RIERETER R = kiz,9]/(° — z"*) LOEK CM m
D% 3B CMR @ Auslander-Reiten quiver @ full subquiver 2 &L T3, R-LETD
exceptional sequence DEHBIILITDEY TH 3,

BB 1.7 R= @R EREMERT. Ro= k 258 0 ORBEMBGL T3, C0
LE,

Hom(E,E) = k

7=
Ext!(E,E) =0 (¢{> 0) L

1. HIBER R-INBE E 2% exceptional TH 3 & ik, {
TILTHB,

2. exceptional MBEDF| ¢ = (--- , E;, Eiyy,--- ) D% exceptional sequence TH 5 & 1%,
Ext/(E,E;)=0(i>j¢>0) ¥2kT I L TH5,

R=k[z,y)/(#?—2"*") (n ZIEDME) DL BITIZRD I Ldtbh>Tv3 (c.L[1],[2]).

8 1.8 R=k[z,y]/(y?—2z"*') (n ZIEDBE) & L. T % CMR ? Auslander-Reiten
quiver DHEEMBEFTLWEEA CM ME2EH» 68 613 full subquiver £ $5, ZDLEE,
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1. £BOERHIBA CM IFEI: exceptional TH 5,

9. (SHEMBEETHV) EEAEA CM MM X, Y iKXfL, Hom(X,Y) #0 TH3#%
HOLE+HEHER X <Y (inT) TH3,

3. (WEmEcky) EEEHNEK CM ME X, Y LEOBH ¢ oL, XIXAMET
H3,

(8) Ext{(X,Y)#0
(b) X <Y < 71X (in T)
(c) TTIHY < X < Q7YY (in T)

219 R T *8H 18 D@ E L, X, Y 2HEMBETCLVWEHEHNEA CM L
T3, COLE RIFFEMETH S,

1. TRTOBH ¢ icHL, Ext/(X,Y)=0TdH 3,
2. XeAt(Y) TH3,
3. YeA(X)TH3,

oD EH6, —HD translation quiver I' = ZA, I L. exceptional sequence
¥UTOL)ICEET S,

B®’ 1.10 HS ELE,,--- ,E, € To iKRL. M e = (E, By, ,E,) ?% exceptional
sequence TH 3 Lit., ROFZEEAI-T L TH B,

E;e[)A*(E)(<is<r)

j<i

CDEFIIROELELFEETH B,

E; e nA-(EJ) (1 <i<r)

F>i

2. Main results

ERREBRZLDICHHIPLEMET 3,

EH®; 2.1 €= (E\, Ez, -, E;) % exceptional sequence &£ ¥ %, E;, E; BRD_FH%
BT LE, E < E; ERT,
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1. E;€S™(E;) T35,
2. {)L E,'SEmSEj 7::6!;"\ m=1i if:‘im=]'(‘25%a
exceptional sequence DER L Y RDZ LHEEILL TV 3 I L MEBIEIDONS,

#% 2.2 ¢=(E\, Ea,--- ,E,) % exceptional sequence £t §5, CDLE, RDODEDHDH
exceptional sequence 2% 3,

1. B, »E,DLE,  (E,E,, -+, Ei2Ei,Ei\,Eipy,--,E,)
2. E;¢ST(E) (Vj) DL &, (B, B+ ,Eie), QB Eigy,--- , Ev)
3. E;¢SY(E) (Vj) DL &, (BB Eict,Q'E, Eipyy -+, Ey)
4. E;=(p,q), E;j < E; %6 j=i- 1Dk E,

(E\,Ey,--- ,Ei3, B, Ei, Eia, -+, E;)

,_ ) (a.9) (Bic1=(p.¢) DL &)
L. Ei—{ (plsp"'n-l) (E-_1=(p',q)0)t?)

5 E;=(p,q), B <. E; 26 j=i+1 DL E,
(ElsE21"’ aEi—2t E:, Ei—ly Ei+la"' aEr)

(g+n+1,¢) (Bu=(@d)DLE)
(®.p) (Bin=(p,q) DEE)

6' Ei—2 = (P, q’), Ei—l = (p,1 q)) Ei = (pt q) a) & g‘
(Eh E2) MY Ei—:h E:I Ei—?: Ei—h Ei+l$ trey Er)

{E.L,E,f={

HL. E=(p.9)
7. Ei = (P, Q), Ei+l = (p/)Q)i El'+2 = (pt q') DEE,
(Elt E?t' i tEi—h Ei+1)El'+2a E:lEH-S: tee aEr)

HEL. E=(q)



B8 2.3 ¢, ¢ % exceptional sequence &3 5, ¢ ICHIEE 2.2 DEBEHREUT>T € I
BBLE e~ LRT,

T 2.4 ¢ % exceptional sequence £ 5%, ZDL ¥, exceptional sequence € & slice
ST.e~e, ek SIEDADLLDNFET 3,

EERR —BREIc i T Y 3.

Step 1. ¢ = (Ey, Ep,--- ,E,) L8 L&, ¢ =(E,,Ey--- ,E!) T. e~¢, Ei = By,
E € S~(E})UA(E,) USH(E)) (Vi) 2% T LOMEET 3,

BilcHl, ¢ % E, e A(QUVSE)USHQ4E)) 2R THELTERT S,

exceptional sequence DEEL D, £ >0 THBDT, (=) _ ¢ BT 25T
T, 0=0%bifd=c LtUfVV, ¢>0DLF, i=min{j|¢>0)} B,

Ej ¢ S'_(E,') (V]) @k g’\ €” = (El,Ez,"' ,E,'_l,QEi,EH.l,“' ,E,-) ki’s(, :@k
& #ME 222 XY, e~e" THH. QF € AQGVE)USHO GVE) ZDT,
MEDERELVEREZR:-T LB LMTES,

E;eS™(E) 122 jSFETHLE Ej< . E LT3, COLE E OBV ALY,
(DELSITHME 221 2L T) j=i—1 LLTEY, E;j< E, ZHET j¥i-1
DELEDHOBEII, ¢ 2R 2240810t B, j#i-1%3jCE;<.E %%
TOODHFETHLE, (LBELOIHE 221 2#) L T) j=i-2LTES, %
LT, & 28226 D& Hict b, WTFNDOBATh e~ THB, TIT. i DY
F»o 4.,=0ThHY, EI<E_ XY E € A(E))USH(E)) TH3, £o>TZnH
ELRMBOEELYREZALT  2LBIENTES,

Step 2. € Z stepl. DL IHITEBL, € 13H 3 slice S ITHDALZ LMNTES,

¢ = (E{,E},--+ ,E.) LB <, exceptional sequence DEH L H. XD i £ j KL
El € ST(E)UA(E)US™ (E)) B % T I EIERT 3, 85I, i#j A6 E L E) 1%
R4D r-orbit KHBZLICHERT S, Bl = (pi,g) LBE . pi—q=t; LB, ZDLE S
ERDEICLE, TRTDE RSIKBLTVBLTB, 1<t<r,t ¢ {t),tp,-t, } I
WU, ti=max{# |t <t} t; =min{¢;|¢; >t} LB, E6i, Y e SHE)NSH(E))
L%, ZLT, X=(p,q) £p—q=1t, X €S (V)N(SHE)USHE)) L&Y, ZD
XBSKBT3LTBE, Sidslice TH3, D

# 2.5 ¢e=(E\, Ey, -+ ,E,.) % exceptional sequance £ T3¢, r<nTh3,

# 2.6 B3 n DIEFED exceptional sequancee, € I L. e~¢ TH 3,
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FROBENIUS FULL MATRIX ALGEBRAS AND GORENSTEIN TILED
ORDERS

HisaAKi FUJITA AND YOSUKE SAKAl

Let D be a discrete valuation ring with a unique maximal ideal 7D, and let A be a D-
order. It is standard to reduce homological properties of A to those of the factor algebras
A/mA and such factor algebras are deserving of further study. (See [2].)

Let n be an integer with n > 2. In [1], we introduced an n x n A-full matriz algebra
over a field K, whose multiplication is determined by a structure system A, that is, an
n-tuple of n x n matrices with certain properties. A-full matrix algebras are associative,
basic, connected K-algebras. A prototype of A-full matrix algebras is the class of factor
algebras A/mA of tiled D-orders A. Studying representation matrices of certain modules
over A-full matrix algebras, Frobenius A-full matrix algebras are characterized by the
shape of their structure systems A. For a Gorenstein tiled D-order A, the factor algebra
A/mA is a Frobenius A-full matrix algebra. In this paper we study the converse of this
fact. Our main result is the following.

Theorem 1. (1) For 2 < n < 17, all Frobenius n x n A-full matriz algebras are iso-
morphic to A/wA for some Gorenstein tiled D-orders A. Moreover a list of them (up to
isomorphism) is obtained.

(2) For each n > 8, there is a Frobenius n x n A-full matriz algebra having no corre-
sponding Gorenstein tiled D-orders.

1. A-FULL MATRIX ALGEBRAS

We begin by recalling A-full matrix algebras. Let K be a field and n > 2 an integer.
Let A={(A,,...,A,) be an n-tuple of n x n matrices A; = (ag-‘)) EMK)(1<k<n)
satisfying the following three conditions.

(Al) agf)ag) = ag‘)ag) for all i, 5,k,1 € {1,...,n},
(A2) ag;-) =al® =1 foralli,j ke (l,...,n}, and
(A3) a¥ =0 forall i,k € {1,...,n} such that i # k.

Let A = @, j<n Kuij be a K-vector space with basis {u;; | 1 < 4,j < n}. Then we
define multiplication of A by using A, that is,

(k) ;
. a;;'u, if k=1
Uy t= tj )
ekt { 0 otherwise.
Then uy), ..., Un, are orthogonal primitive idempotents such that uy; 4« +up, = 14 an

identity of A and u;; Au;; = K. Hence A is an associative, basic, connected K-algebra.

The detailed version of this paper will be submitted for publication elsewhere.
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We call A an n x n A-full matriz algebre with a structure system A. We note that
gl.dimA = oo, because every entry of the Cartan matrix of A is 1.
In what follows, we assume that a,(;‘) =0orlforalll1 <ik j<n

2. TILED ORDERS

Let D be a discrete valuation ring with a unique maximal ideal 7D and n > 2 an
integer. Let {A;; | 1 < 14,7 < n} be a set of integers satisfying

Aij 20, Au=0, X+ A= Aj, and Ay + Aji >0 (if 2 # )

for all 1 < 4,7,k < n. Then A = (7% D) is a subring of M, (D), which we call an n x n
tiled D-order.

Example 2. Let A= (7 D) be an n x n tiled D-order. Put A := A/7A, K := D/nD
and u; = me; + TA € A, where e;;'s are the matrix units in M,(D). Define 4, =
(ai’) € Ma(K) (1 Sk < 7) by

w._J1 if A+ /\p,j = /\.'j
7 7 1 0 otherwise,

and set A := (A,,..., A,). Then note that

(x) .
a;;'u;; if k=1
SU = [3 Bt V)
ik { 0 otherwise.

Hence A is an A-full matrix algebra.

3. REPRESENTATION MATRICES

Let A = @,; j<n ti; K be an n x n A-full matrix algebra, where A = (4;,..., A,) and
A = (agf)) € Mp(K) (1 € k £ n). Let M be a right A-module with dimension type
dimM = (1,...,1). Then M has a K-basis {v; | 1 < i < n} such that vu; = v; for all
1 < i < n. Hence there exists a matrix S = (s;;) € M,(K) such that v;uy; = s;;v; for all
1<1i,7 <n. Wecall S a representation matriz of M.

Proposition 3. For each indecomposable projective right A-module u;A, dimuiA =
(1,...,1) end it has a representation matriz (ag;))k,j, that is, an n x n matriz whose

(%)

(k,j)-entry is a;; . Moreover ui A is isomorphic to an injective Homy (Auy, K) if and

only if ag‘) =1foralll<k<n.

Example 4. Let A be an A-full matrix algebra where

1111 0110 0010 O0O011
A= to001 1111 1011 0001
“{t101 0100 1111 0001

1100 0100 1110 1111



Then representation matrices of un4,...,uuA are given by

1111 1001 1101 1100

0110 1111 0100 0100

0010 1011 1111 1110

0011 0001 0001 1111
Hence u;; A, uz0A and u44A are injective but not uzzA.

4. FROBENIUS A-FULL MATRIX ALGEBRAS

By means of structure systems, we can characterize Frobenius A-full matrix algebras.
Let A =@ jcnwijK beann xn A-full matrix algebra, where A = (4,,...,A,) and

Ax= (a¥) e Mo (K) 1 S k < ).

Proposition 5. The following are equivalent for an A-full matriz algebra A.
(1) A is ¢ Frobenius algebra.
(2) There ezists a permutation o of the set {1,...,n} such thato(i) # i foralll <i<n

and that agz‘.) =1forall<ik<n.
In this case o is a Nakayama permutation of A, that is, soc(u;A) = top(us(ye)A) for
all 1 € i < n. Moreover, foralll <i,k,j <n, agf) = aﬁ’,)(i) holds.

Using Proposition 5, we can find structure systems A which define Frobenius A-full
matrix algebras. Let o be a permutation of the set {1,...,n} such that (i) # 7 for all
1 <i < n. Let T be the set of triples (7, k, j) of integers 1 < 7,k,7 < n. Then we have a
bijection

¢:T =T, (i,k,j) — (k,j,0(3)).
Decompose T into p-orbits {T,}a, and put I := U{T,| (i, k,0(?)) € T,}, Z = U{T,|
(4, k,2) € Ty, i # k}, and X := U{T,| T, ¢ IUZ}. Then we have T = JTUZUX (disjoint).

Proposition 6. (1) Suppose that A is a Frobenius structure system with Nakayama
permutation o. Then there erists a p-invariant subset Y of X such that

Mol Gk ervy
4 7 1 0 otherwise.

(2) Let Y be a p-invariant subset of X, and define A(Y) = (ag-‘)) by

(H_{l if (i,k,j) e TuY

% =1 0 otherwise.

Then A(Y) is a Frobenius structure system whenever (Al) holds for A(Y).
(3) For the empty subset ® of X, A(®) is a Frobenius structure system.

5. w-ORBITS FOR A CYCLIC PERMUTATION

In this section, we clarify the p-orbits of T for a cyclic permutation o = (12 --- n).
First we count the number of y-orbits of T'. '

Proposition 7. (1) For a p-orbit T, of T, the number |T,| of elements in T, is 3n or n.
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(2) T has a p-orbit T, with |T,| = n if and only if n is not divisible by 3. In this case,
T has a unique p-orbit having n elements, which is contained in X.

(3) I has n— 1 -orbits.

(4) Z has n — 2 p-orbits.

(5) If n is divisible by 3, then X has (n — 1)?/3 p-orbits.

(6) If n is not divisible by 3, then X has (n — 2)(n — 4)/3 + 1 -orbits.

Next we clarify the members of each -orbit of 7.

Proposition 8. Let T, be a p-orbit of T and put T = {(4,k,7) € Ta | k =1} for all
1<r<n.
(1) Suppose that |T,| = 3n. Then |TS| =3 for cachr =1,...,n. If (i,1,§) € Ta, then
TV ={(,1,9), (077 (1),1,07%2(3)), (07'(), 1,0~ (1))}
(2) Suppose that |Ta| = n. Then TS| =1 foreachr =1,...,n. Ifn=3t+1 then
TN = {(t+1,1,2t +2)}. Ifn =3t +2 then T = {(2t +2,1,¢t + 2)}.

6. MINIMAL FROBENIUS STRUCTURE SYSTEMS

Let A be a Frobenius A-full matrix algebra with Nakayama permutation ¢. Then it
follows from Proposition 6 (1) that A is determined by a (,-invariant subset ¥ of X. We
call A a minimal Forbenius structure system if Y is minimal among ¢,-invariant subset
of X which define Frobenius full matrix algebras. For a cyclic permutation, minimal
Frobenius structure systems are determined by the following theorem.

Theorem 9. Let n be an integer with n > 4, and let ¢ = (1 2 --- n) be a cyclic
permutation. Then the following statements hold.

(1) Let n be even. Then the p-invariant subsets defining minimal Frobenius structure
systems are just p-orbits contained in X.

(2) Let n be odd and n = 2s + 1 for some s. Then the p-invariant subsets defining
minimal Frobenius struclture systems are just p-orbits Xg contained in X such that Xg
does not contain any element of the form (s+1,1,k) for any k with k # s2+1 (mod n).

The following example illustrates Theorem 9.

Example 10. Let n = 7. Then X has 6 g-orbits X; (1 < i < 6) such that
x = {(4,1,3),(6,1,3),(6,1,5)}
xP = {(2,1,5),(3,1,7),(4,1,6)}
xM = {(21,6),(4,1,7),(3,1,5)}
X = {(51,3),(51,4),(6,1,4)}
xM = {(2,1,4),(2,1,7),(5,1,7)}
X8 = {(3,1,6)}

Since 7=2-3+1 and 32+1 = 3 (mod 7), there are minimal Frobenius structure systems
corresponding to X, X4, X5, X6, but not to X, Xj.
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no. of iso. classes
1
1
3
4
21
17
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A construction of Auslander-Gorenstein rings’
Mitsuo HOSHINO

This is a summary of my joint work with T. Shiba.

Recall that a ring A is said to be an Auslander-Gorenstein ring if it is a left and right
noetherian ring and for a minimal injective resolution E° of A, we have flat dim E" < n for all
n 2 0 (cf. [1]). It is well known that the group ring of a finite group over a commutative
Gorenstein ring is an Auslander-Gorenstein ring. We refer to[I] for other examples of
Auslander-Gorenstein rings. Our main aim is to construct another type of Auslander-Gorenstein
rings.

Let R be aring. In this talk, a ring A is said to be a Frobenjus extension of R if it contains
R as a subring and satisfies the conditions (F1) A, and ,A are finitely generated projective,
(F2) A, = Hom,{(,A,, R;) and ,A = Hom(,A,, ;R), and (F3) the inclusion R — A is a split
monomorphism of R-R-bimodules (cf. [2]). Again, the group ring of a finite group is a
typical example of Frobenius extensions. If A is a Frobenius extension of R, then (1) inj dim
A, =inj dim R, (2) inj dim ,A = inj dim ;R, and (3) Ais an Auslander-Gorenstein ring if Ris
so. Therefore we will provid‘e a way to construct Frobenius extensions of a given ring.

Let R be a ring, n 2 2 an integer and v a permutation of / = {1, 2, -—, n}. We will
construct a family of Frobenius extensions A of R such that (i) 1, = X, , ¢ with the ¢,
orthogonal idempotents, (i) eA, & eA, unless i =, (iii) xe,=exforall i € Iand x € R, (iv)
eA, = Hom(,Ae .. R;) and ,<Ae , == Hom,eA,, (R) forall i € I, and (v) there exists 17 €
Aut(A) with n(e) = e, for all i € I. Furthermore, the rings eAe, are local if R is so. In
particular, if R is a quasi-Frobenius local ring, then A is a quasi-Frobenius ring with soc(eA,)
= ¢ ,Ale,,J forall i€ I where J=rad(A). In case v has no fixed point, we can construct a
desired Frobenius extension A of R as a skew matrix ring over R, the notion of which was
first introduced in [3] (cf. also [4] and [5]). If v has a fixed point, then we can not construct a
desired Frobenius extension of R as a skew matrix ring over R, but we can construct a desired

Frobenius extension B of R which contains an ideal V with B/V a skew matrix ring over R,
where V* 0 in general.

Throughout this note, rings are associative rings with identity. For a ring R, we denote by
R the set of units and by rad(R) the Jacobson radical. We use the notation X, (resp., .X) to
. denote that the module X considered is a right(resp., left) R-module. Also, we use the notation
X to denote that X is an S-R-bimodule. We denote by Mod-R the category of right R-modules.

1. Frobenius extension of rings
In this section, we introduce a notion of Frobenius extension of rings (cf. [2]).
Definition 1.1. A ring A is said to be a Frobenius extension of a ring R if there exists an

injective ring homomorphism ¢ : R — A satisfying the following conditions:
(F1) A, and A are finitely generated projective;

‘The detailed version will be submitted for publication elsewhere.
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(F2) A, =Hom,(,A,, R;) and ,A = Hom,(;A,, zR); and
(F3) @is a split monomorphism of R-R-bimodules.

Remark 12. Let A be a Frobenius extension of R. Then for an isomorphism ¢ : A, =
Homg(,A,, R;) we have a unique ring homomorphism @ : R — A such that x§(1) = &1)8(x)
forall x € R. Similarly, for an isomorphism ¥ : ,A = Hom,(;A,, ;R) we have a unique ring
homomorphism 7 : R — A such that y(1)x = 7(x)y(1) forall xe R.

Definition 1.3 (cf. [1]). A ringR is said to be an Auslander-Gorenstein ring if it is left and
right noetherian and for a minimal injective resolution E’ of R, we have flat dim E" < n for all
n20.

Definition 1.4. A ring R is said to be a quasi-Frobenius ring if it is left and right artinian
and left and right selfinjective.

Proposition 1.5. Let A be a Frobenius extension of R. Then the following hold.
(1) inj dim A, = inj dim R,.

(2) inj dim ,A = inj dim SR.

(3) A is an Auslander-Gorenstein ring if R is so.

(4) A is a quasi-Frobenius ring if R is so.

Remark 1.6. The converse holds in (3) and (4) of Proposition 1.5. However, we do not
need this fact in the present note.

In the following, taking Proposition 1.5 into account, we provide a way to construct
Frobenius extensions of an arbitrary ring.

2. Skew matrix rings
In the following, we fix a ring R and a pair of € Aut(R) and c € R such that
oc)=c and xc=cd(x) forallxe R.

In this section, we develop the construction of skew matrix rings given in [3], [4] and [5].
Letn 22 be an integer and /= {1, 2, ...,n}. Let @:1x I - Z be a mapping and set

i, j Ky = i, j) + @G, k) - ox(i, k)
fori,j, ke 1. We assume the following conditions are satisfied:
aXi,)=0 forallic I and A(i,j, k) 20foralli,j ke I

Definition 2.1. Let A be a free right R-module with a basis {¢,}, , . , and define the
multiplication on A subject to the following axioms:
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(Al)xe,=e,0™(x)forall i,j and x € R;
(A2)ee,, =0 unless j=k; and
(A3) e, = e,/ forall i, j ke l.

Proposition 2.2. The following hold.

(1) A is an associative ring with 1,= X, , e,, where the e, are orthogonal idempotents.

(2) We have an injective ring homomorphism @ : R — A, x v~ %, ., e,x which is a split
monomorphism of R-R-bimodules.

B)eA=eA, foralli,je Iwith i, j,))=0. Incasec & R, the converse holds.

In the following, we consider R as a subring of A via @: R — A. Note that A is a free left

R-module with a basis {e,}, ;. . Also, for any i € /, since xeg; = ¢,x for all x € R, Ae; is an
A-R-bimodule and ¢,A is an R-A-bimodule.

Remark 2.3. Denote by M,(R) the n X n full matrix ring over R. Then for any i € [ there
exists a ring homomorphism of the form

£: A S MR T, o e > (6K ), 4
which is an isomorphism if eitherc € R* or A= 0. Also, if ¢ is regular, then {'is injective.

In the following, taking Remark 2.3 into account, we assume ¢ ¢ R*. However, for the
sake of convenience, we do not exclude the case where A=0.

Definition 2.4. There exists a basis {a,}, ; ., for Homg(A, ;R;) such thata =2, ,
e;a{a)foralla € A. Similarly, there exists a basis {8}, ,, , for Hom,(A, ¢ R.), such that g =
3. e 1Bfa)e, forallac A.

Lemma 25. Forany i, k € I the following are equivalen,

() AG,j, k) =0forallje I
(2) There exist isomorphisms of the form

¢, :e,A, = Homy,Aeys, R), a—> aa,

Wi © 4Ae; = Homy(ee,A,, R), a > af,.
(3) Either e A, = Hom(,Ae;z, R or ,Ae, = Hom(,2,A,, :R)-
Proposition 2.6. Assume R is a local ring. Then the following hold.
(1) Every e is a local idempotent. In particular, A is a semiperfect ring.

(2) Assume either A, = Homy(,A;, Ry) or ,A = Hom,(;A,, 1R). Then there exists v €
Aut(D) such that A(i, j, v(i)) =0 for alli,je I

In the next Proposition, we refer to (6] for derived equivalence of rings.
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Proposition 2.7. Assume c is regular. Then for any i € 1 the following hold.
(1) A is derived equivalent to a generalized triangular matrix ring

R Ext,(Ae,A,e,A)
0  AlAeA

(2) Assume there exists j € Ni} such that A(j, k,i)= 0 for all k € I. Then Ext ,:(A/Ae,.,A,
e,A) = e(AlAe A) as R-AlAe A-bimodules.

In the following, we do not fix @ and use the notation A, to denote that the multiplication
of A is defined by @.

3. Classification of
In the following, with each @: I xI — Z we associate A : I x I xI = Z such that
AG,j, k) = axXi, ) + @, k) ~ axi, k)
foralli,j, ke I.

Lemma 3.1. For any @, @’ : I x I — Z the following are equivalent.
HAa=A.
(2) There exists y : 1 — Z such that &'(i, j) = aXi, ) - () + () for alli,je I.

Definition 32. For w, @' : I X I = Z, we set @ = @' if the equivalent conditions of
Lemma 3.1 are satisfied. Also,forw:Ix]—Z,we write @2 0if aXi,j)20foralli,je I.

Lemma 3.3. Let @, @' : IX | = Z with @ = @’ and assume there exists iy € I such that
Wiy, j) = W'(iy, ) for all je I. Then w= o'

Definition 3.4. We denote by Q the set of @: I x I — Z such that a(i,i) =0 forall i € /
and A(i, j, k) 2 0 for all i, j, k € I. Also, for each ve Aut(f), weset (V)= {ie Il Wi) =i}
and denote by (V) the set of we€ Q such that

(MYAG, j, W))=0forallie N(v)andje I,and

(2) there exists 7,2 O such that A(i, j, §) = ¢, forall i e I(V) andj € N{i}.

Lemma 3.5. For any we Q and i, € 1 the following hold.

W IfMigj,ip=0forallje I,then @ =0.

Q) If iy, )=0forall je I,then w2 0.

(3) There exists @ € Q such that 0= @', @ 20 and '(ip, =0 for all je I.

Definition 3.6. We denote by Q, the set of @ € Q such that A(i, j, /) >Oforall i, je I
-17 -



with i # j. Also, we set Q,(v) =Q, NQ(V) for ve Aut()).

Proposition 3.7. For any ve Aut(/) we have Q. (V) # D.

4. Automorphisms of A,

In this section, we show that for any v € Aut(/) and @ € Q there exists ne Aut(A)) with
e = ey pforallijel.

Lemma 4.1. For any o, @’ € Q the following hold.

(1) If there exists v € Au(l) such that @ = @ o (v X V), then there exists a ring
isomorphism of the form

4,24, Zl.]ﬁ f€iks> zi.je ;euxv(n. W

(2) If there exists y : 1 = Z such that ®'(i, j) = &Xi, j) — x(0) + x() for all i, j € 1, then
there exists a ring isomorphism of the form

£:A,5 A, zl.js 16557 24 ja leliam(xij)-

Proposition 4.2. For any ve Aut(l) and we Q(V) the following hold.
(1) Define x : 1 = Z as follows:

(i, v(i)) ifiel(v),
t if ie I(v).

[

0-{

Then eX(\(i), V()= aXi, j) = x(D) + x() for all i, je I.

(2) There exist ring automorphisms of the form
6:4,> A, Eue 1€ i ge leuofm(x.(,),m),
n : Am ;) Aaﬁ Zl,}c Ieirxij > Z,je qu:).w)aw)(xy)

which are mutually inverse.
B Let ey =X, pyy €. vin+ Zic 1 €a € where t =1, if (V) £ @. Then 1)(e,) = ¢, and ae, =
efNa) forallae A,

5. The case of vwith (V)=
In this section, we deal with the case of v e Aut(/) with J(V) = @. Letwe Q (V) and A=

A, Wesetay=3,.,0 ,,and B =3, , B ., (see Definition 24). By Proposition 42, we
have ring automorphisms
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6:4,>4, Zl.jc- 165 Zi.je | eﬁo‘*""(x,m' W
n:A, > A, Zl,jc 1€%; zl.je ,em_w)a“"’(x,,)

which are mutually inverse.

Lemma 5.1. There exist isomorphisms of the form

¢ A, © Homg(,Ae,., Rp), a— aa,
v: A S Home A, R),a—af,.

Remark 5.2. The following hold.

(1) 6 is the unique ring automorphism of A such that &e,, .,) =e, for all i,j € 7 and xa,
= ,0(x) forall xe R.

(2) n is the unique ring automorphism of A such that 7(e;) = e, ,,foralli,je /and Bx
=n)f, forallxe R.

Theorem 5.3. The ring A is a Frobenius extensin of R.

Proposition 54. Assume R is a quasi-Frobenius local ring. Then A is a quasi-Frobenius
ring withsoc(e,A ) = e, A €, o for all i € I, where J =rad(A).

6. Another base ring

In this section, we prepare another base ring § which we need in the next section. We fix
an integer:> 0.

Definition 6.1. Let S be a free right R-module with a basis {e, v} and define the
multiplication on § subject to the following axioms:

(S1)é =e,V*=-vc and ev = v = ve; and

(S2) xe = exand xv=vo{(x)forall xe R.

Lemma 6.2. The following hold.

(1) S is an associative ring with 1= e,

(2) We have ring homomorphisms @: R — S, x> exand 1. § = R, (ex + vy)— x with
rp=id.

(3)Sis alocal ring if R is so.

In the following, we consider R as a subring of S via ¢ : R — §. Note that S is a free left
R-module with a basis {e, v}.

Definition 6.3. There exists a basis {a, 1} for Hom,(S;, xR ;) such that b = ea(b) + vi(b)
for all be S. Similarly, there exists a basis {8, p} for Homg(,S. ;R;); such that b = (b)e +
pbyvforallbe S.
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Lemma 6.4. There exist isomorphisms of the form

¢ S; = Homy(Ss, Rp), b b,
v S S Homg(S;, R), b bp.

Theorem 6.5. The ring S is a Frobenius extension of R.
Proposition 6.6. There exist ring automorphisms of the form

0:5 5 S, ex + vy e0”(x) + va(y),
17:5 5 S, ex +vy— ed'(x) + vo(y)

which are mutually inverse.

Remark 6.7. The following hold.
(1) @ is the unique ring automorphism of S such that 8(v) = v and xu = u6(x) forallxe R.
(2) 1 is the unique ring automorphism of § such that 7(v) = vand px =n(x)pforall x € R.

7. The case of vwith I(v)# @

In this and the next sections, we deal with the case of v with /(V) #@. Let we Q (V) and ¢

=¢, We construct a Frobenius extension B of R which contains an ideal V with B/V =4,
where V2 0 in general.

Remark 7.1. It may happen that we £2,(7) for some 7 with I(7) = @. If this is the case,
A, itself is a Frobenius extension of R.

Definition 7.2. Let B be a free right R-module with a basis {e,}, .., U {v},, x, and define
the multiplication on B subject to the following axioms:

(Bl)xe, = e,06™x)foralli,je Jandxe R;

(B2)e,e, =0 unless j=&;

(B3)e,e, = e,c** P unlessi= ke I(v)and je Mi};

(Bd)e,g,=v,+ec forallie I(v)and je INi};

(B5)xv,=v,0'(x) forall ie I(v)andx € R;
(B6)ve,=0=¢p, unlessi=j=k;
(BT)ve,=v,= ey forallie I(v);
(B8) vy, = O unless i = j; and
(B9)vy,=-v forall i € I(v).

Proposition 7.3. The following hold.
(1) B is an associative ring with 1,= %, _ ,e,, where the e, are orthogonal idempotents.

(2) We have an injective ring homomorphism @ : R — B, x — X, _, e,x which is a split
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monomorphism of R-R-bimodules.
(3 e,By=e,By only wheni=j.
@Vv=3,  ,wRisanideal of BwithBIV=A,

In the following, we consider R as a subring of B via ¢ : R — B. Note that B is a free left

R-module with a basis {e;}, ;. ; U {v}, 1y Also,forany i € /, since xe, = ex forall x € R,
Be; is a B-R-bimodule and e,B is an R-B-bimodule.

Definition 7.4. There exists a basis {a}, ;o ; U {i},¢ xy for gHomg(B, zRp) such that b =
2 e 1 eu®y(D) + X gy vii(b) for all b € B. Similarly, we have a basis B} iVOYawm
for Homg(¢B, zRp)g such thatb=3, ,_, Bb)e, + X, 1, p(b)v; forall b e B. We set

M)=zieM» O, yn+ 2 xn My and Po=2icramBivo* Zie 1w Pr

Lemma 7.5. The following hold.
(1) For any i € K(V) there exist isomorphisms of the form

¢:: e;85 = Homy(pBey,, Ry, b — pb,
s By > Homy(ye, By, ), b > bp,

(2) For any i € IN(V) there exist isomorphisms of the form

9, : eBy = Homy(;Be g, yip Ry b = 0 b,
W, sBey, uy = Homy(ge By, o R), b+ b, .

(3) There exist isomorphisms of the form

¢: B; = Homy(,B,, Rp), b— b,
w: B > Homy(;B;, R), b= bp,.
Theorem 7.8. The ring B is a Frobenius extension of R.
Proposition 7.9. Assume R is a local ring. Then the following hold.
(1) Every e, is a local idempotent. In particular, B is a semiperfect ring.
(2) Assume further that R is a quasi-Frobenius local ring. Then B is a quasi-Frobenius

ring withsoc(e,Bp) = e, Bleyn. yif for all i € 1, where J = rad(B).

In the next section, we do not fix @ € Q,(v) and use the notation B, to denote that the
multiplication of B is defined by .

8. Automorphisms of B,
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In this section, we show that for any @ € Q(v) there exists 7€ Aut(B,) such that ne,) =
en.wp forall i, je Iand n(v) =v, forall ie I(v).

Lemma 8.1. For any @, @’ € Q,(V) the following hold.
(1) If there exists T& Aut(l) with Tv = VT such that @’ = @ © (T X 7), then there exists a
ring isomorphism of the form

§&:B,5B,,b— Z.‘.;a 1800, (0} + 2 an V(D).

(2) If there exists  : I = Z such that @'(i, j) = aXi, j) — x(9) + x()) for all i, j € 1, then
there exists a ring isomorphism of the form

é : Bm ;) Bm’ b Zi.}e lelp‘“n(aij(b» + zl' € iwv) v,.o“"’(p‘(b)),

Proposition 8.2. For any we (V) the following hold.
(1) Define yx : I = Z as follows:

w(i,v(@) ifiel(v),
0= { 1, ifielwv).

Then eXWi), V(D)= &Xi, j) = 2D + XD for all i, j e 1.

(2) There exist ring automorphisms of the form

6:B, 5 B, b3, ;. 16,00 (D)) + Lic gy, viTT1()),
n:B,>B,b— zi.je 18w, m)oazt/) (b)) + 2icin v,0°(u (b))

which are mutually inverse.
B Letey=3, . pw €iviy + Zic 1ny €4 € and vy =X, g, v, Wwheret =1t,. Then 1(e,) = ¢, and
7(v,) =v,. Also, be, = e n(b) and bv,=v,1(b) forallbe B,

Remark 8.3. For any w € Q,(V) the following hold.

(1) @is the unique ring automorphism of B, such that &e,,, ,.,) = ¢, forall i, je and xu,
=, 8x) for all x € R.

(2) nis the unique ring automorphism of B,, such that n(e,) = e, ,(, forall i, j& /and p,x
=n(x)p, forallxe R.
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HIGHER DIMENSIONAL AUSLANDER-REITEN THEORY ON
MAXIMAL ORTHOGONAL SUBCATEGORIES!

OSAMU IYAMA

ABSTRACT. Ausiander-Reiten theory, especially the concept of almost split sequences and
their existence theorem, is fundamental to study categories which appear in representa-
tion theory, for example, modules over artin algebras [ARS][GR][R], their functorially finite
subcategories [AS][S], their derived categories [H], Cohen-Macaulay modules over Cohen-
Macaulay rings [Y], lattices over orders [A2,3][RS], and coherent sheaves on projective curves
[AR}|GL]. In these Auslander-Reiten theory, the number ‘2’ is quite symbolic. For one
thing, almost split sequences give minimal projective resolutions of simple objects of pro-
jective dimension ‘2’ in functor categories. For another, Cohen-Macaulay rings and orders
of Krull-dimension ‘2’ have fundamental sequences and provide us one of the most beautiful
situation in representation theory [A4][E|[RV|[Y], which is closely related to McKay’s obser-
vation on simple singularities [M]. In this sense, usual Auslander-Reiten theory should be
‘2-dimensional’ theory, and it would have natural importance to search a domain of higher
Auslander-Reiten theory from the viewpoint of representation theory and non-commutative
algebraic geometry (e.g. [V1,2][Ar}[GL]). In this paper, we introduce (n — 1)-orthogonal
subcategories as a natural domain of ‘(n + 1)-dimensional’ Auslander-Reiten theory. We
show that higher Auslander-Reiten translation and higher Auslander-Reiten duality can be
defined quite naturally for such categories. Using them, we show that our categories have
n-almost split sequences, which are completely new generalization of usual almost split se-
quences and give minimal projective resolutions of simple objects of projective dimension
‘n + 1’ in functor categories. We also show the existence of higher dimensional analogy
of fundamental sequences for Cohen-Macaulay rings and orders of Krull-dimension ‘n + 1°.
We show that an invariant subring (of Krull-dimension 'n + 1°) corresponding to a finite
subgroup G of GL,4+1(k) has a natural maximal (n — 1)-orthogonal subcategory.

1 From Auslander-Reiten theory

1.1 Let us recall M. Auslander’s classical theorem [Al] below, which introduced a
completely new insight to representation theory of algebras (see 2.3 for dom.dimT').

Theorem A (Auslander correspondence) There erists a bijection between the set of

Morita-equivalence classes of representation-finite finite-dimensional algebras A and that
of finite-dimensional algebras I’ with gl.dimI’ < 2 and dom.dimT > 2. It is given by

A~ [ = Endp(M) for an additive generator M of mod A.

In this really surprising theorem, the representation theory of A is encoded in the

structure of the homologically nice algebra I' called an Auslander algebra. Since the
category mod I is equivalent to the functor category on mod A, Auslander correspondence

1The detailed version (12,3] of this paper have been submitted for publication elsewhere.
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Auslander-Reiten theory. Namely, find naturel categories C such that Theorems above
replaced ‘2’ and CM A by ‘n+ 1’ and C respectively hold.

2 Main results
2.1 Definition Let A be an abelian category, B a full subcategory of A and n > 0.
For a functorially finite [AS] full subcategory C of B, we put
¢t = {X€B|Ext}(c,X)=0foranyi(0<i<n)}
ne = {XeB | Exty(X,C)=0for any i (0 <i < n)}.

We call C a mazimal n-orthogonal subcategory of B if
c=ct="c

holds. By definition, B is a unique maximal 0-orthogonal subcategory of B.

2.2 Example Let A be a simple singularity of ty%e A and dimension d = 2, 4 :=
modZ A the category of graded A-modules and B := CM*“ A the category of graded Cohen-
Macaulay A-modules. Then the number of maximal 1-orthogonal subcategories of B is
given as follows:

A Am BmyCm Dm EG E? EB P‘d G2
number | 5 (332) | (37) | 3==2(-7) | 833 ] 4160 ] 25080 [ 105 | 8

This is obtained by showing that maximal 1-orthogonal subcategories of B correspond
bijectively to clusters of the cluster algebra of type A [12,3]. See Fomin-Zelevinsky [FZ1,2]
and Buan-Marsh-Reineke-Reiten-Todorov [BMRRT). See also Geiss-Leclerc-Schréer [GLS).

2.3 For a finite-dimensional algebra I', we denote by 0 = I' = [, — [} — --- a
minimal injective resolution of the I'-module I'. Put dom.dimT" := inf{i > 0 | I; is not
projective} [T]. The following theorem gives a higher dimensional version of Theorem A.

Theorem A’ ((n + 1)-dimensional Auslander correspondence) For any n > 1, there
erists a bijection between the set of equivalence classes of mazimal (n — 1)-orthogonal
subcategories C of mod A with additive generators M and finite-dimensional algebras A,
and the set of Morita-equivalence classes of finite-dimensional algebras I’ with gl.dimT <
n+1 and dom.dimT > n+ 1. It is given by C — T := Ends(M).

2.4 In the rest of this section, let R be a complete regular local ring of dimension d,
A an R-order which is an isolated singularity, 4 := mod A and B := CMA. Forn > 1,
we define functors 7, and 7, by

Tai=70" ' :CMA—-CMA and 7J:=71"0Q 1:TMA — CMA,

where 2 : CMA — CMA is the syzygy functor and Q~ : CMA — CMA is the cosyzygy
functor. For a subcategory C of CM A, we denote by C and C the corresponding subcate-
gories of CMA and CMA respectively.

Theorem B’ Let C be ¢ mazimal (n — 1)-orthogonal subcategory of CMA (n > 1).
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(1) (n-Auslander-Reiten translation) For any X € C, X € C and 77X € C hold.
Thus 7, : C — C and 7 : C — C are mutually quasi-inverse equivalences.

(2) (n-Auslander-Reiten duality) There ezist functorial isomorphisms C(Y,7,X) =~
DExt}(X,Y) = ¢(77Y, X) for any XY €C.

2.5 Definition Let C be a full subcategory of CM A and J; the Jacobson radical of
C. We call an exact sequence

O—v}’&v n_lf"_',‘...ﬁ.coﬁ’,x_.o
(resp. o~Yhc,., f“_‘.‘...ﬁ.coi';x)

with terms in C an n-almost split sequence (resp. pseudo n-almost split sequence) if f; € J,;
holds for any i and the following sequences are exact.

o—c(,Y)Be(,co) B B, co) B a(,x)—0
0—c(X, ) BeCo ) 5 23 ¢(Cary )V B (Y, ) 0

We call fo : Co — X a sink mapand f, : Y — C,_1 a source map. We say that
C has n-almost split sequences if, for any non-projective X € indC (resp. non-injective
Y € indC), there exists an n-almost split sequence0 = Y = C,_y — -+ = Co— X — 0.
Similarly, we say that C has pseudo n-almost split sequences if, for any projective X € C
(resp. injective Y € C), there exists a pseudo n-almost split sequence 0 =Y — C,_; —

Theorem C' Let C be a marimal (n — 1)-orthogonal subcategory of CMA (n > 1).
(1) C has n-almost split sequences.
(2) If d = n + 1, then C has pseudo n-almost split sequeces.

Consequently, almost all simple objects in the functor category mod( have projective
dimension n + 1. If d = n + 1, then all simple objects in the functor category mod(
have projective dimension n + 1. In this sense, we can say that (n + 1)-dimensional
Auslander-Reiten theory for the case d = n + 1 is very nice.

2.6 We will define the Auslander-Reiten guiver 2(C) of C. For simplicity, we assume
that the residue field & of R is algebraically closed. The set of vertices of 2(C) is ind C. For
X,Y € indC, we denote by dxy be the multiplicity of X in C for the sink map C — Y,
which equals to the multiplicity of Y in C’ for the source map X — C’. Draw dxy arrows
from X to Y.

Theorem D' Let G be a finite subgroup of GL4(C), Q := C|[z1,---,z4]] end A =
QOF the invariant subring. Assume that G does not contain pseudo-reflection except the
identity, and that A is an isolated singularity. Then C := add, ) is a mezimal (d —
2)-orthogonal subcategory of CMA. Moreover, the Auslander-Reiten quiver %(C) of C
coincides with the McKay quiver M(G) of G, i.e. there ezists a bijection E : irr G — indC
such that dxy = dgx)my) for eny X,Y €in G.

3 Non-commutatijve crepant resolution and representation dimension

3.1 Let us generalize the concept of Van den Bergh's non-commutative crepant res-
olution [V1,2] of commutative normal Gorenstein domains to our situation.
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Again let A be an R-order which is an isolated singularity. We call M € CMA a NCC
resolution of A if A ® DyA € add M and T := End, (M) is an R-order with gl.dimI'=d.
Our definition is slightly stronger than original non-commutative crepant resolutions in
[V2] where M is assumed to be reflexive (not Cohen-Macaulay) and A® DA € add M is
not assumed. But all examples of non-commutative crepant resolutions in [V1,2] satisfy
our condition. For the case d > 2, we have the remarkable relationship below between
NCC resolutions and maximal (d — 2)-orthogonal subcategories.

Theorem Letd > 2. Then M € CM A is a NCC resolution of A if and only if add M
is marimal (d — 2)-orthogonal subcategory of CM A.

3.2 Conjecture It is interesting to study relationship among all maximal (n — 1)-
orthogonal subcategories of CM A. Especially, we conjecture that their endomorphism
rings are derived equivalent. It is suggestive to relate this conjecture to Van den Bergh’s
generalization [V2] of Bondal-Orlov conjecture [BO], which asserts that all (commutative
or non-commutative) crepant resolutions of a normal Gorenstein domain have the same
derived category. Since maximal (n — 1)-orthogonal subcategories are analogy of non-
commutative crepant resolutions from the viewpoint of 3.1, our conjecture is an analogy
of Bondal-Orlov-Van den Bergh conjecture. We have the following partial solution.

Theorem (1) Let C; = add M; be a mazimal 1-orthogonal subcategory of CM A and
[ := Endp(M;) ¢ = 1,2). Then Ty and 'y are derived equivalent. In particular,
#ind() = #ind C, holds.

(2) If d £ 3, then all NCC resolutions of A have the same derived category.

3.3 Let us generalize the concept of Auslander’s representation dimension [Al] to
relate it to non-commutative crepant resolutios. For n > 1, define the n-th representation
dimension rep.dim,, A of an R-order A which is an isolated singularity by

rep.dim, A := inf{gl.dim Endz(M) | M € CMA, A® DsA € sdd M, M L,_, M).

Obviously d < rep.dim, A < rep.dim,; A holds for any n < n’. For the case d =
0, rep.dim; A coincides with the representation dimension defined in [A1l]. We call A
representation-finite if # ind(CM A) < co. In the sense of (2) below, rep.dim, A measures

how far A is from being representation-finite.

Theorem (1) Assume d < n+ 1. Then CM A has a mazimal (n — 1)-orthogonal
subcategory C with #indC < oo if and only if rep.dim, A < n+1.

(2) Assume d < 2. Then A is representation-finite if and only if rep.dim, A < 2.

(8) A has a NCC resolution if and only if rep.dim,,,, 1 4-1) A = d.

3.4 Conjecture It seems that no example of & maximal (n—1)-orthogonal subcategory
C of CM A with #indC = oo is known. This suggests us to study

of{CMA) := sup #indC.
CCCMA, cLxC

We conjecture that o(CM A) is always finite. If A is a preprojective algebra of Dynkin
type A, then Geiss-Schréer [GS] proved that o(mod A) equals to the number of positive
roots of A. It would be interesting to find a geometric interpretation of o(CM A) for more
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general CM A. For some classes of CM A, one can calculate o{CM A) by using the theorem
below. Especially, (1) seems to be interesting in the connection with known results for
algebras with representation dimension at most 3 [IT][EHIS).

Theorem (1) rep.dim, A < 3 implies o(CM A) < oo.
(2) If CM A has a mazimal 1-orthogonal subcategory C, then o{CMA) = #ind C.

3.5 Concerning our conjecture, let us recall the well-known proposition below which
follows by a geometric argument due to Voigt’s lemma ([P;4.2]). It is interesting to ask
whether it is true without the restriction on R. If it is true, then any l-orthogonal sub-
category of CM A is ‘discrete’, and our conjecture asserts that it is finite. It is interesting
to study the discrete structure of 1-orthogonal objects in CM A and the relationship to
whole structure of CM A.

Proposition Assume that R is an algebraically closed field. For anyn > 0, there are
only finitely many isoclasses of 1-orthogonal A-modules X with dimg X =n.
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MORPHISMS REPRESENTED BY MONOMORPHISMS !

Kiriko KaTo

ABSTRACT. We answer a question posed by Auslender and Bridger. Every homomor-
phism of modules is projective-stably equivalent to an epimorphism but is not always to
a monomorphism. We prove that a map is projective-stably equivalent to a monomor-
phism if and only if its kernel is torsionless, that is, a first syzygy. If it occurs although,
there can be various monomorphisms that are projective-stably equivalent to a given
map. But in this case there uniquely exists a " perfect” monomorphism to which a given
map is projective-stably equivalent.

1 Introduction

Let R be a commutative noetherian ring, Linear maps f: A — Band f/: A' = B
of finite R-modules are said to be projective-stably equivalent (pse for short) if the
following diagram is commutative

fe
A®F ('——»") BaQ
s [
(£2)

AoP ‘-’ PBaeQ
with some projective modules P, @, P', @’ and R-linear maps s,t,u, s, t',v'. We say
a morphism f is represented by monomorphisms ("rbm” for short) if there exists a
monomorphism that is pse to f.

For any homomorphism f : A — B of R-modules, (f pp): A®Pg — B is
surjective with a projective cover pg : Pg — B. Thus every morphism is represented
by epimorphisms. The choice of epimorphism is unique; if an epimorphism f’ is pse to
f, then two sequences 0 — Ker f' — A’ LB ~0and0— Ker(f pg) = A®Pp U2
B — 0 becomes isomorphic after splitting off common projective summands.

The formal analogy to the representations by monomorphisms fails both in existence
and in uniqueness. Every morphism is not always represented by monomorphisms
(Example 1). Even if a morphism f is rbm, the choice of monomorphism is not unique;

IThe detailed version of this paper has been submitted for publication elsewhere.
2000 Mathematics Subjects Classification: 13D02, 13D25, 16D90

-31 -



there may be two monomorphisms f’ and f” both pse to f and that 0 — A’ LB
Cok f/ — 0 and 0 — A" £ B" — Cok f — 0 are not isomorphic by splitting off
common projective summands (Example 2).

The purpose of the paper is finding a condition of a given map to be rbm. Roughly
speaking, our problem is to know when an exact sequence of modules

can be modified into an exact sequence
0-BLo-a o

Of course the projective stabilization mod R of mod R is not triangulated in general.
So the obstruction for a given map to be rbm should be the obstruction for mod R to
be triangulated. Our first focus is an analogy to the homotopy category K(mod R) of
R-complexes. In [5, Theorem 2.6], the author showed a category equivalence between
mod R

and a subcategory of K(mod R). Due to this equivalence, we describe the obstruc-
tion of being rbm with a homology of a complex associated to the given map.

The problem was originally posed by Auslander and Bridger [1]. They proved that
a map is rbm if and only if it is pse to a " perfect” monomorphism. An exact sequence
of R-modules is called perfect if its R-dual is also exact. A perfect monomorphism
refers to a monomorphism whose R-dual is an epimorphism. This is our next focal
point. In the case that a map is rbm, the choice of a monomorphism is not unique,
but then a perfect monomorphism pse to the given map is uniquely determined up to
direct sum of projective modules. (Theorem 3.6.)

Looking at Theorem 3.6, we see that when a morphism is rbm, its pseudo-kernel is
always the first syzygy of its pseudo-cokernel. So it is tempting to ask if the equivalent
condition of rbm property is that the kernel is a submodule of a free module. This
is our third point. Actually, we need to assume the total ring of fractions Q(R) is
Gorenstein: the condition is satisfied for instance if R is a domain.

Theorem 4.8 : Suppose the total ring of fractions Q(R) of a ring R is
Gorenstein. A morphism f is rbm if and only if Ker f is a submodule of a
free module.

Let us give easy examples:

Example 1 Set R = k[[X, Y]|/(XY) with any field k, g : R?/(})r — R/(X) & R/(Y)
with g((§) mod (§)r) = (amod(X),bmod(Y)). Since Kerg = R/(X,Y) is not a first
syzygy, ¢ is not rbm due to Theorem 4.8.

Example 2 Set R = k[[X,Y]]/(XY) with any field k, f : R%/(¥)r — R%/(3)r
with f ((‘;) mod ()r) = (f,:) mod (¥3)R. The map f is not a monomorphism; Ker f =
R/(X)®R/(Y) is a first syzygy. By Theorem 4.8, f is rbm. In fact, let f' : R?/(¥)r —
R?/(X3)R ® R? be defined as f’((’;) mod (¥)r) = ((f,:) mod (}3)&, (f,;',‘,)) Obviously f'
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is a monomorphism that is pse to f. On the other hand, f” : R?/(¥)r — R?/(¥3)r® R?
with f"((“b) mod (¥)r) = ((ﬁg) mod (33)R, (f{:‘;)) is also a monomorphism and pse to
f. We have two exact sequences

6r:0- R /()r L R/(5)r® R - R*/(X)r® B*/(N)R — 0,

and
0:0— R/~ L RY/(5)r® R? — R?/(35)R® RY/(J)R — 0,

that are not isomorphic. We see §y is perfect but ¢ is not.

2 Stable module category and homotopy category

Throughout the paper, R is a commutative noetherian ring, By an ” R-module” we
mean a finitely generated R-module. For an R-module M, pas : Pyy — M denotes a
projective cover of M.

Definition 2.1 The projective stabilization mod R is defined as follows.
e Each object of mod R is an object of mod R.

o For objects A,B of modR, a set of morphisms from A to B is
Homg(A, B) = Homg(A, B)/P(A, B) where P(A,B) := {f € Homg(A, B) |
[ factors through some projective module}. Each element is denoted as f =
f modP(A, B).

A morphism mod R is called a stable isomorphism if f is en isomorphism in mod R.
If two R-modules A and A’ are isomorphic in mod R, we say A and A’ are stably

st
isomorphic and write A = A'.

Definition 2.2 Morphisms f : A — B and f' : A’ — B’ in mod R are said to be

projective-stably equivalent (pse for short) and denoted as f & f' if if there exist stable
isomorphismsa: A— A' and 8: B — B’ such that fo f = f'o .

Let £ be a full subcategory of K(mod R) defined as
L={F" eK(projR) |H'(F*) =0 (i< 0), H;(F.)=0(20)}.

Lemma 2.3 ( [5] Proposition 2.3, Proposition 2.4 )
1) For A € mod R, there exists F°* € L that satisfies

Ho(TsoFA.) 35‘ A.

Such an F* is uniquely determined by A up to isomorphisms. We fix the notation
F4° and call this a standard resolution of A.
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2) For f € Homg(A, B), there egists f* € Homyprojr)(Fa®, F5°) that satisfies
H(reof*) = f.

Such an f* is unigquely determined by f up to isomorphisms, so we use the nota-
tion f* to describe a chain map with this property for given f.

Theorem 2.4 ( [5] Theorem 2.6) The mapping A — F,* gives a functor from
mod R to K(mod R), and this gives a category equivalence between mod R and L.

For f € Homg(A, B), there exists a triangle
ey L P LR 2 o). (2.1)
In general, C(f)° does not belong to £ but it satisfies the following:
H'(C(f)) =0 (i < -1), Hy(C(f)",)=0(>-1).
Definition and Lemma 2.5 ([5]), Definition and Lemma 3.1) As objects of
mod R, Ker f := H™1(r<_1C(f)") and Cok f := H%r<oC(f)") are uniguely de-
termined by f, up to isomorphisms. We call these the pseudo-kernel and the
pseudo-cokernel of f.
For a given map f : A — B, from (2.1), we have an exact sequence
0—KefoAdP' B0 (2.2)

with some projective module P. This characterizes the pseudo-kernel.

Lemma 2.6 For a given f € Homg(A, B), suppose A@ P’ U2) B g epimorphism
¢
with projective module P'. Then Ker (f p') & Kerf and the sequence

0 - Ker(fp) — AP Uz B - 0
is isomorphic to 2.2 after splitting off some aplit exact sequence of projective modules.
Lemma 2.7 ([5] Lemma 3.6)
1) There is an ezact sequence

0 — Ker f — Ker f — QL(Cok f) — 0.

2) There is an exact sequence
0—L—Cok f—>Cok f—0

such that Q%(L) is the surjective image of Ker f.
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3 Representation by monomorphisms and perfect
exact sequences

Definition 3.1 A morphism f : A — B in modR is said to be represented by
monomorphisms (rbm for short) if some monomorphism f' : A’ — B’ in modR is
pse to f, that is, there exist stable isomorphisms a: A — A’ and §: B — B’ such that

M: t’oa.

Each morphism is not always rbm. It was Auslander and Bridger who first defined
and studied "represented by monomorphisms” property.

Theorem 3.2 (Auslander-Bridger) The following are equivalent for a morphism
f:A— B inmodR.

1) There ezists @ monomorphism f': A — B® P with e projective module P such
that f = so f' via some splil epimorphisms: B@ P — B.

2) There exists a monomorphism f' : A — B & P with a projective module P
such that f = so f' via some split epimorphism s : B& P — B, and f”" is an
epimorphism.

3) Hompg(B,I) — Homg(A, I) is surjective if I is an injective module.
The condition 1) of Theorem 3.2 turns out to be equivalent to the rbm condition.

Lemma 3.3 For a morphism f: A — B inmod R, f is rbm if and only if there ezists
a monomorphism f': A — B ® P with a projective module P such that f = so f' via
some split epimorphism s: B P — B.

The most remarkable point in Auslander-Bridger’s Theorem is that being rbm is
equivalent to being represented by ” perfect monomorphisms” whose R-dual is an epi-
morphism.

Definition 3.4 An exact sequence 0 - A — B — C — 0 of R-modules is called
a perfect ezact sequence or to be perfectly exact if its R-dual 0 — Homg(C,R) —
Homg(B, R) — Homg(A, R) — 0 is also ezact. A monomorphism f is called a perfect
monomorphism if Homg(f, R) is an epimorphism.

Proposition 3.5 ( [5] Lemma 2.7) The following are equivalent for an ezact se-
quence

9:0-4LBLHCo0.
1} @ is perfectly ezact.

2) 0o Fy* L Fg* S Fc* -0 is ezact.
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3) F* ' = Fy* L Fg* N Fg* is a distinguished triangle in K (mod R).

For & morphism f: A — B, A® Pg /28) B is an epimorphism with a projective
cover pg : Pg — B. Thus each morphism is represented by epimorphisms. And
the choice of the representing epimorphism is unique up to direct sum of projective
modules, as we have seen in Lemma 2.6.

Unlikely, we already know an example of & morphism that is not rbm. And more-
over, even if & given map is represented by a monomorphism, there would be another
representing monomorphism. (Example 1 and Example 2.)

However, uniqueness theorem is obtained in this way. Due to Theorem 3.2, a
morphism is rbm if and only if it is represented by a perfect monomorphism. And if
this is the case, the representing perfect monomorphism is uniquely determined up to
direct sum of projective modules.

Theorem 3.6 Let f: A — B be a morphism in mod R. Then f is rbm if and only if
H-YC(f)°*) vanishes. If this is the case, we have the following:

1) We have a perfect exact sequence

L
8;:0— A ©) g py L Cokf — 0.

2) For any exact sequence of the form

f
00— AR BepP P

with some projective module P’, there is a commutative diagram

o0 — 4 % Bery D our o o
la lB ¥

a:O-—»A(—ir)BeP’ “9 ¢ Lo

where o and 3 are stable isomorphisms.

3) There is an ezact sequence with some projective module Q and Q'
0-Q -CokfoQ P c o
In other words, Kery is projective.

4) If o is also perfectly ezact, then o is isomorphic to 8; up to direct sum of split
exact sequences of projective modules.
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proof. We have a triangle
(] ns® 1
Fe L m o opy ™5 e (33)
which induces a term-wise exact sequence of complexes in C(proj R)
0 = F4* = C(ny)* - C(f)* - 0 (3.49)

Applying 7<o to the diagram above and taking homology, we get the following exact
sequence of modules:

6,: 0 » HYUCY)Y) » 4 @ Bopy €D Cokf — 0 (3.5)

Suppose that H~}(C(f)*) = 0. Then C(f)® = Fgoky, end the exact sequence 3.4
shows that 8y is perfectly exact.

Conversely, suppose that f is rbm; there is an exact sequence
0,

c:0-AY BeP P

The maps f = (i) and g = (g p) produce the similar diagram as (3.3) :

FA. z_: FBQP'. - C(f)‘ - FA0+I
e I Iy Ja (36)
C@*" - Fap® & Fo© - CE)

Since A £ Kerg, 7<o@* = 0 is an isomorphism, equivalently 7<_,C(&)* = 0 hence
7<-2C(¥)* = 0. From the long exact sequence of homology groups H-2(C(%)°*) —
HYC(f)') — H7(Fc*), we get HN(C(f)") = 0. Obviously, H(C(f)") =
H~Y(C(f)*) hence H-}(C(f)*) = 0. Now it remains to prove 2) - 4) in the case
H-YC(f)) =0.

2) Applying 7<o to the diagram (3.6) and taking homology, we get the following
diagram with exact rows:

(1)

;: 0 » A % BeoPeF' - Cok()) - 0

AD

ls e

o;: 0 — Kergp) — BePoP “Z ¢ o 0

Notice that &' and §' are stable isomorphisms. The upper row is a direct sum of 0y
and a trivial complex, and the lower row is that of & and a trivial complex. Splitting
off trivial complexes we get a desired diagram:

0 » 4 & Bery € Gokf — 0
Lo e I

(1) o p
0 - A = BePF C — 0
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3) As we see above, 7° : C( f). = Fggkj. — F¢® has 7¢<,C(%)* = 0. We may
consider 4* a5 4; =id (i < —1) hence Q' = Ker7 is projective;

0—Q — Cokfo Pe 757 C 0.

Since Cok_[ £ Cokf and ¥ £ «, the above sequence is the desired sequence 0 = Q' —
Cokf & Q — C — 0 with some projective module Q.

4) Suppose o is perfect. From Proposition 3.5, Fe*™ ' = Fy* 4 Fe* L Felisa
distinguished triangle, and F¢* = C(f)°, hence the induced sequence ¢ is isomorphic
tod. (qed)

4 Representation by monomorphisms and torsion-
less modules.

In the previous section, we see that a given map f is represented by monomorphisms
if and only if H"}(C(f)*) = 0. If this is the case, Kerf = Cokdg(sy~? is the first
syzygy of Cokf = Cokdg( I)‘l. So it is natural to ask the converse: Is a given map f
represented by monomorphisms if Kerf is a first sygyzy? This section deals with the
problem. As a conclusion, the answer is yes if the total ring of fractions Q(R) of R is
Gorenstein. What is more, if Q(R) is Gorenstein, instead of a pseudo-kernel, we can
use a (usual) kernel to describe rbm condition.
The next is well known. See (1] and [4] for the proof.

Definition and Lemma 4.1 The following aere equivalent for an R-module M.
1) The natural map ¢: M — M** is a monomorphism.
2) Exti(TtM,R) =0

3) M is a first syzygy; there ezists a monomorphism from M to a projective mod-
ule.

If M satisfies these conditions, M is said to be torsionless. !

To solve our problem, the special kind of maps is a key. For M € mod R,
consider a module J2M = TrQLTrQLM. Since TrJ2M is a first sygyzy, we have
Ext}(J2M, R) = 0, which means H_,(Fj2p",) = 0 and 7>_2F 25" is a projective res-
olution of Tr QLM = Cok (dpﬂu-z). = Cok(dr, ~2%)". The identity map on Tr QLM
induces a chain map (Fp), — (Fpu), and its R-dual ¥u* : Fyap® — Fp® subse-
quently.

Lemma 4.2 The map ¥y : J2M — M is rbm if and only if an R-module M has
(Exth(M, R))" = 0.

'In [1], Auslander and Bridger use the term "1-torsion free” for "torsionless”. Usually a module
M is called torsion-free if the natural map M — M ® Q(R) is injective.
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proof Hom Theorem 3.6, ¥ is rbm if and only if H™}(C(x)") = 0. By definition,
¥ and ‘d) are identity maps hence ¥}, are identity maps for i < —1. We may as-
sume T<_5C(thpr)* = 0, which implies H-}(C(¥um)") = Kerdey,) ™" As 751C(¥n)s"
is a projective resolution of Cok (dy,,™")" = H_)(C(¥n)), we get H1(C(¥n)") =
(Ho1(C(¥m)l))". A triangle Fyap® vas? Fu® = C(¥a)® = Frap®! induces an R-dual
triangle Fpaps,, — C(¥um), — Fumi — Fja, which produces an exact sequence of
modules
0 — H_1(C(¥nm),) = Hor(Ful) = Hoy(Fpil) = 0.

As we see in the discussion above, H_,(Fpy:) = 0. Hence H_;(C(¥n)2)
H_)(Fun:) = Exth(M, R), and we get H™}(C(¥u)°) & (Exth(M, R))". (q.ed.)

The above result is generalized as follows:

IR

Lemma 4.3 Let f : A — B be a morphism in mod R. Suppose (Exty(B,R))" =0. If
Kerf is projective, then f is rbm.

proof. We may assume 7<-2C(f)* = 0. Similarly as in the proof of Lemma 4.2,
we have H™(C(f)") = (H-1(C(f).))". Since Kerf is projective, f induces a stable

]
isomorphism J2A & J2B, and via this stable isomorphism, ¥p is projective stably
equivalent to f o 9,4, equivalently ¥5° 2 f* 09,4° in K(mod R). We have a triangle

C(¥a)" — C(¥p)* — C(f)* — C(va)™!

and its R-dual
C(%a) o1 = C(f)°y = C(¥B)", = C(¥a)",

which induce an exact sequence of modules
H_1(C(f):;) — Ho1i(C(¥s).)

Note that H_;(C(¥5)")e) = Exth(B, R). The assumption (Extk(B, R))" = 0 equiva-
lently says Ext} (B, R), = 0 for any associated prime ideal p of R. A submodule has
the same property; H_l(C( f ):)p = 0 for any associated prime ideal p of R therefore

(H.(C(f)' =0.  (qed)

Proposition 4.4 Let f : A = B a morphism of mod R. Suppose (Extk(B,R))' = 0.
Then f is rbm if and only if Kerf is torsionless.

proof. We already get the "only if ” part and have only to show the "if” part. Adding
a projective cover of B to f, we get an exact sequence

nf
0—’Ker ( )AeP (fPB)B 0.
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Due to Theorem 3.6, we have a perfect exact sequence 8,s, because nf is rbm:

nf c"!'rr
bur: 0 — Kaf % AeF,, (L) cant = 0
I IE; |
nf
of 0 — Kerf () Aep, Y2 B 0

From Theorem 3.6 3), we know Kerw, is projective. With the assumption
(Exth(B,R))" = 0, we can apply Lemma 4.3 and get that wy; is rbm. From the
equation f = wy o c"_’ , [ is rbm if ¢ is rbm. Since

. nl®
Fiers® RS D Cny) o Fiey

o+]

is a triangle, C(c*')* = Fgdl; H™1(C(¢"')") = H(Fiers") = Exth(TrKerf, R). Hence
¢ is rbm if and only if Kerf is torsionless. (q.e.d.)

Lemma 4.5 Let the sequence of R-modules 0 — A 4 B2 ¢ =0 be ezact. Suppose
(Exth(C,R))" = 0. If A and C are torsionless, then so is B.

proof. From the assumption, A = Kerg is torsionless. Due to Proposition 4.4, g is
rbm; there exists an exact sequence

6,:0 B(—QC@Q—'_Q
10— Cokg — 0

with a projective module  and a map ¢ : B — . Since C is a submodule of some
projective module, so is B. (q.e.d.)

Proposition 4.6 The following are equivalent for a noetherian ring R.
1) Q(R) is Gorenstein.
2) Q(R) is Gorenstein of dimension zero.
3) (Extk(M,R))" =0 for each M € mod R.
4) Wy is rbm for each M € mod R.

If R is e local ring with the mazimal ideal m, the above conditions are also equivalent
to the following.

5) ‘I’R/m is rbm.
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proof. As Q(R) is always of dimension zero, we get 1) < 2).

3) <« 4) is already shown in Lemma 4.2,

4) = 5) is obvious.

5) = 1). The condition 5) is equivalent to Extk (R/m, R)®Q(R) & Ext})(R/m®
Q(R), Q(R)) = 0, which means Q(R) is Gorenstein. (q.e.d.)

In the case Q(R) is Gorenstein, every morphism in mod R satisfies the hypotheses
of Proposition 4.4 and Lemma 4.5. Thus with the condition Q(R) is Gorenstein, when
discussing rbm property, we can deal with normal kernel as well as pseudo-kernel.

Proposition 4.7 Suppose Q(R) is Gorenstein. For a given morphism f, Ker f is
torsionless if and only if Kerf is torsionless.

proof. From Lemma 2.7, there is an exact sequence 0 — Kerf — Ker f —
Q%L(Cok f) — 0. So the "if” part is obvious, and the "only if’ part comes from
Lemma 4.5. (q.e.d.)

Theorem 4.8 Suppose Q(R) is Gorenstein. The following are equivalent for a mor-
phism f: A — B in mod R.

1) f is rbm.

2) Ker f s torsionless.
3) Kerf is torsionless.
4) HY(C(f)) =0.

st
5) Qp(Cokf) = Kerf .
6) There ezists f' such that f’ £ f and Ker f' is torsionless.

1
7) For any f' with f’ & f, Ker f' is torsionless.

proof. Implications 5) = 3), 7) = 2) and 7) = 6) are obvious. We already showed
1) & 4) in Theorem 3.6, 1) < 3) in Proposition ??, and 3)¢<> 2) in Corollary
4.7. Implications 3) = 7) and 6) = 3) are obtained from "if’ and "only if " part of
Corollary 4.7 respectively.

4) = 5). It comes directly from Cokdg(y® = Kerf and Cokdgyy™ = Cokf.
(ge.d.)

Remark 4.9 Takashima gives an easy proof for Theorem 4.8 using the torsion theory

{7
Corollary 4.10 The following are equivalent for a noetherian ring R.
1) Q(R) is Gorenstein.
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2) Every morphism with torsionless kernel is rbm.

proof.

1) = 2). It comes directly from Theorem 4.8.

2) = 1). For every M € mod R, Ker vy is torsionless. Because Keryy is projective
and Ker ¥y is 2 submodule of Kery from Lemma 2.7 1). So if 2) holds, 1y is rbm
for any M € mod R, which implies "1) from Proposition 4.6. (g.e.d.)

Acknowledgement. I thank Kazuhiko Kurano who suggested that conditions for
rbm should be given in terms of the kernel not only by the pseudo-kernel. I also thank
Shiro Goto who told me that the assumption of Theorem 4.8 is weakened and that
Corollary 4.10 holds.
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MORITA DUALITY AND RING EXTENSIONS *

KazuTosHl KOIKE

ABSTRACT. Let A be aring with Morita duality induced by a bimodule pQ 4 and let R be
aring extension of A, Miiller proved the fundamental result that if R4 and Hom4(R, Q)4
are linearly compact, then R has a Morita duality induced by sHoma(R,Q), where
S = Endr(Hom4(R,Q)). We improve this result by showing the existence of a category
equivalence between certain categories of A-rings and B-rings whenever A and B are two
Morita dual rings. We also generalize and unify a result of Fuller-Haack about Morita
duality of semigroup rings and a result of Mano about self-duality of finite centralizing
extensions.

1 HAROER
Bl Morita duality ® self-duality 23R4 ZHABRIC LD & J ICBIET 2 Hic20T.
2, ZLOWBFICL>THRONTE:, REEL L 2DIKRD Milller DERTH 3.

JEE A ([1, Proposition 7.3) ZH). A ZHUMEE Q4 I & > TED 51 3 Morita
duality 528, R¥ ADHAELE T5. Ry & Homu(R, Q) # linearly compact T
HiuE, RGTFEMEE sHoms(R,Q)g o & > TED 5413 Morita duality #H 2, %
#L S = Endp(Hom4(R, Q)) TH 3.

COEBROFHN2BE E LT, Fuller-Haack BRRDEBEER L7z,

EEB ([1, Corollary 9.4 2H). G 2BBEHE T3, Bl AHB BIZE Morita dual
ThHiUE, B AG IZ¥#R BG i2h Morita dual TH 3. I8 A 58 self-duality
25T, ¥R AG b self-duality Z 2,

ZDERRD self-duality 2 —LT 2T, HFRROEBRELIEHL 7.

EEC ([1, Theorem 9.2] ZH). B A XWRIIEE 1Q4 IZ & > TED 513 self-duality
2528735, ADIKER R MEHF

(1) Rizry,...,rTn ZREL T28HE ANFTH 3.

*The detailed version of this note will be submitted for publication elsewhere.
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2) &1 ld ADTRTOTEL FHTH 5,

(3) T‘,"r‘_,' = 2:=1 TE@ijk (aijk € A) ti?k g’. ﬁ'a,‘jk [ ¢ Q @?—&To)j‘ﬁt'ﬁﬁﬁ?
b3,

(#3754, RO self-duality Z H2,

SEOREICEBWT, 22005 A &£ B Morita dual D & ¥, H5MD ABROEL
BEOBOBICEEENFET I ILERTILIZE>T, EEARXWRLL (BH
2). $7-ZORALLT, BATH 3 L) LHERPLNEKR (EECOFKA(1), 2%
W7 THAR) D Morita duality 23REL, EEB LERCEHE - —RLT B L
T&7: (BEA4).

BT CoMGERTR, TRTCORIEMTEL S, TXTOMBRBUNTHZ L
T 5.

2 Morita duality DEE &TEINMEEDE

AL B2BRETE. Mod-A, B-Modizk»T, TNFThhE AMBELM, £ B
2EDEERT, Morita duality & 13, ROFEL2HT Mod-A DFTEWHIE A &
B-Mod DI E B DD duality (ThHHLEERE) F: A2B:GTh3:

(1) Ar€ A, gBe B,
(2) A& BREANE L MAMBCHEL T3,

KERICIE, F, G R#EXmUME pQ. AT F = Homa(-,Q), G = Homp(—,Q)
ELTRAANMETH S, JIT, pQu RBHTHATERAMBET, Q4 & 5Q BBAN
REFBMPFE 23, Mz, oL LM Q4 XL T, WHEE Homa(—,Q),
Homp(—, Q) i Q-FHHIZINEE (B IXEE) 55 72 2 TIMH B DM D Morita duality
L2378, MM 5Q4 & Morita duality ZEBEEFTS £ \v295. TD LI IZ, Morita
duality X A fIMBEOEIC X L TER I N 22, SHEOWHE TIdH 2 HOmEMEEDH
EEL .,

BT, ZoO@mXEELT, BWIMEE 5Q4 i& Morita duality #E®H 3 & L, IiEFE%
(=) = Homu(—, @), (=)* =Homp(—,Q) B, BAMBX (EBMBY) i, &
MO LHHEER X - X# (Y > Y*)BAREGHTH 2 L &, Q-FHM (Q-reflexive)
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TH3EV), HANBEOEEZRDELHICED S,

MA._A = {ALA I LA,L'A‘i Q-E%EWJ },
sMa = {pMa | M4, pM i3 Q-RKHH },
g-gM = {gNg | N, sN#i3 Q-1 }.
R LHRHUBABEERTHS. (AN TWB LIHIZ, Q4D Morita duality
ZEDDLLE, HGANKEX (EBIM#Y) M Q-REMTH 3 Z L L linearly compact T
B LBAETHSD. LicdoT, EBADHAKBRIZNT ZKEIR s\Ry € My_a

THBHI L E2BW%T S, Morita duality 2HR T3 2 Lick>T, ZhbDOMElNEED
Bic>wT, ROBEMRY o,

8 1. (1) aAAa € M4_a, 8R4 € pMa, gBg € p_gM.

(2) Ma—a, pMa, p-pM i3, WITHINEE, RISERIIE, MHMNEOIKCEAL
W3,

(3) BABFEOR (=) : Ma_ g 2 pMa: (=P & (=) : My 2 p_pM: (-)* 12
duslity TH 2, L7AoT, SNEDEM ()" : Ma_a 2 p_pM : (-)#* i
BRETH 3.

3 ROE:ZEOME

BRLENANERA L ROMN (R f) % AR (A-ring) L\ 3. A DEKKEP
AR ARTH2. 220 AR(Rf) L (R, /) OMOBé: (Rf) - (R, f) %
dof=f W TRYARNES . R R ELTEDS, UBEAB(R f)2HICR
THET. ABRIE (A A) TRMBEL BT L2 CE, ABOHR - RI2(A AT
fREREHL 23,

AROBE L BROBOXHHIEEZ, ThEh

Ra={R| sRa€ Ms_4}, BR = (S| BSp € p-pM}
ko TEDIUL, EEA ODHELDORDERZLRZ I LHTES,
TR 2. (1) (-)":Ra=pR:(-)* BERAMZED S,
(2) EReRAX LT, R*idMorita duslity ZE& 5 (R**, R) mfUmitL 2 5,
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RERADEE, s,RaeMss TH396, R € g_gM ThdH, KEICIX R
i3 B-ROMEE b0, X512, (-)" iR AROHE B-ROFICET Z L EEIDT,
FE2D (1) %283, ¥, BMEL TR ¥Endr(R") THZH0 5, EH2D(2) IXE
BAZOLDTHD, ZOHOBERICE LTI, BF (EBA, B, CTY) Endr(R")
HBAVENRD., CboDOAYBRMEIRHESHTHEY, BFELLTRALTHEEIR R
OEMBFEVRT V., £, BROTEE4TH R OHBHERERTH 3,

EEo2kbh, AL BHMoritadual D& %, Ak BOHZHEOIKE L DRlICIE,
Morita dual T 3 & W5 EROFTT, AROEKRT 1N 1 HEIFEET 3. ROFKIL,
Wisd 2 AR BROFNFN A, B-HHYBLMEIZ—O annihilator I2 Xk >T 14
1iCHET3ZLERLTVS,

FB.RERLIHLT, U=R", S=U"=R" 8L, ROAFBIRR IIHLT,
U={ueU|uR)=0}, §'={seS|sU')=0}

EBV3E, U/U 12 Morita duality #E® 3 (&, R') llMBt L %3, £, WER ~ &'
2RO AFORLBEL SO BESTRLFLOMD I W1 ¥EREXL S,

ZOF LY, MHIEE 5Q,4 D% Morita duality ZE®D S L &, FIZIEnRITAIRR=
Mo (A) D A-BIBRD Morita duality 2 22 &%, Morita dual Z2H% Morita duality
* £ 2MHINEEDS annihilator i2 & > TRENICIHERTESZ Z L2903,

4 ARPORIRK

READEKRET S, ADEBDT LWL RDITry,...,1a T, R=) ;1A
LB LOMFET B LE, RIZAOBRPDOMIEX (finite centralizing ex-
tension) t b s, FHNE Mo B M=mA=Am LHTFBLE, M e My4
THHI LoD B, ADERPLEARE R, (A A)@MFEFELLT, Z04 M,
Dk 5 LFHAMEORBRECEHMORAKTUMFTH 5256, @EH1LD RRR
BT 3, Lizd-oTER2 &Y HRPLAEKEIC Morita duality 1385 T2, Z0¥
KiZbbAALCAONTVEM, ROERICKT, BRPLLAR=Y] r4d
KBVT, r,..., T DEHA-EEICR>TW3 E %, RE Morita dual 2BEZ5%2IC
REL %,

28, HRPLBERO—RLE LT, FREREK L BR=ALEKRYSH 3 ([1, Sec-
tions 8-9] 2M). T & DILABRIC Morita duality SRETZ L LT TIITRENT
Vwahs, LOERPLABEROBELALRETRT LB TE S, HFRERIAR
BR=EABKIZOVLTR, 7t AERTIEHHREEIZZ> TWTH, Morita dual 2B
EREMCHRTZILRELVLWLDO L BN B,
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Morita duality % E& 2 TfINEE pQ4 X BREEHTH 295, A, BOhLIER,
Thbb, BRAEEMR o: Cen(A) > Cen(B) BHEETS. T Tald, H£EDgeQ
KN LTqa=aa)g KE>TEDGND, EROEHE4DEME (3) ILBIT 3 a5 28
Cen(A) IKBT 3 Z EMEBIZID D, bk (3) 13, £fF(3) ERET 2 0IcBo-
e, FRLAOHNLEATESTY, BHICRBREHRTH X IR A0FRDPL
BHERTHZ L VIBKETH 3, LEOEEBOT, EH4E2RDEI IR TES,

EH 4. MEIMEE Q4 13 Morita duality ZE®H 5 LT3, Riz ADHKET, &&
(1) 7y .70 I RO AHBHBETH 3.
(2 EriRADEBOTLTRTH B,
(8) rirj = Lo mraie (aije € A).

2T ETs, U=R, S=U"Lt8BL, ZDLE, UiiMorita duality ZEDH 3
(S, R) mfUMEET, S B&FE

(1) r*,..., iSO B-EREETH 3.
(2 " 3BOEBDOTETATH 5.
(3)” T;'T;' = :=l r,:'a(ag,-k) (a(a.-j;,) € B).

BT, REL R =un) WeEU)REH>TEEEINS SOXTH 3,

ZDERI, ROBROWEER 0, & SOBOHBER alay) i2iZEA Y TRAL,) T
HBILERLTVS, EHROBE, WHEEHICRO»1 LrRhivds, FARER
al3F NS 2 {296, BHLEBA L LT Fuller-Haack DEE B #%83%, ¥/ A=8
T afaige) = ap PBEL LT, HFEOEHC 283,

2% 3Bk

[1] W. Xue. Rings with Morita duality. Springer-Verlag, Berlin, 1992.
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ON INDECOMPOSABILITY OF A MODULE
GIVEN BY BRAUER CONSTRUCTION

SHiGEO KOSHITANI (A& k)

ApsTRACT. In representation theory of finite groups one of the most important and
well-known conjectures is Broué's abelian defect group conjecture. In this note we
introduce a sort of technical result which is useful to prove Broué's abelian defect group
conjecture for a few examples which are new.

1. Introduction

In representation theory of finite groups, there has been a very important problem,
namely,

How are representations of a finite group G over a field & of prime characteristic p
similar to those of its subgroup H containing a Sylow p-subgroup P of G?

representations of G over k

1

representations of H over k

An origin of this problem is, of course, due to Richard Brauer (1901-77). From
this point of view, one of the most important and interesting (and also well-known)
conjectures in representation theory of finite groups is Broué’s abelian defect group
conjecture. Actually, Michel Broué conjectures the following.

(1.1) Broué’s abelian defect group conjecture, (see [2], (3] and [5]) . For any
prime p, if a block algebra A of OG has an abelian defect group P then A and its
Brauer corresponding block algebra B in ONg(P) should be derived equivalent,
that is,
D%(mod-A4) ~ D%(mod-B)
equivalent

1991 Mathematics Subject Classification. primary 20C20, 20C05; secondary 20C34, 20C15.

Key words and phrases. Brauer construction, block, Broué’s abelian defect group conjecture,
modular representation theory, finite group, derived equivalence, splendid Rickard equivalence.

The author was in part supported by the Ministry of Education, Culture, Sports, Science and
Technology, Grant-in-Aid for JSPS Fellows 01016, 2002-2003; and the JSPS (Japan Society for
Promotion of Science), Grant-in-Aid for Scientific Research C(2) 14540009, 2002-2004.

The detailed final vertion of this paper will be published, see [7].
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as triangulated categories, where O is a complete discrete valuation ring whose residue
field is an algebraically closed field & of characteristic p, and mod-A is the category
of finitely generated right A-modules, and D®(2) is the bouded derived category of
an abelian category 2.

As well-known, there is a beautiful result of Jeremy Rickard ([9], [10]), which
characterizes such a derived equivalence completely and which is a generalization of a
Morita equivalence from modules to complexes. As a matter of fact, in (1.1) above,
a stronger conclusion is expected. Namely, derived equivalent should be replaced
by splendidly Rickard equivalent, which is due to Jeremy Rickard [11].

In this note we present a theorem which is a sort of technical one, but also useful to
prove Broué’s abelian defect group conjecture, which is used in a work of the author,
Kunugi and Waki [6].

Actually, we have a result which is a joint work with Markus Linckelmann. We
present it in the next section.

2. The main result
First we introduce notation and terminology we need to state our main result.

(2.1) Notation and assumption. Let G be a finite group, and let O and k be
as in (1.1). We call an OG-lattice of finite rank a finitely generated OG-module.
For any subgroup L of G let AL = {(¢,¢) € L x L | £ € L}, and we consider OG
as a right O[AL]-module via a({,£) = £~'af for a € OG and ¢ € L. Then, we next
define (OG)AL as (OG)AL = {a € OG | a(€,8) = aforVL e L} = {a € OG | £~ 1al =
aforVl €}. For a p-subgroup R of G let Brag be the Brauer map (homomorphism)
with respect to R. Namely, Brar is defines as

Brar: (OG)AR — kCg(R), Y agg — Y @y,
9€G 9€Cc(R)
where ay € O and &y is its image in &k
Note the Brauer map Brapg is a surjective algebra-homomorphism. For a p-subgroup

R which is contained in both of G and L and an (OG, OL)-bimodule Y we define the
Brauer construction (quotient) Y(AR) by

Y(aR) = (Y2R/ 3 T1RR(Y2F)) @ok
R'SR
where Tr is the transfer (trace) map. Clearly, the Brauer construction ?(AR) in-
duces an additive functor from the category OG-mod-OL of the finitely generated
(OG, OL)-bimodules to the category
kCc(R)-mod-kCr(G). In particular if Y = OG we get Y(AR) = (OG)(AR) &
kCeq(R), and we identify these since we have a commutative diagram

(OG)AR Brar, yoo(R)

canonical l ll
epimorphism

(OG)(AR) —— kCG(R)
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First, let (P, e) be a Brauer pair in G, that is, P is a p-subgroup of G and e is a block
of kCc(P). Then, by results of Alperin-Broué [1, Theorem 3.4] and Broué-Puig [4,
Theorem 1.8, it follows that, for any subgroup Q of P there uniquely exists a block
eq of kCq(Q) such that (Q,eq) < (P,e). For other notation and terminology, see
books of Nagao-Tsushima [8] and Thévenaz [12].

Now, we can state the main result of this note; that is,

(1.2) Theorem(Koshitani-Linckelmann, see [7]). Let b be a block (block idempotent)
of a block algebra A of OG (so that A =bOG), and let (P,¢) be a mazimal b-Brauer
pair in G, and hence P is a defect group of b and e is a block of kCg(P) such that
Brap(b)e = e. Next, let H = Ng(P,e) = {g € Ng(P)|g~leg = e} be the inertial
group of e in Ng(P). For each subgroup Q let eq be the same as above, and let fg be
a block of kCr (Q) such that (Q, fo) < (P,e) since Ca(P) = Cy(P). Moreover, let f
be a primitive idempotent of (bOG)AH such that Brap(f)-e = e, and let X = OGf.
Then we have the following.

(i) X is an indecomposable O|G x H|-module with vertex AP.

(i) If Q is a subgroup of Z(P), the center of P, then eq-X (AQ)-fq is a unique inde-
composable direct summand of eqkCcq(Q) fq with vertez AP as a (kCa(Q), kCu(Q))-
bimodule.
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SOME TOPICS ON DERIVED EQUIVALENT BLOCKS
OF FINITE GROUPS

Naoko KUNUGH

1. INTRODUCTION

Let G be a finite group. Let & be an algebraically closed field of characteristic ¢ > O.
We denote the principal block of kG by Bo(G).

We say that two finite groups G and H have the same ¢-local structure if G and H
have a common Sylow £-subgroup P such that whenever @, and @, are subgroups of P
and f: @, — @ is an isomorphism, then there is an element ¢ € G such that f(z) = z¢
for all z € @, if and only if there is an element h € H such that f(z) = z* for all z € Q.

There is a well known conjecture due to Broué.

Conjecture 1.1(Broué [1, 2]). Let G and H be finite groups having the same ¢-local
structure with common Sylow ¢-subgroup P. If P is abelian then the principal blocks of
G and H would be derived equivalent.

If P is not abelian, then there is a counterexample to this conjecture. However , there
are some examples that P is not abelian and there is a derived equivalence between the
principal blocks of G and H. We will give such examples in §3.

2. GENERAL THEORY

In this section, let G and H be finite groups having the same £-local structure with
common Sylow ¢-subgroup P. We say that a complex of (Bo(G), Bo(H))-bimodules is
splendid if each indecomposable summand of each term of the complex is a direct summand
of a module of the form kG ®xq kH for a subgroup @ of P.

Definition 2.1. Let X* be a splendid complex of (Bo{(G), Bo(H))-bimodules. We say
that X* induces a splendid stable equivalence if we have isomorphisms

X* Q8o(H) X = Bo(G) &2, X ®By(G) X = BO(H) ® Z;
where Z; and Z, are homotopy equivalent to complexes of projective bimodules.

Definition 2.2. Let X* be a splendid complex of (By(G), Bo(H))-bimodules. We say
that X* induces a splendid equivalence if we have isomorphisms

X* ®pyiy X** = Bo(G)® 21, X°" ®pyc) X* = Bo(H) ® 2,

where 2, and Z, are homotopy equivalent to 0. The complex X* is called a splendid
tilting complex.

The detailed version of this paper will be submitted for publication elsewhere.
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By the definition, splendid equivalences induce derived equivalences and homotopy
equivalences.

Theorem 2.1 (Rouquier [12]). Let X* be a splendid complez of (Bo(G), Bo(H))-bimodules.
Then the following are equivalent.
(1) The complez X* induces a splendid stable equivalence between Bo(G) and Bo(H).
(2) For every non-trivial subgroup Q of P, the complez X*(A(Q)) induces a splendid
equivalence between Bo(Cg(Q)) and Bo(Ch(Q)), where A(Q) is a diagnal subgroup and

X(Q) = X4/ 3 Tegxa®.
R<Q

In our example in §3 we will use the following method when we prove splendid equiva-
lences.
(Step 1) Construct a splendid tilting complex between By(C(Q)) and Bo(Cu(Q)) for
every non-trivial subgroup @ of P.
(Step 2) Construct a splendid stable equivalence F' from By(G) to By(H) by gluing the
splendid tilting complexes obtained in Step 1 (by using the above theorem).
(Step 3) Calculate F(S) for the simple Bo(G)-modules.
(Step 4) Lift the stable equivalence in Step 2 to a splendid equivalence by looking at the
modules calcutated in Step 3.

3. GENERAL LINEAR GROUPS AND UNITARY GROUPS

Let g be a power of a prime. Assume that ¢ is odd and & divides ¢ + 1 but %! does
not divide ¢ + 1 for some e > 0. Under this condition, we consider representations of
the general linear group GL(n,q*) and the unitary group GU(n,¢?) for small n. Note
that if £ > n then the principal ¢-block of GL(n,q?) is Morita equivalent to its Brauer
correspondent by Puig’s result(see [8]).

3.1. GL(2,q%) and GU(2,¢%). We have isomorphisms
Bo(GL(2,q%)) = kZs ® Bo(SL(2,4%)), Bo(GU(2,6%) = kZy @ Bo(SU(2, %))

The blocks Bo(SL(2,4?)) and Bo(SU(2, ¢%)) have cyclic defect groups, and they are splen-
did equivalent by Rouquier’s result in [11]. Therefor the principal blocks Bo(GL(2,4?))
and By(GU(2,4?)) are splendid equivalent.

3.2. GL(3,¢%) and GU(3,4%) in characteristic ¢ > 3. In this case, Sylow ¢-subgroups
of GL(3,¢%) and GU(3, ¢%) are abelian. As in case n = 2, we have isomorphisms

By(GL(3,¢%) = kZpe ® Bo(SL(3,6%)), Bo(GU(3,4¢%) = kZe ® Bo(SU(3,4%)).

In [5], Waki and the author showed that Bo(SU(3,4?)) and its Brauer correspondent,
which is isomorphic to the Brauer correspondent of Bo(SL(3, ¢%)), are splendid equivalent.
Therefore Bo(SL(3, %)) and Bo(SU(3, ¢?)) are splendid equivalent since as we mentioned
above By(SL(3,4%)) and its Brauer correspondent are Morita(Puig) equivalent by Puig’s
result. Hence we also have Bo(GL(3,¢?)) and Bo(GU(3,¢?)) are splendid equivalent.

3.3. GL(3,¢% and GU(3,9%) in characteristic 3. In this case Sylow 3-subgroups of

GL(3,4%) and GU(3,4?) are not abelian. Our main result in this paper is the following
theorem.
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Theorem 3.1 (with T. Okuyama). Assume that 3¢ divides q+ 1 but 3°*! does not divide
g+ 1 fore>0. Then

(1) The principal 8-blocks Bo(PSL(3,4%)) and Bo(PSU(3,¢%)) are splendid equivalent.
(2) The principal 8-blocks By(SL(3,q%)) and By(SU(3,¢%)) are splendid equivalent.

(3) The principal 3-blocks Bo(PGL(3,q%)) and By(PGU(3,q%)) are splendid equivalent.
(4) The principal 3-blocks Bo(GL(3,4%)) and By(GU(3,4%)) are splendid equivalent.

Remark 3.1. If e = 1, then the result for (1) has been obtained by [6, 4, 3] and the result
for (3) has been obtained by Usami and the author.

4. OUTLINE OF PROOF OF THEOREM

In this section, we give an outline of a proof of Theorem 3.1 (1) and (2). Let G =
SL(3,¢%), H = SU(3,4%), G = PSL(3,¢?) and H = PSU(3,4%). Let P be a common
Sylow 3-subgroup of G and H. We denote the image of a subgroup L of G (or H) in G
(or H) by L. For each subgroup R of P, let Gg := Cx(R), Hg := Cx(R), and let Mz be
the Scott module of Gr x Hp with vertex A(R'), where R is a Sylow 3-subgroup of G
and Hp.

(Step 1). There is essentially one subgroup of P(up to conjugate), which we denote
by Q, containing Z(P) such that Bo(C¢(Q)) and Bo(Cy(Q)) are not Morita equivalent.
Then Cg(Q) = GL(2,¢%) and Cy(Q) = GU(2,¢%). Let Mg — kz,xm, be & AQ)-
projective cover of kg, .7, and Ng — (ke oxHq) be 8 A(Q)-projective cover of
Q@) (kg,xH,)- Then we have a splendid tilting complex for By(Gg) and Bo(Hyp) of the
form
0 — Nog — Mg —0.

For a subgroup R of P not contained in @, the blocks Bo(Gr) and Bo(Hr) are Morita
equivalent and the Scott module M g gives a splendid tilting complex for these two blocks.

(Step 2). Let M be the Scott module of G x H with vertex A(P). Let M — kgxy be
a A(P)-projective cover of kgxy and N — Qa(py(kexu) be a A(Q)-projective cover of
Qa(py(kexy). Consider the following complex

M: 0—N—M-—0.
and set M = Invzp)x1(M*). Then the complex Misa splendid complex, and for each
non-trivial subgroup R of P, the complex M (A(R)) coincides with the complex in (Step

1). Therefore by Rouquier’s theorem (Theorem 2.1) we can see that the complex m
induces a splendid stable equivalence between By(G) and By(H).

(Step 3). Let F = — ®py) M . The principal block of Bo(G) has 5 simple modules
k,S,Ti,T> and T3 and the principal block of By(H) has 5 simple modules &, ¢, 8,8, and
f3. Then we have the following lemma.

Lemma 4.1. There exist exact sequences
0 — QN Ulk,p)) — UAF(S)) —kdk— 0

and
0 — Q7 U(k,0,6) — P(F(T)) — k— 0
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for i = 1,2 and 8, where U(k,y) is a uniserial module of length 2 with top k, and
U(k,,8:) is a uniserial module of length 3 with top k and socle 0;.

(Step 4). Tt follows from Lemma 4.1 that the tilting complex defined by a sequence
{61,02,6}, {.61,82,6:} and {¢p, 8,,0,,63} of subsets of the set of simple modules (see
[6]) gives a derived equivalence between Bo(G) and By(H). The equivalence is a lift of
the stable equivalence given by F (see [7]), and therefore Bo(G) and Bo(H) are splendid
equivalent.

Now we have the splendid tilting complex for Bo(G) and Bo(H) of the form
T: 0—'63—'62—'-Q-1®N—-7H—'0
where M = Invz(pya(M) and N = Invzpyx(N) and @), Q,, and @y are projective
bimodules. Since Invz(p)x1(—) induces a one to one correspondence between the set of
trivial source k|G x H}-modules with vertex A(Z(P)) and the set of projective k[G x H}-
modules, we have a tilting complex of the form

X: 02— Q—Qe&N—M—0

for Bo(G) and By(H), where @1, Q2 and Qs are direct sums of trivial source k[G x H]-
modules with vertex A(Z(P)) and Invzpy(X*) =X (see [12, A.4]).
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GAUSS SUMS ARE JUST CHARACTERS OF MULTIPLICATIVE
GROUPS OF FINITE FIELDS !

KAORU MOTOSE

This paper is a summary of some papers [4,5,6] such that using special commutative
group algebras, we could prove alternatively some reciprocity theorems, prime decom-
positions of Gauss sums and Lenstra’s primality test.

1. Group Algebra Map(F, K)

Let A = Map(F, K) be the set of all mappings from a finite field F = F, of order ¢
to a field X where ¢ is a power of a prime p. Then we define the convolution product
in A by the following

(fro)e)= 2 fla)g(b)
a,beF
atdz=c
for f,g € Aand ¢ € F. This product together with the usual sum and the scalar
product gives the structure of a commutative algebra over K. If there is no chance of
confusion we shall denote the product f * g by the usual notation fg.

Let u, be the characteristic function of @ € F, namely, v, is defined by the following

1 ifb=a

valb) = { 0 ifb#a.

Then we have the following equations.

Ugtty = Ug4p and f = f(a)u, for f € A.
acF
Thus {u, | a € F} forms a basis of the group algebra A of the additive group
of F over K. We denote by F the set of all characters of the multiplicative group
F* = F\ {0}, by x* k-th power of x € F with respect to the convolution product
and by e the trivial character. We set ¢(0) =1 and x{0) =0 for x # e € F. Thus we
have F C A. We set J(fy1, fa,..-, fa) = (fifo-- f2)(1) for fi, fo, ..., fa € A which is
! This paper is a summary of some papers [4,5,6] that was already published. This paper was finan-

cially supported by Fund for the Promotion of International Scientific Research B-2, 2004, Aomori,
Japan.
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usually called the Jacobi sum.
2. Gauss sums and Jacobi sums

It is easy to see that ¢ x € = ge and A » ¢ = 0 for nontrivial A € F. We have the
following another relations which are important to our object.

Lemma 1. Assume that Ay, As, ..., An are nontrivial elements in F and g—1#0
in K. Then we have the next equations in each case.

(1) In case MAz... s # €, we have
PYEPTEREEE'D VI [ Y1 VIRNURD W ) ¥ PRERD Wi

(2) In case MAz- -+ A = €, we have
A x g * oo x Ay = A (=1)J(A1, A2y .-y Ano1)(quo — €)
where J(A1, Az,..., A1) =1ifn=2

For x € F, we can write x = Z,¢ FX{a)u,. On the other hand Gauss sums is defined
by
90 = ¥ x{a)¢ire

a€EF
where ¢, := ezvﬂ, g =p" and tr(a) = a+aP+---+a” " for a € F. Hence, in case K = C

the complex number field, a map x — g(x) (v, — C‘Er(“)) is the natural homomorphism
from A to C. Therefore, it is natural to think of x as Gauss sum g(x). It is easy to
see F forms a basis of A because u, = ﬁzxei_:x(a'l)x ifg—1#0in K.

3. Quadratic characters for odd primes

In this section, we shall have evaluation of the quadratic character € A for an odd
prime g. Using the character table and a permutation b — b~! on F*, we can see easily
the next proposition.

Proposition 2.
(1) detfuas-1]ap = (e — uo) * [[' x where [| means the product of all nontrivial
multiplicative characters 'w;(t#hC respect to the convolution product.
(2) det[ugs)ap = (—1)’38-—lq"3‘3n where q is odd.
The next needs for evaluation of . This follows from Proposition 2.

Lemma 3.
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-1

(1) h(uo —uf) = qup —e.
k=1

=y

N
= ()T T k_yk = Ugs1.
@) n=(-1)7v k]_;Il(v v™") where v=1ugn

We can see the evaluation of ordinary Gauss sum

12

g=1)"
gn)=i"7"q
from Lemma 3 and the equation I'I,E_: 2sin(-“f) = /n for an odd n.

4. Prime decompositions of Gauss sums

In this section, using commutative group algebras, we shall give an alternative proof
of theorem about the prime decomposition of the Gauss sum which was essentially used
in the proof of Stickelberger relation (see [1]).

Let m be a natural number, let p be a prime which does not divide m, let f be
the order of p mod m, and g = p/. Moreover let O be the ring of algebraic integers in
Q(¢y-1) and let P be a prime ideal containing p, where (,_, is a primitive {g — 1)-th
root of 1. Then it is well known that g is the order of a finite field F = O/P.

We consider the Gauss sum g, = g(x°) = Tacr X2 ()¢ where x is a generator of
F and tr(a) is the trace of a. Let P be the ideal generated by P and {1-¢t|0 <k <p}
in the ring of algebraic integers O of Q(((4-1)p). It is easy to see P is the prime ideal
generated by P and 1 — (;,. We set a* = by + by + -+ + by_; for a positive integer
a=by+bp+---+bsj1p/~! where0 <a< gand 0< b <p.

The next follows essentially from [3, Proposition 3.2] and this was used essentially
for the Stickelberger relation (see [1]).

Theorem 4. ordp(g,) = a* for 0 < a < q, namely, P* divides exactly g,.

Proof. Let v be a natural homomorphism from Map(F, O) to Map(F, O/P) and let
J be the ideal generated by P and {up — u.|a € F}. Since v(x°)P! = 0 for x° # 1, we
obtain that v(x¢) is contained in »(.7), the radical of the group algebra Map(F, O/P),
and so x° € J. [3, Proposition 3.2] together with this implies that yx* € J* for
the Jacobi sum 4 € O\ P. The character ug — (:r(") induces the epimorphism
¢ :Map(F,0) — O with ¢(J) = P and ¢(yx®) = 794. Thus we have ordp{gs) = a".
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On the other hand, ordp(g,) +ordp(gg-1-a) = f(p—1) = a* + (g — 1 —a)" follows from
9agq-1-a = X°(—1)g and ordp(p) = p — 1. This completes our proof.

Remark 5. [3, Proposition 3.3] shows that {x*|a* = k} forms a basis of
v(J)*/v(T)¥! and so ord 7 (x*) = @, namely, a* is the maximum integer s such that
x* € J".

Loewy series of Map(F, O/ P) are computed from this. ( & is the maximum integer
s with x2 € J?)

5. Reciprocity theorems and Lenstra’s primality test

The next lemma is essential in proving quadratic, cubic and biquadratic reciprocity
theorems, and Lenstra’s primality test.

Lemma 6. Let ¢ be the order of x € F, let n be a prime number with (n,q) = 1
and let e and s be natural numbers with n° = s mod £. Then

X~(n) = (jg) " Tx¥(1) modn where j = x(-1)xI1(1).

Theorem 7 (Lenstra). Let n be an odd integer and let T be a prime divisor of
n. Let T be a finite set consisting of 2 and odd primes p satisfying (n,p) = 1 and
nP~! # 1 mod p?. We sett = [[perp. Let S be the set of primes g satisfying (n,q) =1
and (g—1) | t. We set s = [lges g- 1
-1

n= !p
We assume there ezists an integer ¢ such that c*T = —1 mod n, and (jg)* 7 =
Xq(n) mod n for everyp € T, g € S end x, € F with order p. Then we have r =
7' mod s for somei < t.
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RELATIVE INVARIANTS OF GROUPS ACTING
ON KRULL DOMAINS AND APPLICATIONS

HARUHISA NAKAJIMA

Abstract. In this paper, we will study on relative invariants of a group G consisting of
automorphims of a Krull domain R and give a criterion for Ry to be a free RC-module
of rank one for a 1-cocycle x of G in the unit group U(R), in terms of local 1-cocycles
which is similar to one in [N1, 81, §2). On the other hand, suppose that G is equal to the
centralizer of an algebraic torus G°. Consider an affine factorial G-variety X with trivial
units, over an algebraically closed field K of characteristic zero. Let V be the K'-dual of
a finite dimensional generating G-submodule V'V of O(X) having a K-basis {I consisting
of weight vectors of G? such that £ does not degenerate under V\{0} — P(V'). Suppose
that the action (X, Q) is stable (cf. [K1, P]) and consider the G-submodule W of V'
such that G is diagonal on V/W and W 3 z — z+w € V induces W//G == V//G, , for
some w € V. As an application of the result on modules of relative invariants mentioned
above, we show that, for a minimal W, Cl(X//G)  n(Gw/5 w(Gw)) whase cokernel
is finite. Here p(Gw/s w(Guw)) is a group of rational characters of Gy, modulo its
largest pseudo-reflection subgroup on W. Some related results are discussed.

1. Introduction.

Let Q(R), U(R) and Ht,(R) denote the total quotient ring of a commutative ring
R, the unit group of R and the set consisting of all prime ideals p of R of height one,
respectively. For a ring extension S — R, put

Ht1(R, S) := {p € Ht1(R) | pN S € Ht (S)}
and, moreover for any 2Q € Ht,(S), put
Xa(R):={pe Ht;,(R) | pNnS =2Q}.

In the case where R is a Krull domain, let vg, be the discrete valuation of R defined
by p € Ht1(R) and, for a subset 2 of Q(R), let divg(£2) be the divisor on R associated

to the divisorialization {2 - R of Q-R, if it is a fractional ideal of R. Moreover, suppg(Q2)
stands for the set

{p € Hty(R) | vrp(22- R) # 0}.

2000 Mathematics Subject Classification. 13A50, 13B15, 14L.30, 20G05,.
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If R is a Krull domain, then a subring S of R satisfying the condition that Q(S)NR is
so and we can define the reduced ramification index e(p,p N S) of p € Ht; (R, S) over
pN S (cf. [N4]). In this case, the ring R is said to be unramified over S at a subset
I C Ht (R, S), if R is unramified over S at each p € T (cf. [N4]). Let us consider
an action of a group G on R as ring automorphisms. For a 1-cocycle x of G in the
unit group U(R) of R, we denote by R, the RS-module of x-invariants or invariants
relative to x, where R denotes the subring of R of invariants of G.

(1.1) Suppose that X is an affine normal variety over an algebraically closed field
K of characteristic p > 0, whose structure sheaf is denoted to O, with a regular
action of an affine algebraic K-group G. Suppose that Q(O(X)€) = @(O(X))€ and
that O(X)R=(®) is noetherian, where R,(G) is the unipotent radical of G. Regard
ZY(G,U(0O(X))), the group of 1-cocyles of G, as an additive group and also X(G),
the rational character group of G, as an additive subgroup. We can choose a finite
subset ' of Ht; (O(X),0(X)€) in such a way that
T 2suppox)(O(X)x) N Ht1 (O(X), O(X)C)
(Vx € Z'(G, U(0(X))) with O(X)x # {0})

and Xpnox)s(O(X)) CT for all p € T. For any p € T, let Ig(p N O(X)S’) denote
the inertia group of G at p N O(X)C’ (cf. [N4]). Set U = Mper(O(X)\p) and let
mp € p (p € T) be a relative invariant of G° whose associated 1-cocycle is denoted
to &r, € ZH(G% U(U~'0(X))) such that mp generates pU~1O(X). Let A, be the
. G° -

1-cocycle in Z(Ig(p N O(X)C ), U(U"1R)) defined by nqezc(pnO(X)c")p mq. For
any x € Z1(G,U(O(X))) with O(X)y # {0}, sp(x) stands for the smallest a € Zy
satisfying

X 1o propaeey =6+ 8, mod BY(Ig(p N O(X)®"), BT O(X))).
We can choose a nonnegative integer bp(x) (p € I') such that

xlgo = )_ 89(x) br, =Y _by(x) 8x, mod B'(G°, U(UT'O(X)))

pel’ pel’

and, for any minimal subset A of I satisfying

{Z N 5,,,} NBYG°, U(U™'R)) #0,
pEA

{bp(x) | p € A} contains 0.

As an application of our main result in Sect. 2, we obtain
Theorem 1.2. Under the circumstances as in (1.1), for x € Z (G, U(O(X))) such
that O(X), # {0}, the following conditions are equivalent:

(1) O(X)y = O(X)C as O(X)C-modules.

(2) dimg(ox)e)(O(X)y ®o(xye Q(O(X )%)) = 1, and the intersection of

) " (Bp(x) + sp(x)) - divr(p) + y Z - dive(x)(p)
pel pEHL (O(X))\Ht, (O(X),0(X)%)

and {divox)(f) | f € O(X)x\{0}} is nonempty.
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If these conditions are satisfied, then O(X)y is generated by the element f as an
O(X)C-module such that {divo(x)(f)} is equal to the non-empty set of divisors stated
in (2).

This can be applied to establishing a reduction of invariants of certain reductive
algebraic groups to ones of their stabilizers, which is similar to slice method.

(1.3) Furthermore suppose that G° is an algebraic torus. Let O(X)s: be the largest
G-invariant affine K-subalgebra of O(X) such that the action of G on Spec(O(X)st)
is stable (e.g. [K1, P]) and Xa the affine variety defined by O(Xs:) = O(X)st (cf.
[W1, N3]). Consider a finite dimensional rational G-submodule V'V of O(X) which
generates O(X) as a K-algebra. Let V denote the dual space of V'V on which G acts
naturally. We have a canonical G-equivariant closed embedding X — V and identify
the dual of V with VV. A pair (W,w) is defined to be a paralleled linear hull of
(X, G) through V'V or, simply, of (V,G), if W is a G-submodule of V. such that G is
diagonalizable on V3 /W, w is a nonzero vector of Vit such that WN < G-w >x= {0}
and the morphism
(o+w): Wz z+we Vy

induces the isomorphism
TV /G VI/G © (¢ + W) [[Guw : W/[Guw — Var//G.
Here (o + w)//Gyw : W//G\, — Vat// Gy is the algebraic quotient of (e + w) and
MVolIGuw.VIIG * Vet/[Gw — Vi /[G

is induced by O(Vi)¢ — O(Vi)€v. Under the assumption that G = G°, the pair
(W, w) seems to be initially defined and used by H. P. Kraft and D. H. Wehlau (cf. §1 of
[K2] and [W1, W2|). A paralleled linear hull (Wp, w,) of (V, G) is said to be minimal,
if Wy is minimal in the subspaces W which admit paralleled linear hulls (W, w) of
(V,G) for some w ’s. A element of o € G is said to be a pseudo-reflection on V (resp. a
generalized-reflection on O(X)), if dim(e—1)(V) = ht((c—-1)(V)-O(V)NO(V)%) =1
(resp. bt((o—1)(O(X))-O(X)) = ht((¢ —-1)(O(X))-O(X)NO(X)€) = 1). We denote
by Rv(G) (resp. by Ro(X)(G)) the subgroup of G generated by all pseudo-reflections
(resp. generalized-reflections) of G on V' (resp on O(X)).

Theorem 1.4. Under the circumstances as in (1.3), moreover suppose that p = 0
and X is an affine conical factorial variety with a regular conical action of G. Let VV
be the rational homogeneous G-submodule of O(X) minimally generating O(X) as a
K -algebra. Suppose that Zg(G®) = G. Let (W,w) be o minimal paralleled linear hull
of (V,G) through VV, where V denotes the K-dual (VV)V of VV. Then

(1) The quotient morphism mw,, (resp. 7x, ¢, ) is no-blowing-up of codimen-
sion one, and for any p € Ht) (O(Xs)S+) and q € Hty(O(W)Cv), the actions
of Gy on Xp(O(Xs)) and Xq(O(W)) are transitive.

(2) CHO(X)S) = CUO(Xer)Sv) = CUOV)®) & X(Gur/ R, (Cr))-

(3) If Xet//Gyw is an affine space, then so is V//G.

(4) Suppose that G,, is solvable. Then V//G is an affine space if and only if
O(X)C is factorial.
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The last assertion can be regarded as a generalization of [W2] and Proposition 3.6
of [N1]. Similarly by the use of paralleled linear hulls, we can determine representa-
tions of diagonalizable groups with the algebra of invariants which are hypersurfaces.
Further applications to invariants of non-semisimple reductive groups shall be given
by the author elsewhere.

The notations N and Z are standard and Z, stands for the set of all nonnegative
integers.

2. Modules of relative invariants.

From now on to the end of Proposition 2.10, suppose that R is a Krull domain with
an action of a group G through the automorphism group Aut(R) of R. The group of
cocycles of degree 1 including character groups are represented as additive groups.
Proposition 2.1. For x € ZY(G,U(R)), R, & RS as RC-modules if and only if

dimg(ra)(Q(R®) ®rc Ry) =1 and %Rn Q(R®) = RS for some f € R,.

We derive the next theorem from Proposition 2.1.

Theorem 2.2. For x € Z'(G,U(R)), the R®-module R, is free and of rank one if
and only if the following two conditions are satisfied:
(1) dimg(gre)(Q(R®) ®pe Ry) =1
(2) There exists a nonzero element f satisfying
vq € Ht,(R®) =

(2.2.1) IP € Xo(R) such that vrp(f) < e(P,9q).-

If these conditions are satisfied, then R, = RE - f for any nonzero f € R, such that
(3.3.1) holds for f. D

The following two propositions play an important role in defining the local datum
which shall be introduced in (2.5).

Proposition 2.3. Let x € Z'(G,U(R)) and let H be a normal subgroup of G of a
finite index. Suppose that RH is unremified over RS at suppg(R,) N Ht1(R, RE).
Then the following conditions are equivalent:

(1) Ry is an RS -free module of rank one and
dimg(ri)(Q(R™) ®pn Ryjy) = 1.

(2) There are nonzero g € Ry, and u € U(R¥) such that Ry, = RH . g and
Ry >g-u.

If these conditions are satisfied, then R, = RS -gu for the elements g and u in (2).

Proposition 2.4. Suppose that Q(R®) = Q(R)C and let x € Z'(G, U(R)) such
that R, # {0}. Let U be a multiplicative system of R invariant under the action of
G such that

pNU=0 (Vpe U Xpnre(R)),
pesupp(Rx)nHt;(R,RG)

pNU #0 (¥p € supp(R,) satisfying ht(p N R®) > 2).
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Then we have
(1) For any q € supp(Ry) NHty(R, R®) and p € Xynpe(R), the following con-
gruence holds;

vRp(Ry) = Vu-1rpu-1r(U*R)y) mod e(p,q N RE).

(2) If Ry 2 RS as RC-modules, (U~'R)y = (U'R)€ as (U™ R)-modules and
(U~R)x = Ry (UT'R)C.

(2.5) We explain our notations and circumstances which shall be considered as fol-
lows. Suppose that Q(R®) = Q(R)®. Let x € Z!(G,U(R)) be a 1-cocycle such that
R, # {0} and T a finite subset of Ht (R, R®) such that

T 2 suppg(Ry) NHE (R, RF)
and I' 2 X;ngre(R) for any p € I'. Let H be a normal subgroup of G of a finite index

stabilizing each p in . Put U = Nper(R\p). Let 7, be an element which generates
pU~1R and, for any subgroup N of G, set

TNp = H Mq-

qEND

Let Anz, € Z'(N,U(U~R)) be the cocycle defined by

N 3 T — ANH',(T) ] Lg-rw € U(U—IR)
Np

and &, € Z'(H,U(U"!R)) the cocycle defined by
H>50— 6, (0) = "—(:"—) c U(U'R).
P

Moreover we donote by 87, (pnr#)p(X) the infimum of

{a€Zo | Xligpnryy =a-Brgpnray
mod BY(Ig(p 0 R¥), U(U'R))}

and denote by x the cocycle

Xl# =Y s1aenriyp(x) - 6 € ZYH, UU'R)).
per

The independence of the number s ,nr#)p(X) on the choice of the subgroup H
is guaranteed in the next lemma.
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Lemma 2.6. Under the same circumstances as in (2.5), the following properties hold
for eachp eI

(1) e(q,9 N RE) =e(p,p N RC) for all q € Iz(p N RY).
(2) ord(Aszpnrey, mod B'(Ig(p N R¥), U(U-'R))) = e(p,pN RE).
(3) 0 < sp5nrmp(x) < e(p,pN RC) and

S15(pnrH)p(X) = VRp(Ry) mod e(p,p N RE).

In order to define the characteristic divisor D,, we need

Lemma 2.7. Under the same circumsiences as in (2.5), there ezist non-negative
integers ay(x) (Vp €I') such that {ay(x) | p € Xa(R)} contains 0, for any restriction
0 € {pNR¥ | p € T'} and the following congruence holds;

X% = ap(x)e(p,p N R®) -6, mod BY(H,U(U'R)).
peTl

Furthermore:

(1) (ep(x) | p €T) is uniquely determined by x.

(2) Estending ap(x) = 0 for any p € Ht (R, RC)\I', we see that (ap(x) | p €
Ht) (R, R®)) is independent on the choice of T.

(3) There is an element u € U(U~'R) such that the (U~!R)S-module (U~!R),
is generated by the element

a5 (x)e(PPNRC)+8; _ (onpt)yp (X)
u- H ﬂ.p .

pel

(2.8) Under the same circumstances as in (2.5) and Lemma 2.7, let D, denote the
divisor

> {ap(x)e(p, N R®) + 815 onroyp(X)} - divr(p)
pEsuppg (R, )NHY, (R,R®)

in Div(R) and we call D, the characteristic divisor of x. Let Dg denote the subgroup

Z Z - divgr(p)

peHt, (R)\Ht, (R,RS)
of Div(R).
Using the residue class of the characteristic divisor, we obtain the main result of

this section which can be regarded as a generalization of the Stanley criterion (cf.
[S1, S2)) for R, to be a free RS-module of rank one:
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Theorem 2.9. Under the circumstances as in (2.5) and Lemma 2.7, Ry = RC as
RC-modules if and only if dimg(rs)(Ry ®rc Q(R%)) =1 and
(Dy + Dg) N {diva(f) | f € R\{0}} #0.

In the case where these equivalent conditions are satisfied,
(Dx + Dg) N {diva(f) | f € R \{0}} = {divr(fx)}

for some f, € Ry and R, = R® - f,.

The criterion in the case of algebraic group actions is reduced to Theorem 2.9, by
the aid of the following two results.

Proposition 2.10. Suppose that Q(R®) = Q(R)C. Let H be a normal subgroup of
G of a finite index and x € Z*(G, U(R)). If Ry & R® as RS-modules, then

suppR(Rx)ﬂHtl(R,RG)Q{ N suppn(f)}

feRXlH \{0}
U {p € Ht1(R, R®) | Ic(p N R¥)|pn # {1}}.
Corollary 2.11. Suppose that G is an affine algebraic group over an algebraically
closed field K. Suppose that R is an affine normal domain over K on which G acts K -

rationally as K -algebra automorphisms. Suppose that Q(RC) = Q(R)C and RR«(C")
is noetherian. Then

{ U suppR(Rx)} NHt; (R, R®)

x€{x€ 2 (G,U(R))|Ry=R®}
is a finite set.

(2.12) Proof of Theorem 1.2. By Corollary 2.11, we see that the finite set I in (1.1)
exists. If A is a minimal subset of I" such that there exist ap € N (p € A) and a unit
u of U~1O(X), satisfying
u- [[ 7" € U0X),
peA
then, for p € A,

(2.12.1) {pU_IO(X) lpead}= Xpu-xo(x)n(u—1o(x))c°(U_IO(X))

For any subset A of ', the equality (2.12.1) holds for a prime ideal p € A if and only
if A is minimal in the subsets A’s satisfying

{ > N-6, } N BY(G°, U(U"'R)) # 0.

peEA

Hence, by (2.5), such a subset A as in (2.11.1) is identical with X+ yyoo( O(X))

for a prime ideal p € A. Consequently the assertion of Theorem 1.2 follows from
Theorem 2.9. O
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3. Applications.

In this section, suppose that R is an affine factorial domain with trivial units and
G is an algebraic torus over an algebraically closed field K of characteristic zero. A
subset {f1,..., fa} of n elements in R is said to be (R, G)-basic, if each f; is a relative
invariant of G which is prime in R and R- f; # R- f; for any 1 < i < j < n. Moreover,
a subset {f1,..., fa} of n elements is said to be (R, G)-free, if it is (R, G)-basic and,
for any a; € Zy, there exists a character x € X(G) such that

R =R T[ 1

i=1

We further say that {f1,..., fa} of n elements is (R, G)-afforded, if it is (R, G°)-basic,
the K-subspace < fi,..., fn >k of R is G-invariant and {f1,..., fa} forms a K-basis
of this space. There exists a G-afforded generating system {g,...,gn}, which is
denoted to 2 for a convenience sake, of R of n elements as a K-algebra. We denote
by (K* 0 2)§ ., the set consisting of all g;’s such that R- g; N RS # {0} and g; are
relative invariants of G. The subring Ry is an affine factorial K-domain on which G
acts naturally (cf. Sect.1 and [N3]) and (K* 0Q)§ ;, € Rs. Let Qg denote the set

{g: € (K* o )G | bt(R-g: N R®) =1 and X p.g,nrc(R)® = Xp.gnre(R)}-

For any pair g;,, gi, of elements in Qr ¢, define the relation g;, =¢ ¢:,, if R-gi, NRS =
R- gi, N RS. Then we denote by Qﬁf& the set consisting of all complete systems of
representatives of 2 ¢ modulo =g.

As an application of Theorem 2.9, we have

Theorem 3.1. Let {f1,...,fm} be a subset of Ry, of m elements. Then {f1,..., fm}
is (R, G)-free if and only if there exists a system T € QF%; such that

(K* oG \TNEK*ofi#0 (1<i<m).

Let V be the dual space of < Q > and denote by p the canonical K-morphism
O(V) — R defined by the inclusion @ C R. We easily see that (K* o Q)§,, =
(K*o Q)g(V),st'

Corollary 3.2. The restriction of the mepping
zo(vu) 3 r'— p(r‘) € 2Rﬂ

is @ one-to-one correspondence between the sei consisting of all finite (O(V), G)-free
subsets of O(Vee) and the set consisting of all finite (R, G)-free subsets of Rg. More-
over the equality Qr% = Q8 ¢ holds.

Proof. Thanks to Theorem 3.1, the proof of the first assertion is reduced to show
that, for a subset T' of £, the condition that I is (O(V'), G°)-free is equivalent to the
one that I is (R, G%)-free. The last equality follows easily from Theorem 3.1 and the
first assertion. O
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Proposition 3.3. Suppose that {f1,..., fm} is a mazimal (R, G)-free subset of R
of m elements. Then there is not a non-empty (R,N[L,Gy, )-free subset consisting
relative invariants of G. Especially in the case where G is connected, we have ht(R -
fARMN=1CG0) =1 and ﬁ(XR.mR‘“?é-n"h w (R)) = 1, for any prime element f € R such

that R f N RN=1G1: £ {0}.
Proposition 3.4. For a subspace W of V, the following conditions are equivalent:

(1) (W, w) is a paralleled linear hull of (V,G) for a nonzero w € Vy.
(2) There ezisis a system T € Q58 ¢ and a subset Fw of (K> o DGy \T
such that
W={zeVy|F(z)=0 (VF € Fw)},

where Q is regarded as a subset of O(V).

Proof. (2) = (1) : By Theorem 3.1, we see that the set Fu is (O(Va), G)-free. For
each z € Fw, let x. € X(G) to satisfy O(Vy)y, D 2. Since (V{)y, = K - 2, for
each z € Fw, we can choose a unique vector zV from (Vs )_,, in such a way that
zV(z) = 1. Puttingw =3, 2", we infer that (W,w) is a paralleled linear hull of
V,G).

( (1) = (2) : There are weight vectors v; (1 < i < m) of G in V;; whose reduction
modulo W form a K-basis of Vie/W such that w = Y v, v;. Let {v),...v%} be a
basis of W = (Vi/W)V dual to {vy mod W,...,v,, mod W}. Then, since

TV l/GuV1/G © (8 + W) [[/Guw : W/[[Gry ~ Ve [/G,
the set {vy,...v%} is (O(X),G)-free. Thus the assertion follows from Theorem
31. 0O
Consequently (W, w) is a minimal paralleled linear hull of (V,G) for some w € V
if and only if
W={z€Vu|F(z)=0 (VF € (K* 0 Q)& () \T)},

for some system T € Q55 ¢-

(3.5) Suppose that g € R, a fixed relative invariant of G such that {g} is (R, G)-free
and, for a convenience sake, put H = Kerx and $ = R, Furthermore, suppose that
the action (Spec(R), G) is stable and Zg(G°) = G. As in [M] (e.g, [N2]), we similarly
introduce the following subgroups of Div(S);

E'G.S)= P Z-( > e(q,p)-divs(q))

peHL (5%) AEX(S)

® &P Z - divs(g),

q€HL; ($),ht(gnS%)>2

As4(G,5) = D Z - divs(q),
q€Ht1(5)\Ys.4(S5).qnSC#(0)
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where Ys5.4(S) = Xs5.4nsc(S9), if ht(S-gNSC) = 1, and Ys.4(S) = {S- g}, otherwise.
Let ®" : E*(G, S) — Div(S€) be a homomorphism defined by

Yo e Dyt 3 bq - divs(q)
peHt, (S€) q€Ht, (S),ht(qnNSC)>2
— Z ap - divge(p) (ap,bq € Z),

pEHL (SC)

where Dy = qux,(S) e(q, p) - divs(q).

Under the same circumstances as in (3.5), we have Lemma 3.6, Proposition 3.6 and
Proposition 3.7 as follows:

Lemma 3.6. The canonical homomorphism Div(S)¢ — CI(S) is an epimorphism.

Proof. For any p € Ht,(S), choose a prime f from R in such a way that R- fNRH = p.
Then, expressing H - Rf = {R- f1,...,R" fyu.rp)}, we see

a:= [ &

1Si<i(H-Rf)

is an invariant relative to some % € ¥(H) such that R-aNR¥ = R-a-R_y. As
Z¢(GP) = G, there is a character § € £(G° - H) such that 6|y = & and 6(Ker((G° -
H) — Aut(R))) is trivial. Since § is regarded as a character of the group G° - H|g,

the module R; contains a nonzero element b. So R . b, (R-a)f = (R-b)¥. By the
a

stability of the action of H on R (cf. [P, N3]), we see % € Q(R)? = Q(R?), which
implies that
divge ((R- ) N R¥) = divgu(p) mod Prin{R7).

From this, we infer that the homomorphism
Div(RH)¢*H# <, Div(RH) — CI(RH)

is surjective. O

The next two propositions are based on Lemma 3.6, in which the assumption that
G is a central extension of G° is essential.

Proposition 3.7. Suppose that ht((S-gNS€) > 2. Then the sequence
0 — Prin(S) N Ag.4(G, S) = As.4(G, S) — CI(S) — 0

is exact and
®*(Prin(S) N Ag.4(G, S)) = Prin(SG).

Moreover, ®" induces the isomorphism CI(S) = CI(S€).
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Proposition 3.8. Suppose that ht(S - g N SC) = 1. Let g0 € Ht1(S) satisfy the
equality Xs.5ns6 (S)\{S - 9} = {90} Set

V(G,S) := Ag.4(G,S) ® Z- divs(qo) € Div(S)
and let © : E*(G,S) — V(G, S) be the composite
E*(G,S) — Div(S) = (G, S).

Then the square

~

CI(s¢)y —— CKS)

m.T Tm.

Div(S€) S W’" v(G,S)

o¥sG s

is a commutative diegram with horizontal isomorphisms.

Applying Proposition 3.7 and Proposition 3.8 inductively to a maximal (R, G)-free
set, by the aid of Theorem 3.1, we now establish

Theorem 3.9. Suppose that Zc(G®) = G. Let (W, w) be a minimal paralleled linear
hull of (V,G) through < Q >k. Then

(1) The inclusions RS¥ — Ry and O(W)C= — O(W) are no-blowing-up of
codimension one and, for each p € Hty(RS*) and q € Hty (O(W)Cv), the
actions of Gy, on Xp(Rg) and X (O(W)) are, respectively, transitive.

(2) We have the monomorphism

C|R®) = CYR$*) = X(Gw/Rr,.(Gw))
2. %(Gw/Rw(Gw)) = C(O(V)C)

with its cokernel, isomorphic to a subgroup of the abelialization of the finite
group RR:.: (Gw)/RW(Gw)lRot'

Proof of Theorem 1.4. The first and second assertions follow from Theorem 3.9. Sup-
pose that CI(R®) is finite. Then, the assertion (2) of Theorem 3.9 implies that G,, is
also finite. Hence the third assertion follows from [C, R1] and, in the case where G,,
is solvable, applying Proposition 3.6 of [N1] to the G,,-module W, we see that O(V)¢
is a polynomial ring over K if and only if it is factorial. Thus the last assertion follows
from this observation and Theorem 3.9. O

As in [D] and [N1], it shall be expected that Theorem 2.9 and Theorem 3.9 imply
the detailed description of CI(O(X)€) in terms of group theory. Finally, we point out
that these theorems seem somewhat useful in studying invariants of non-semisimple
reductive algebraic groups which are treated in [P] for semisimple groups.
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NAKAYAMA ISOMORPHISMS FOR THE MAXIMAL QUOTIENT RING
OF A LEFT HARADA RING

KazuaKl NONOMURA

ABSTRACT. From several results of Kado and Oshiro, we see that if the maximal
quotient ring of a given left Harada ring R of type () has a Nakayama automorphism,
then R has a Nakayama isomorphism. This result poses a question whether if the
maximal quotient ring of a given left Harada ring R has a Nakayama isomorphism, then
R has a Nakayama isomorphism. In this paper, we shall show that a basic ring of the
maximal quotient ring of a given Harada ring has a Nakayama isomorphism if and only
if its Harada ring has a Nakayama isomorphism.

INTRODUCTION
Let R be a basic left Harada ring. Then we have a complete set

{elli ceos€n(1)se 1 Cmly e -y emn(m)}
of primitive idempotents for R such that foreachi=1,...,m

(a) en R is injective as a right R-module;
(b) J(eix-1R) = e R for each k = 2,...,n(z).

We call R a ring of type () if there exists an unique g; in {e;,;)} ™, foreachi=1,...,m
such that the socle of ;1R is isomorphic to g;R/J(g;R) and the socle of Rg; is isomorphic
to Reil/J(Reu).

Oshiro [10] showed the following;

Result A ([10, Theorem 2|). Suppose that R is a left Harada ring which is not of type
(x). Then there ezists a series of left Harada rings and surjective ring homomorphisms:

(31 &2 Sn-1 &
Ty »Ty—-- = T, >R

such that

(1) T is of type (*), and
(2) Ker ¢y is a simple ideal of T; for anyi € {1,...,n}.

Kado and Oshiro [7] showed the following results;

Result B ([7, Proposition 5.3]). If every basic QF rings has a Nakayama automorphism,
then every basic left Harada ring of type (*) has a Nakayama isomorphism.

The detailed version of this paper will be submitted for publication elsewhere.
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Result C ([7, Proposition 5.4]). Let S be a two-sided ideal of R that is simple as a left
ideal and as a right ideal. If R has a Nakayama isomorphism, then R/S has a Nakayama
isomorphism.

Moreover Kado showed the following;

Result D ([6, Corollary]). The mazimal quotient ring of a left Harada ring of type (*) is
a QF ring.

Using these four results, we see that if the maximal quotient ring of a given left Harada
ring R of type (*) has a Nakayama automorphism, then R has a Nakayama isomorphism.
So this result poses a question whether if the maximal quotient ring of a given left Harada
ring R has a Nekayama isomorphism, then R has a Nakayama isomorphism. In this paper,
we shall show that the maximal quotient ring of a given left Harada ring R has a Nakayama
isomorphism iff R has a Nakayama isomorphism.

Throughout this paper, we assume that all rings are associative rings with identity and
all modules are unitary. By Mg (resp. pM), we means that M is a right (resp. left)
R-module, respectively. We denote the set of primitive idempotents of R by Pi(R), and
denote a complete set of primitive idempotents of R by pi(R).

We call a one-sided artinian ring R right (resp. left) QF-3 ring if E(Rg) (resp. E(grR))
is projective, respectively.

We denote the maximal left (resp. right) quotient ring of R by Q¢(R) (resp. @,(R)),
respectively, and denote the maximal left and maximal right quotient ring of R by Q(R).
If a ring is QF-3, its maximal left quotient ring and its right quotient ring coincide by [16,
Theorem 1.4].

1. MAXIMAL QUOTIENT RING

We list some basic results, which several authors showed, for our main result in this
paper. Recall that for e, f € Pi(R), we say that the pair (eR : Rf) is an i-pair if S(eR)
= fR/J(fR) and S(Rf) = Re/J(Re).

Lemma 1 ([5]). Let R be a one-sided artinian ring, and let e € Pi(R). Then the following
conditions are equivalent:

(1) eR is injective.

(2) There exists some f € Pi(R) such that (eR: Rf) is an i-pair.
In this case, Rf is also injective.

Let R be a left perfect ring. Then R has a primitive idempotent e with S(Rg)e # 0. If
R is QF-3, then the primitive idempotent e with S(Rg)e # 0 are characterized as follows;

Lemma 2 ([4, Theorem 2.1]). Let R be a one-sided artinian QF-3 ring, and let e € Pi(R).
Then rRe is injective if and only if S(Rr)e # 0.

We call e € Pi(R) right (resp. left) S-primitive if S(Rg)e # 0 (resp. eS(rR) # 0),
respectively.
The following statement, which Storrer [15, Proposition 4.8] showed, is helpful in this

paper.

Lemma 3 ([15, Proposition 4.8]). Let R and Q@ = Q(R) be left perfect. Then
(1) If e is a right S-primitive idempotent for R, then so is it for Q.
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(2) if e1,e2 are right S-primitive idempotents for R, then exR = e;R if and only if
1@ = e2Q.
(3) If e is a right S-primitive idempotent for Q, then there exists a right S-primitive
idempotent ¢’ € R such that eQ = €'Q.
A ring R is called a left Harada ring if it is left artinian and its complete set pi(R) of
orthogonal primitive idempotents is arranged as follows:

pi(R) = | J{es )72,
i=1
where
(a) each e; Rp is an injective module for each i =1,2,...,m.
(b) eix-1Rr = eixR, or J(eix-1Rr) = exR for each i and each k =2,3,...,n(i).
(c) eixR #E e;R for i # j.
Remark 1. Let R be a left Harada ring. Then Q(R) is also a left Harada ring (See [6,

Theorem 4]) and a complete set pi(Q) of orthogonal primitive idempotents for @ coincides
with pi(R) (See [6, p.248]).

Using Remark 1, Kado showed the following;

Proposition 4 ([6, Proposition 2]). Let R be a left Harada ring, and let (eR : Rf) be an
i-pair fore, f € pi(R). Then (eQ(R): Q(R)f) is an i-pair .

Recall the following notation [6, p.249]. Let 8 : fR — eR be an R-monomorphism such
that Imé = J(eR), where e, f € Pi(R). Then by [15, Proposition 4.3, # can be uniquely
extended to a Q,(R)-homomorphism &* : fQ.(R) — eQ.(R).

We shall need the following results.

Lemma 5 ([6, Proposition 3]). Let R be a basic and left Harada ring, and Q@ = Q(R) and
0 as above. Then the following hold.
(1) If e is not right S-primitive, then the extension 8° : fQ — eQ is an isomorphism.
(2) If e is right S-primitive, then the extension 6* : fQ — eQ is a monomorphism
such that Im6* = J(eQ).

Remark 2 (cf. (15, Lemma 4.2]). Let {g;} U {f;} be a complete set of orthogonal
primitive idempotents for R, where the g; are right S-primitive and the f; are not right
S-primitive. We denote go by go = )_ gi. Then Q(R)go = Rgo and Q(R)g = Rg for every
right S-primitive idempotent g of R.

Let R be a basic left artinian ring, and let {e;,es,... , €5} be a complete set of
orthogonal primitive idempotents for R and let
S= Endn(e};,E(Rei/J(Re,-)))
be the endomorphism ring of a minimal injective cogenerator for R-mod. Let f; be the
primitive idempotent for S corresponding to the projection
&7 E(Rei/J(Rei)) — E(Re:/J(Re)).

Then we call a ring isomorphism 7 : R — S a Nakayama isomorphism if 7(e;) = f; for each
i=1,2,...,n. By [3, p.42], the existence of a Nakayama isomorphism does not depend on
the choice of the complete set {e;, e,,...,en} of orthogonal primitive idempotents. (See
[7, Remark on p.387).)
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It is important whether the maximal quotient ring of a basic artinian ring is basic since
a Nakayama isomorphism is defined on a basic ring. Here we shall study the case that
the maximal quotient ring of a given left Harada ring is basic.

Theorem 6 (cf. [2, Corollary 22]). Let R be a basic and left Harada ring and Q = Q(R).
Then Q is a basic ring if and only if R either is QF or satisfies the following; n(i) = 1
or 2 and Re;, is injective for any i. In this case R = Q.

Proof. Note that both R and @ are artinian QF-3. Let pi(R) = U, {e; };‘L‘} be a complete

set of orthogonal primitive idempotent for R satisfying the following conditions:

(a) e;1 Rg is injective for each i = 1,2,...,m,
(b) e.-.,-.,.lRR = J(e.-RR) for ] = 1,2, iy n(i) -1.

We have a complete set {Rgy,..., Rgm} of pairwise non-isomorphic indecomposable
injective projective left R-modules, such that the (e; R : Rg;) are i-pair for each i =
1,...,m since R is basic and artinian QF-3.

Assume that @ is basic. Let e; 541, € {e;; };';'; Then we have an R-monomorphism

Oix : e;x+1R — e R such that Im@ = J(exR). If ey is not right S-primitive, then
eir+1@ = i@ by Lemma 5. This contradicts that ¢ is basic. Hence e;; is right S-primitive
for k = 1,2,...,n(i) — 1. Since the Re; are injective for each £ = 1,2,...,n(i) — 1 by
Lemma 2, there exists some Rg in {Rg,..., Rgm} such that Re; = Rg. However R is
basic, so we see that n(i) < 2 and ;) is right S-primitive.

In case n(i) = 1 for every i =1,...,m, then R is QF.

In case n(i) = 2 for some i € {1,...,m}. If e;(; is right S-primitive, then pRe;,; is
injective by Lemma 2. Hence e;n;) is not right S-primitive since pRe; is injective and so
{Rgl, ey Rg,,,} = {Re“. ey Re,,.]}

Conversely, first, assume that R is QF. Since pRe is injective for any e € pi(R), e is
right S-primitive by Lemma 2. Thus, eQ ¥ fQ for any e, f € pi(R) = pi(Q) by Lemma 3.
Therefore @ is basic. Next, assume that R satisfies n(Z) = 1 or 2 and Re;, is injective for
any i. Then e; is left S-primitive and so eQ = eR by Remark 2. Hence J(eQ) = J(eR).
Therefore it is also clear to see that R = Q. O

Example 1. We shall give a basic left Harada ring R with J(R)® = 0, which is not QF.
Let R be an algebra over a field K defined by the following quiver;

1
Y Y
/a] hN
ENY
with the relations v8 = v'#, ay3 = 0, and Fay = 0.

The composition diagrams of the Loewy factors of the indecomposable projective mod-
ules of Rp is the following.

eR/eJ 1 2 3 4
eJfeJ? 5 i \4 { {
eJ?/eJ? 3/ \4 1/ % %

eJd \1/ 4 3
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Then R is a left Harada ring which is not QF since e, Rg, e3aRr and e;Rg are injective
and eoRp = J(e1R). Moreover ey, es3, €4 are right S-primitive. Hence a1Q(R) = eR,
e3Q(R) = e3R and esQ(R) = e4R are injective and e:Q(R) = J(e1Q(R)). Therefore
R = Q(R).

Example 2. We shall give a basic Harada ring R with J(R)® = 0, but @(R) is not basic.
Let R be an algebra over a field K defined by the following quiver;

1,
/1IN
; l 4
RNV
with the relations 0 = fay8 = fayf = Bay = fay, and 78 = ¥F. Then the

composition diagrams of the Loewy factors of the indecomposable projective modules of
Rp is the following.

e;Rfe;J 1 2\
e,-J/e;Jz /é\ < 4
e;J?/e; J? { 4 Il/
eJife; ° 1 2
e;J? é
Then since e, Rg, esRgr and e;Rg are injective and esRg = J(e R), R is a left Harada

ring which is not QF. Hence e;Q(R) £ e,Q{R) since e, is not right S-primitive. Therefore
Q(R) is not basic.

e DN — e =
RO — DN =t =

2. NAKAYAMA ISOMORPHISM

In this section, we study the Nakayama isomorphisms for the representative matrix ring
of a basic left Harada ring and its maximal quotient ring. Let R be a basic left Harada
ring, and let pi(R) = U, {e;; };‘2} be a complete set of orthogonal primitive idempotents
as in Theorem 6. Furthermore, let R* be the representative matrix ring of R. R’ is
represented as block matrices as follows:

;l ;m
R‘= ( eea )!
L

where Rj; = F;; for j # o(i) and R; ;) = P, ;) (See [7, Section 4]).
Here, adding one row and one column to R*, we make an extended matrix ring W;(R)
of R as follows:

( Ry e . it Y Ri;sn -+ Rin \
HERELIRRL R;i Y; ‘ R;,i+l i R;m
Xy - X Xi Q@ X o Xm |,
R;+l,l ettt Ri.+1.i Yin R;+1.i+1 teT Rx"+1.m
k R;nl R;m' Ym R;n.i+1 R;nm./
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where X is the last row of Ry, (k = 1,.:.,m, k # i), Y is the last column of Ry,
(k=1,...,m), X;= (Pi;l(i),il st i';l(i).in(i)-l‘] (Pi:a(i).in(i)))a and Q@ = Pi;n(i).in(i)'

Then W;(R) naturally becomes a ring by operations of R*. We call this the i-th extended
ring of R.

Proposition 7 ([7, Proposition 5.11)). If W;(R) has a Nakayama isomorphism, then R
also has a Nakayama isomorphism.

Let R be a basic and left Harada ring, and let

pi(R) = | {es)78)
i=1

be a complete set of orthogonal primitive idempotents of R satisfying the following;

(1) e;1 Rg is injective for each i = 1,2,...,m.

(2) ei;R = J(e;j-1R) for each j = 2,...,n(3).
Then (See [7, p.388]), for any e;; in pi(R), there exists some g; in pi(R) with Rg; injective
such that E(Re;;/J(Rei;)) & Rg;/S;j-1(Rg;), where S;(Rg;) is the j-th socle of Rg;. We
denote the generator g; + S;—1(Rg:) of Rg;/S;—1(Rg;) by g;j foreachi =1,2,... m,j=
1,2,...,n(i). Then by (7, Proposition 3.2|, 2 minimal injective cogenerator G = &; R
is finitely generated. Therefore we note that R is left Morita dual to Endg(G) by [1,
Theorem 30.4]. We call this End(rG) the dual ring of R. We denote the dual ring of R
by T(R).

For the proof of proposition 8 below, we denote

0 0
0-+0 R; 0--- 0} CR"
0 0

0 0
(0 <+ 0 Ry 0. O)QW,-(R)
0 0

by [Ry;] and

by [R;j]w'
By using the result that Kado and Oshiro (7, Proposition 5,11] showed, we shall show
the following proposition. The proposition is essential in this paper.

Proposition 8. W;(R) has a Nakayama isomorphism if and only if so does R.

Proof. (=). By Proposition 7 ([7, Proposition 5,11]). («). As (7, Proposition 5.11|, let
e; be the matrix of R* such that the (ij,j)-component is the unity and other components
are zero, and let w;; be the matrix of W;(R) such that the (ij, ij)-component is the unity

and other components are zero. Note that the size of the columns in W;(R) is n(z) + 1.
Let ¥ be the natural embedding homomorphism,;

(Rh R;m)
Ry - R

l¥
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[ Ry - .. Ry 0 Ry, - Ry
i o - Ry 0 Ry, - Ry
0 e 0 0 0 0 0 ,
i.+l.l ;+l.i 0 Ri.+l,i+l Rx’+1,m
\R:nl R:m' 0 R:n.i+l R:nm/
-

—

1+

where R; — Rj; are identity maps for all 4, j. Moreover let h;; be the matrix of T'(R) such
that the (ij,%7)-component is the unity and other components are zero, and let v;; be the
matrix of W;(T(R)) such that the (¢4, 7j)-component is the unity and other components
are zero. Note that the size of the columns in W;(T'(R)) is n(i) + 1. Let

(T(R)u -+ T(Rhim

T(R)m1 *+* T(R)mm

be the representative matrix ring T(R)* of T(R), and let T(W;(R)) be the dual ring of

W;(R) as follows;

( TRu - TR Y1 T(Rhin -+ T(R)hm \
T(R)a -+ TRa %Yy TR -+ T(R)im
tx . tX. tQ tXi_H LR tX,

1 i m
T(R)is11 -+ T(R)is1; Yisr T(Riyritr - T(R)isrm

\ T(R)ml tee T(R)mx ‘Ym T(R)m.i+l ot T(R)mm /
Letting ¥r(r) be the natural embedding homomorphism;

T(R) - T(R)m
ﬂMm::TmM)

1 Urm
[ TR -+ ... TR}y 0 T(Rjv1 -+ T(R)im \
TRy - - TR 0 T®um - TR
0 .- 0 0 0 0 0 :
T(R)ny -+ T(Rsrs 0 T(Bsrsns - T(Risrm

\ T(R)ml R T(R)m: 0 T(R)m,i+l e T(R)mm )
arr)
i+1
where T(R);; — T(R);; are identity maps for all £, j. We note that T(W;(R)) = W;(T(R))
(See [7, Proposition 5.11)).
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Assume that ¢ : R* — T(R)* is a Nakayama isomorphism with ¢(e;;) = h;;. (ie.,
@([ru]) € [T(R)] for any [ru] € [R], where (k, )-componentwise of Rj; corresponds to
(k, I)-componentwise of T'(R);;.) We consider the following diagram;

WiR) Wi(T(R))
WT I‘an
Rr - T(R).
Here we define a map @ : Wi;(R) — W;(T(R)) as follows;
(@) @([ru]”) = [e([ru])]” € [T(R)u]”

for any [ru]” € [Ry]*;1<k<m,1<I<m
(b) &([z]*) € [*Xx]¥ for any [z]* € [Xi);k=1,...,m;
(c) B(ly]*) € ['Yi]” for any [y]* € V]*;l=1,...,m;
(d) &([g]*) € ['Q)” for any [g]" € [Q]”.

Since ¢(e;;) = hij, @ is well-defined. Moreover it is satisfied @(w; n@y+1) = fing)+1- Then
we can easily check that @ is a Nakayama isomorphism. O

Remark 3. We shall define a special case of an extended ring for a given ring R. Let
{e1,€2,...,€,} be a complete set of orthogonal primitive idempotents for R. Then for
primitive idempotent e; in R, we define R, as follows;

[eRer --- eRe; Yy eRey -+ eRey \
e;Rey --- eRe; Yi eRey -+ eRe,
X - X v Xignr - Xn )
eiqRey --- eRe; Yy e Reiyy -+ e Re,
\ enRer -~ esRe; Y, eReiy -+ enRen )

where the X; are ;Re; for j =1,...,i - 1,i+1,...,n, X; is J(e;Re;), the Y) are exRe;
fork=1,...,nand U is e;Re;. Then R,, is a ring by usual matrix operations.

Remark 4. Proposition 8 says that a basic left Harada ring R has a Nakayama isomor-
phism if and only if so does R, for e € pi(R) = U™, {ei;}10).

i=1
We denote a basic ring of Q(R) by Q*(R).

Remark 5. If R is a one-sided artinian QF-3 ring, the number of right S-primitive
idempotents for R coincides with that of left S-primitive idempotents for R.

Theorem 9. Let R be a basic and left Harada ring and let Q@ = Q(R). Then Q has a
Nakayama isomorphism if and only if so does R.

Proof. If @ is basic, then R = @ by Theorem 6. Hence we may assume that @ is not
basic. Let pi(R) = U;.';,{e,-,-};.';'} be a complete set of primitive idempotents for R as given
in the proof of Theorem 6. Then if {e,-,-};.‘;"} has no right S-primitive idempotents, then

enQ = e;Q for j = 2,...,n(i) by Lemma 5. If {e,',v};g} has only one right S-primitive

-T79 —



idempotent, say e, then

enQ = e;;Q forj=2,....k;
e,-,k.HQ & J(e,-kQ) and
eix+1Q = e;;Q forj=k+2,...,n(i).

Moreover, if {e,',-};g} has two right S-primitive idempotents, say, e;,e; (k < t), then

enQ = e;Q forj=2,...,k;
eixs1Q = J(ex@) and

el'.k+ngeijQ forj=k+21'-'1t;
ei+1Q = J(exQ) and
ei.H-lQ geijQ forj = t+2?"'ln(i)'

Repeating the same argument and Remark 5, we have the following sequences for i =
1,...,m;

enQ > enlJ(Q)
T

€in+1Q > Jleir T-HQ)
i

ei.kz+1Q ttty

where ey, is right S-primitive. Hence the complete set of the primitive idempotents pi(Q?)
for Q° is U, {ei, €1 }e21 € pi(R) = pi(Q) and e;, Q® is injective. Since e; is left S-
primitive, en R = €;;Q by Remark 2 and so e;Re;; = e;Qei;. Hence we have a ring
isomorphism from Q® to a subring of R.

(i) We choose {em},’:(:l) C pi(R) with epn(s) right S-primitive. We put e, = ep +--- +
ennh). Then by Lemma 3 and Lemma 5, we e, R = Q. (ii) We choose {e;.l}:f_f'l) C pi(R)
without right S-primitive. By Remark 3, Q';M is isomorphism to a ring with the complete
set U,.#,,{e,-l, €i kw11 U{en1, €na} of primitive idempotents. Similarly repeating n(h)—2
times, we can make an extended ring with the complete set U;zn{€i1, €; ke4+1}e21U {e;.,-};"g‘,)
of primitive idempotents.
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Letting,

Qb enRen
*
( *
en Reyy
b — | enaRen
en1
*

For two submodules

0
A= p 5| enRey

euRe,.l *
emBeny ... enRem

em1 Ren *

enflen enfen

en Ren en Ren
J(e;.l ReM) eMReM

em1 Reny em1 e

enRenr enRep

J(en Ren) enRen

of Q¢ , J(A) = B by [13, Theorem 1].

eh1?
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en Rem
en Rem)

en Rem)

enRem




Hence as a ring isomorphism,

[ x enRenr  enRens * \
eniReyy ... enReny emBRens ... enfem:
etheu oes e;.gRehl ethem Ve etheml
* emlReM emlRe;.g *
=
/ * euReM enRem * \
eMRe“ ces eMReM eMReM e eMRe,,.l
CMRCH PN J(eMReM) 6MR8M e eMRe,,,l
* emBRen  emRep *

by [13, Theorem 1] again.
(iii) We choose {e,,,}:‘__"l’ C pi(R) with some right S-primitive idempotents. Then we
denote a right S-primitive idempotent of {em};:g'l) by enx,. We reset

h
{ehl}:il) = {eM,...,ehkl,...,e;,k,,...}.

Then the complete set pi(Q®) of Q® is Ul {€i1, €iks1}ep1. First by the same argu-
ment above for e;;,e€;x,+1, we have a ring isomorphic to a ring with the complete set
{ei,---,€m+1} C pi(R). Next, by [13, Theorem 1], repeating the same argument
like (ii), for €;x,+1,€;x+1, We have a ring isomorphism to a ring with the complete set
{€i1y- -+ €ikys €iky+1s - - - » €ikgr €ika+1}- Hence the suitable extended ring of Qbis isomorphic
to R. Therefore, by Proposition 8, Q® has & Nakayama isomorphism if and only if so does
R. 0

3. ANOTHER QUESTION

Oshiro’s result(Result A) in the introduction also poses another question whether there
exist surjective ring homomorphisms:

'3 & Sne on
QT) > QT > ... = QT > QR)
\" \% \" \"
n &4 1 & ...°% 1. % R

However K. Koike informed the author the following examples;

Example 3. Let Q be a local serial ring, and J(Q) # 0, J(Q)? = 0. Then J(Q) = S(Q).
We put
_(Q @ 0J
R=(78)/( 7):
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where J = J(Q). Then R is a serial ring of an admissible sequence (3,2) and so we see

that R = Q(R). Also
(39 (96
ar=(3 ). am-mn

(j j) is a unique non-trivial ideal of Q(T}). Hence there does not exist a surjective
ring homomorphism Q(T}) to Q(T>).
Example 4. We put

K K K 00K
T=]0 K K|, I=|00 0],
0 0 K 000

where K is a field, and R = T/I. Then R is a serial ring of an admissible sequence (2,2,1)
and we have a natural map

T = T1 ad R.
However the maximal quotient ring Q(T) of T is the full matrix algebra with degree 3
over a field K and Q(R) = R. Since Q(T) is semisimple, there does not exist a surjective
ring homomorphism Q(T) to Q(R).
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THE HOLONOMIC RANK FORMULA FOR A-HYPERGEOMETRIC
SYSTEM !

Go OKuyaMa

1. INTRODUCTION

Given a finite set A of d-dimensional integral vectors which belong to one hyper-
plane off the origin in QA and a parameter vector 8 € C¢, Gel'fand, Kapranov and
Zelevinskii [5] defined a system of differential equations, called an A-hypergeometric
system M4(83). They proved that the holonomic rank of M4(3) equals the normalized
volume of the convex hull of A and the origin (denote by vol(A)) for any 8 when the
semigroup ring C[NA] determined by A is Cohen-Macaulay. In general, the rank is not
less than the volume (see (1], [13], Theorem 3.5.1). Meanwhile Adolphson [1] showed
that even when C[NA] is not Cohen-Macaulay, the holonomic rank equals vol(A), as
long as B is generic in a certain sense. After Strumfels and Takayama showed that
the holonomic rank can actually be greater than vol(A) for non-generic parametes 3,
Cattani, D’Andrea and Dickenstein showed that if the covex hull of A is a segment,
then there exists a rank-jumping parameter whenever C[NA] is not a Cohen-Macaulay
ring. Saito, who generalized this result by using different methods, showed that there
exist rank-jumping parameters for any non-Cohen-Macaulay simplicial semigroup ring
C[NA]. Matusevich [6] showed that, if the toric ideal defined by A is generic in a
certain sense and non-Cohen-Macaulay, then there exists a rank-jumping parameter.
However, when we fix a parameter 3, it is not well-known how the holonomic rank is
described explicitly except when the covex hull of A is simplicial (see [10], Theorem
6.3). In this paper, using combinatorial notion, we provide a rank formula in the case
where the rank of A is three.

1.1. Definition of A-hypergeometric system. Let A = (a),...,a,) = (a;;) be a
d x n-matrix of rank d with coefficients in Z. Let k be a field of characteristic zero and
N the set of nonnegative integers. We denote the set {g,,...,a,} by A as well. Let
JFa denote the face lattice of the cone

QoA := {Z cia;| c; € QzO}-
=1

Let NA denote the semigroup generated by A and by k[NA] its semigroup ring con-
tained in the Laurant polynomial ring k[t{,...,t3]. For a face o in F,, we denote by
N(A N o) the semigroup generated by AN o, and by Z(AN o) the group generated by

1The detailed version of this paper has been submitted for publication elsewhere.
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ANo. When Ano = 0, we agree that N(ANo) = Z(ANo) = 0. We consider the
k-algebra homomorphism @4 : k[, ..., 8] — k[NA] defined by

AOITLIED e

ueN" uef™

where ¢, € k, 0% := 8} --- 9%, and tA¥ := t(l“")' . --tf,“"". We denote by I4(8) the
kernel of ¢4 and call it the toric ideal of A. Since ¢, is an epimorphism, we have

k[8]/14(8) % KINA].
Given a column parameter vector 8 = *(8y,...,0s) € k¢, let H 4(8) denote the left
ideal of the n-th Weyl algebra
D= k(xl,...,xn,al,...,a,,)

generated by 14(9) and 3°7_, @;;6; — B; (i = 1,...,d), where §; := z;0;. We call the
quotient D-module M4(8) := D/H(0) the A-hypergeometric system with parameter
B. This system was introduced in the late eighties by Gel'fand, Graev, and Zelevinski
(see [4]); its systematic study was started by Gel'fand, Zelevinski, and Kapranov (see,
e.g. [5])

1.2. Known results on the holonomic rank of M4(8). In this note, we define the
holonomik rank of the A-hypergeometric system rank(M4(83)) as follows:

rank(M4(B)) := dimg()(k(z) Qujz) Ma(B))-
Here k(z) = k(z;,...,%,) is the field of rational functions. One of the results shown
in [5] about the holonomic rank of A-hypergeometric system is that rank(Ms(8)) =
vol(A) for any 3 € k? when the semigroup ring k[NA] is a Cohen-Macaulay ring. Here
vol(A) means the normalized volume of the convex hull in Q¥ of A and the origin. This

equality can fail if k[NA] is not a Cohen-Macaulay ring. However, even if we drop the
assumption that k[NA| is a Cohen-Macaulay ring, we have

rank(Ma(B)) = vol(A)

for any 8 € k?, and the equality holds for generic 8. So we write ja(B) for the gap
between the holonomic rank and the volume in this talk.

Moreover, in fact, Matusevich, Miller and Walther [7] completely showed that the
rank of M4(B) is indepent of 3, that is, j4(8) = 0 for any S if and only if C[NA] is
Cohen-Macaulay. However, given a parameter 3, we do not know the formula of the
rank of M4(8) except when the convex hull of A is simplicial

2. MAIN RESULT

2.1. Combinatorial term F;(3). As in the previous section, in order to compute the
gap ja(B), we introduce a combinatorial term as follows. First, for A € ZA and 3, we
define the subset 7(A; B) of F4 by

TJXB):={0eFa| \€NA+Z(AN0),B- A€ k(AN0)}.
Second, we define a preorder on ZA as follows:
A<y = for any 0 € J(A;8), A+ Z(ANo)=pu+Z(ANo).
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Then we have the following proposition on this set.

Proposition 2.1. (1) The set J(X;B) does not contain QxpA.
(2) If XA € NA, then we have J();8) = 0.
(3) If A < i, then we have J(X; B) C J(x; B).
Now, we consider the subset of ZA \ NA:
Ea(B) = {) € ZA\NA| J(\; B) # 2}.
We denote by F,(8) the inductive limit of the set (E4(8), <) which we regard as an

inductive system. In other words, F4(8) coincides with the set of maximal elements in
((ZA\ NA)/ ~, <), where ~ means the equivalence relation defined by

Ar~vp <= A<pand A > p.
def

Since A € B+ U,ex, (AN T) for any X € Fa(B) and [ZANQr : Z(ANT)] < oo for
any face 7, we see that F(8) is a finite set.

2.2. Main result. Let d = 3 to the end of this note. First assume that the cardinality
of Fa(B) is one. Let Fu(8) = {A} and J(\; B) denote the set of maximal elements in
J(X; B). Then the sets 7 (); 8) can be classified into four cases:

(1): T(A:8) =09,

(2): J(X; B) consists of one proper face o,

(3): J(; B) consists of all facets,

(4): none of the above.
For each case, we have the following theorem:
Theorem 2.2. Let d = 3. Assume that the cardinality of F4(0) is one. Then we have
the following.

(1) J(1; B) satisfies the case (1) = ja(B) =0,
(2) J(;B) satisfies the case (2) =

0 if o is a facet,
ja(B) = { vol(ANa) ifo is an edge,
2 if o = {0},

3) i(/\; B) satisfies the case (3) = j4(B) =0,
(4) T(X; B) satisfies the case (4) = ja(B) = X ,c F(npyedges(VOANT)) +m — 1.
Here m means the number of connected components of the finite graph G, =

{0 € Fa) {0} # 0 C 7 for some T € F(\;B)} with respect to the inclusion
relation.

Second not assume that the cardinality of F4(8) is one. In this case, it suffices that
for each A € Fa() we compute the number determind by the previous theorem, that
is, we compute the right hand side of the equality in the theorem, regarding F4(0) as
the singleton set {A}. For each A € F4(8), let I, denote the number in this meaning.
Then we have the rank formula as desired:

Theorem 2.3. Let d = 3. Then we have j4(8) = ZAEFA(ﬂ) I,
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3. EXAMPLES

111111

Example 1. Let A;= |0 2 3 5 0 1]|. Then we have vol(4;) =T7.
000011
¢

_First we consider the case where § = (1,2,0). Then we have Fj,(8) = {8} and
J(B; 8) = {Qz001,Q2004}. Hence we have jy, (8) = 1.

Second we consider the case where § = ¢(2/5,1,0). _Then we have Fj, B) =
{‘(11 1,0)1‘(1!41 0)} ﬂ.ﬂd J(l(l, 11 0);ﬁ) = {ngal} a-nd J(t(1147 0);16) = {ngc“}'
Hence F,(B) is semisimple. Since Qo) and Qxoa4 are both edges, we have j4, (9) =
1+1=2,

93 81=1

00
00
82

FIGURE 1. The set A,

111111
Example 2. Let A; = (0 12020 ) . Then we have vol(A2) = 6.

Let 8 =*(1,1,1). Then we have F4,(8) = {8} and J(8; B) = {{0}}. Hence we have
jAz(ﬂ) =2. ’

FIGURE 2. The set A,

11111
Example 3. Let A3 = (0 2302 3) . Then we have vol(A3) = 6.

Let 3 ="(0,1,0). Then we have Fy,(3) = {§} and J(B:8) = {Q2001+Q3004, Qa3+
Qoa6}. Hence we have ja, (8) = 1.

3 s =1

0000
o)
82

FIGURE 3. The set A,
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321111
Exampled4. Let A;= |0 0 0 1 2 3| ;not homogeneous. Then we have vol(A,) =
001100

12.

First we consider the case where 8 = !(1,1,0). Then we have F,,(8) = {8} and
j(ﬂ; B) = {Qx01}. Hence we have j4,(8) = vol(A3 N Qxp0;) = 3. _

Second we consider the case where 8 = *(2,2,0). Then Fy4,(8) = {8} and J(8;8) =
{{0}}. Hence we have ja,(8) = 2.

53

31=3

82

FIGURE 4. The set Ay
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ON THE DECOMPOSABILITY OF A SYZYGY
OF THE RESIDUE FIELD

RYo TAKAHASHI

1. INTRODUCTION

Throughout the present paper, we assume that all rings are commutative noetherian
local rings and all modules are finitely generated modules.

Dutta [10] proved the following theorem in his research into the homological conjec-
tures:

Theorem 1.1 (Dutta). Let (R,m,k) be a local ring. Suppose that the nth syzygy
module of k has a non-zero direct summand of finite projective dimension for some
n > 0. Then R is regular.

Since G-dimension is similar to projective dimension, this theorem naturally leads
us to the following question:

Question 1.2. Let (R, m, k) be a local ring. Suppose that the nth syzygy module of
k has a non-zero direct summand of finite G-dimension for some n > 0. Then is R
Gorenstein?

It is obviously seen from the indecomposability of k that this question is true if
n = (. Hence this question is worth considering just in the case where n > 1.

We are able to answer in this paper that the above question is true if n < 2. Fur-
thermore, we can even determine the structure of a ring satisfying the assumption of
the above question for n =1,2.

2. MAIN RESULTS

For a local ring R, we denote by mod R the category of finitely generated R-modules.
First of all, we recall the definition of G-dimension.

Definition 2.1. (1} We denote by G(R) the full subcategory of mod R consisting
of all R-modules M satisfying the following three conditions:
(i) M is reflexive,
(i) Exth{M,R) =0 for every i > 0,
(iii) Extih(M*, R) =0 for every i > 0.

The final version of this paper has been submitted for publication elsewhere.
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(2) Let M be an R-module. If n is a non-negative integer such that there is an
exact sequence

Oﬁ’Gn_’Gn—l_’"'—’G]_’Go_’M—’O

of R-modules with G; € G(R) for every 7, then we say that M has G-dimension
at most n, and write G-dimgM < n. If such an integer n does not exist, then
we say that M has infinite G-dimension, and write G-dimgM = oo.

For properties of G-dimension, we refer to [3] or [9].

Proposition 2.2. Let (R,m, k) be a local ring. Suppose that there is a direct sum
decomposition m = I & J where I, J are non-zero ideals of R. Let M be a non-free
indecomposable module in G(R). Then there ezist elements x,y € m such that

(1) I=(z) and J = (),

(2) (0:2)=(y) and (0:y) = (x),

(8) M is isomorphic to either (z) or (y).
Hence the minimal free resolution of k is as follows:

(),

PROOF. The modules M* and M are also non-free indecomposable modules in G(R).
There are isomorphisms

Mt

(33)‘ R2 (52)' R2 (zv) R > k » 0.

Homg(M,m)
Homg(M,I & J)
Homg(M, I) ® Homg(M, J).

The indecomposability of M* implies that either Homg(M, I) = 0 or Homg(M, J) = 0.
We may assume that

R m

(2.2.1) Hompg(M,J) = 0.
There is an exact sequence
(2.2.2) 0-OQM - R"—M—0.

Dualizing this by J, we obtain another exact sequence

Homg(M,J) — J® — Homg(QM, J).
We have Homg(2M, J) # 0 by (2.2.1). Applying the above argument to the module
QM yields
(2.2.3) Homg(QM,I) = 0.
Also, dualizing (2.2.2) by I, we get an exact sequence

0 — Homg(M,I) — I" — Homp(QM, I),
and hence M* = Homg(M, I) = I". The indecomposability of M* implies that n =1
(i.e. M is cyclic), and M* = I,
We also have

Mt-
Hompg(M*, m)
Homp(M*, I) ® Homg(M*, J).

M

R’
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Note that Homg(M*, I) is isomorphic to Hompg(/, I'), which contains the identity map
of I. Hence Homg(M*, I) # 0 and therefore '
Hompg(M*,J) = 0.

Applying the above argument to the module M*, we see that M* is also cyclic and
M = M* = ]. Thus, we have shown that M = M* = | and these modules are
cyclic. Noting (2.2.3) and applying the above argument to the module M, we see
that QM = (QM)* = J and these modules are cyclic.
Now, writing / = (z) and J = (y), we can prove (z) = (0 : y) and (0 : z) = (y).
Thus we obtain the minimal free resolutions of (z) and (y):
... 4 R 3 R 3 R = (z) — 0,
LS RLER SR - (y) — 0.

Taking the direct sum of these exact sequence, we get

y0 z0 y0
(Dz)‘ R? (OIIA' R? (D:' R? s m y 0.
Joining this to the natural exact sequence 0 - m — R — k — ( constructs the
minimal free resolution of k in the assertion. O

We denote by edim R the embedding dimension of & local ring R. When a homo-
morphic image of a regular local ring is given, we can choose a minimal presentation
of the ring in the following sense:

Proposition 2.3. Let R be a homomorphic image of a regular local ring. Then there
ezist a regular local ring (S,n) and an ideal I of S contained in n? such that R = S/I.

Here we introduce a famous result due to Tate [17, Theorem 6]. See also [5, Remarks
8.1.1(3)].

Lemma 2.4 (Tate). Let (S,n, k) be a regular local ring, I an ideal of S contained in
n?, and R = S/I a residue class ring. Suppose that the complexity of k over R is
at most one. (In other words, the set of all the Betti numbers of the R-module k is
bounded.) Then I is a principal ideal.

We denote by B7(M) the ith Betti number of a module M over a local ring R.
Handling the above results, we can determine the structure of a local ring with decom-
posable maximal ideal having a non-free module of G-dimension zero, as follows:

Theorem 2.5. Let (S,n, k) be a regular local ring, I an ideal of S contained in n?, and
R = S/I a residue class ring. Suppose that there ezists a non-free R-module in G(R).
Then the following conditions are equivalent:

(1) The mazimal ideal of R is decomposable;
(2) dimS =2 and I = (zy) for some regular system of parameter z,y of S.

PROOF. Let m = n/I be the maximal ideal of R.

(2) = (1): It is easy to see that m = zR @ yR and that zR, yR are non-zero.

(1) = (2): First of all, note from the condition (1) that R is not an integral domain,
hence is not a regular local ring.

Proposition 2.2 says that m = z R®yR for some z, y € n, and that 37(k) = 2 for every
i > 2. It follows from Lemma 2.4 that I is a principal ideal. Hence R is a hypersurface.
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We write ] = (f) for some f € n. Since m is decomposable, the local ring R is not
artinian. (Over an artinian Gorenstein local ring, the intersection of non-zero ideals is
also non-zero; cf. [8, Exercise 3.2.15].) Hence we have 0 < dim R < edim R = 2, which
says that dimR =1 and dim S = 2.

Note that n = (z,y, f). Because edimS = dim S = 2, one of the elements z,y, f
belongs to the ideal generated by the other two elements. Noting that the images of
elements z,y in m form a minimal system of generators of m, we see that f € (z,y),
and hence z,y is a regular system of parameters of S.

On the other hand, noting zRNyR = 0, we get zy € I = (f). Write zy = cf for
some ¢ € S. Since the associated graded ring gr,(S) is a polynomial ring over k in
two variables Z,7 € n/n?, we especially have Tg # 0 in n*/n3, namely, zy & n®. It
follows that ¢ € n because f € n?. Therefore the element ¢ is a unit of S, and thus
I=(zy). O

Using Theorem 2.5 and Cohen’s structure theorem, we obtain the following corollary.

Corollary 2.6. Let (R,m) be a complete local ring. The following conditions are
equivalent: :
(1) There is a non-free module in G(R), and m is decomposable;
(2) R is Gorenstein, and m is decomposable;
(3) There are a complete regular local ring S of dimension two and a regular system
of parameters z,y of S such that R 2 S/(zy).

The finiteness of G-dimension is independent of completion. Thus, Corollary 2.6 not
only gives birth to a generalization of [15, Proposition 2.3] but also guarantees that
Question 1.2 is true if n = 1.

As far as here, we have observed a local ring whose maximal ideal is decomposable.
From here to the end of this paper, we will observe a local ring such that the second
syzygy module of the residue class field is decomposable. We begin with the following
theorem, which implies that Question 1.2 is true if n = 2.

Theorem 2.7. Let (R,m,k) be a local ring. Suppose that m is indecomposable and
that Q%k has a non-zero proper direct summand of finite G-dimension. Then R is a
Gorenstein ring of dimension two.

PROOF. Replacing R with its m-adic completion, we may assume that R is a complete
local ring. In particular, note that R is Henselian.

We have %k = M® N for some non-zero R-modules M and N with G-dimgM < co.
There is an exact sequence

0—MoNYI R sm—o

of R-modules, where e = edim R. Setting A = Coker f and B = Coker g, we get exact
seguences

2.7.1
@7.1) 0-NSRr A B0
It is easily observed that there are exact sequences

(2.7.2) 0=~ 408 m—o

{o—»Mi»Re&A—»o,
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and

Bf
(2.7.3) {0 —M—=B—m—0

0—-NZA—m—0.

Using (2.7.1), (2.7.2) and (2.7.3), we can prove that Exth(k,R) # 0. (Hence
depth R £ 2.)

Fix a non-free indecomposable module X € G(R). Applying the functor Homg (X, —)
to (2.7.2) gives an exact sequence

0 — (X*)* — Hompg(X, A) ® Homg(X, B) — Homg(X,m) — 0
and an isomorphism
(2.7.4) Exth(X, A) ® Exth(X, B) & Exth(X,m).
We have (X*)¢ € G(R) and Hompg(X,m) € G(R), hence

Homp(X, A) € G(R).
Take the first syzygy module of X; we have an exact sequence
0 QX > R"= X —0.

Dualizing this sequence by A, we obtain an exact sequence

0 — Hompg(X, A) = A” — Homp(2X, A) — Exth(X, A) — 0.
Divide this into two short exact sequences

{0—» Homg(X,A) —» A" = C =0,

2.7.
2.7.8) 0 — C — Hompg(Q2X, A) — Exth(X,A) — 0

of R-modules. Since QX is also a non-free indecomposable module in G(R), applying
the above argument to X instead of X shows that the module Homg(2X, A) also
belongs to G(R). We have G-dimg(A") < oo by the first sequence in (2.7.1). Hence it
follows from (2.7.5) that G-dimgC < o0, and

(2.7.6) G-dimg(Exth(X, 4)) < 0.

On the other hand, applying the functor Hompg(X, —) to the natural exact sequence
0—-m— R — k— 0, we get an exact sequence

0 — Homp(X,m) = X* — Hompg(X, k) = Exth(X,m) — 0.

There is an isomorphism Homg(X, k) & Extk(X, m), hence Exth(X, m) is a k-vector
space. Since Exth(X, A) is contained in Extj(X, m) by (2.7.4),

(2.7.7) Extr(X, A) is a k-vector space.

Using (2.7.6) and (2.7.7), we can prove that the local ring R is Gorenstein.

Since the only number i such that Extgz(k, R) # 0 is the Krull dimension of R if R
is Gorenstein, it follows from the above two claims that R is a Gorenstein local ring of
dimension two, which completes the proof of the theorem. g
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The above theorem interests us in the observation of a Gorenstein local ring of dimen-
sion two such that the second syzygy module of the residue class field is decomposable.
We introduce here a related result due to Yoshino and Kawamoto.

A homomorphic image of a convergent power series ring over a field k is called an
analytic ring over k. Any complete local ring containing a field is an analytic ring over
its coefficient field, and it is known that any analytic local ring is Henselian; see [14,
Chapter VII]. Yoshino and Kawamoto observed the decomposability of the fundamental
module of an analytic normal domain.

Theorem 2.8 (Yoshino-Kawamoto). Let R be an analytic normal local domain of
dimension two. Suppose that the residue class field of R is algebraically closed and has
characteristic zero. Then the following conditions are equivalent:
(1) The fundamental module of R is decomposable;
(2) R is an invarient subring of a regular local ring by a cyclic group. (In other
words, R is a cyclic quotient singularity. )

For the details of this theorem, see [21, Theorem (2.1)] or [19, Theorem (11.12)].

With the notation of the above theorem, suppose in addition that R is a complete
Gorenstein ring such that Q%k is decomposable. Then R satisfies the condition (1)
in the above theorem. Hence the proof of the above theorem shows that R is of
finite Cohen-Macaulay representation type {i.e. there exist only finitely many non-
isomorphic maximal Cohen-Macaulay R-modules); see [21] or [19]. Therefore it follows
from a theorem of Herzog [12] that R is a hypersurface. Thus the local ring R is a
rational double point of type (A,) for some n > 1 by [21, Proposition (4.1)], namely,
R is isomorphic to '

KX, Y, Z/(XY — Z°+Y).

From a more general viewpoint, we can give a characterization as follows:

Theorem 2.9. Let (S,n, k) be a regular local ring, I an ideal of S contained in n?,
and R = S/I a residue class ring. Suppose that R is a Henselian Gorenstein ring of
dimension two. Then the following conditions are equivalent:
(1) Q%k is decomposable;
(2) dimS =3 and I = (zy — 2f) for some regular system of parameters z,y, 2 of
S and f €n.

It is necessary to prepare three elementary lemmas to prove this theorem. The first
one is both well-known and easy to check, and we omit the proof.
Lemma 2.10. Let (S,n, k) be a regular local ring of dimension three and R = S/(f)
a hypersurface with f € n?. Then f =zf. +y fy + 2f: for some fz, f,, f. € n, and the
minimal free resolution of k over R is as follows:

SR LR SR B SR B AR ko,

where

0 -z y J;

A = (zyz), B = (z 0—:[,),
-y z 0 fs

}! -({. !; z 0 —oz y ;:
— 3 -z ¥ — 2z -2

C = ~fy f 0 2z} b = -y z 0 f: N
-z -y -2 0 ~fzr=fy-f: O
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Lemma 2.11. Let (R,m, k) be a local ring and z € m — m? an R-regular element.
Then we have a split exact sequence

0— k% m/zm 5 m/zR — 0,
where 0 is defined by 6(a) = Ta for @ € R/m =k and 7 is the natural surjection.
PROOF. Let z,, %3, .- ., 2, be a minimal system of generators of m with z; = z. Define

& homomorphism € : m/zm — k by e(3_I., Ti@;) = @;. We easily see that the composite
map &6 is the identity map of k, which means that & is a split-monomorphism. O

Lemma 2.12. Let (R, m, k) be a Cohen-Macaulay local ring of dimension one. Then
the following conditions are equivalent:

(1) R is a discrete valuation ring;

(2) m* is a cyclic R-module.

PROOF. (1) = (2): This implication is obvious since the maximal ideal m is a free
R-module of rank one.

(2) = (1): We have m* = R/I for some ideal I of R. Dualizing the natural exact
sequence 0 — m — R — k — 0, we obtain an exact sequence

Homg(k, R) -+ R — m*.

Since Homg(k, R) = 0 by the assumption that R is Cohen-Macaulay, there is an
injective homomorphism R — R/I. We easily observe that I = 0, equivalently, m* =
R. This implies the condition (1). O

Let R be a local ring and I an ideal of R. We recall that the grade of I is defined
to be the infimum of the integers n such that Exti(R/I, R) # 0, and is denoted by
grade . As is well-known, it coincides with the length of any maximal R-sequence in
I. Now let us prove Theorem 2.9.

PROOF OF THEOREM 2.9. (2) = (1): Wehavezy—zf = z-0+y-z+ 2z - (—f).
Lemma 2.10 gives a finite free presentation

RS R — 0% —0

0 f z =2 1000
of the R-module Q%k, where C = (1 0 ';') Putting P = (83} ‘o’) and Q =
oy -z 010 0
00-10
(‘l’}, b _"l),weobtain
000 1

roa-(4 2)

where U = (2]). It is easily seen that the matrices P, Q are invertible. Denoting by
M (resp. N) the cokernel of the homomorphism defined by the matrix U (resp. ‘U),
we get an isomorphism Q3k = M @ N.

(1) = (2): First of all, note that the local ring R is not regular. We denote by m
the maximal ideal n/I of R.

We can choose an element z € n — n? whose image in m is an R-regular element
and that the module m/zR is decomposable. Put (=) = (—) ®s S/(z). Note that S is
also a regular local ring because z is a minimal generator of the maximal ideal n of S
(see the proof of Proposition 2.3). Since the maximal ideal mR of R is decomposable,

-~ 905 -



we can apply Theorem 2.5 and see that dimS = 2 and I'S = zyS for some z, YyEN
whose images in S form a regular system of parameter of S. Hence R = S/zyS is a
hypersurface, in particular a complete intersection, of dimension one. Therefore R is a
complete intersection of dimension two by [8, Theorem 2.3.4(a)]. Since S is a regular
local ring of dimension three with regular system of parameter z,y, z, the ideal [ is
generated by an S-sequence by [8, Theorem 2.3.3(c)]. Noting ht / = dim S—dimR =1,
we see that I is a principal ideal. Write I = () for some [ € I. There is an element
f € S such that | = zy — zf. Assume that f &€ n. Then f is a unit of S, and we see
that zR C zyR. Hence m = (z,¥%)R, and edim R = dim R = 2. This implies that R is
regular, which is a contradiction. It follows that f € n. O

Combining Theorem 2.7 with Theorem 2.9 gives birth to the following corollary.
Compare it with Corollary 2.6.

Corollary 2.13. Let (R, m, k) be a complete local ring. Suppose that m is indecompos-
able. Then the following conditions are equivalent:

(1) Q%k has a non-zero proper direct summand of finite G-dimension;

(2) R is Gorenstein, and Q%k is decomposable;

(3) There are a complete regular local ring (S,n) of dimension three, a regular
system of parameters z,y, z of S, and f € n such that R 2 S/(zy — zf).
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ON THE PRINCIPAL 3-BLOCKS OF
THE CHEVALLEY GROUPS G2(q)

YoKo UsAMI

ABSTRACT. Assume that ¢ is even and
g=4 or 7 (mod9).

Then the principal 3-block of G2(g) and the principal 3-block of G2(4) are Morita
equivalent. Here a A(P)-projective trivial source G2(4) x Ga(g)-module and its
©-dual induce this Morita equivalence as bimodules, where P is a common Sylow
3-subgroup of Ga(4) and Ga(g) and A(P) = {(z,z) € G2(4) x G2(g) | z € P}.

1. FF

1.1. G 26REL T 5, O 2EMEHAGERE L. K BEB®0TH 3 2DHE, &
BEEYp>0THEZDRRKBLL, hELLLFIREVET S, kBIUK
G DETOBABIINLTHAKRE VL E, (K,0,k) i3 G ORTOWABINLT
splitting p-modular system & V3%, BE OG ZEHEAIENA F7AUSRLI-E EHT
(B3 NFHUOEBHERNA F7VvEp-Tuy 7 LR, (BRI TCELBILD
H3,) EEEH OG-module i ENDDp- 7Y 7 D module L ARETEDTRY 7
BT Evbiiz, £8P KG -module i3 O-free OG-module b & FREBRLB TR OGN
%, trivial OG-module DIRT p-7 0y 73 E (p-) 70y 7 LIRS, £#p-TOY
2i2i%, defect group EINZ p B DDBEE D, FcEp-7Tuv 0L ¥, DI
b LDBD Sylow-pHaREL % B,

B 1.2. L7 00HRE G & H Hplocal structure ZR U T3 L) DIZRDE
BDEDIOL BT,
(i) G & H & Sylow-p BB P 2 H#ET 3,
(i) @ £ QX POJBAYTS:Q, —» QRARNERLTZ, T3L TRIDQ,
DRz ICHLT f(z) =29 2MET GO gVBHEETHLELDEDL B
BoTTRTDQ, DR H LT f(z) = 2" 2T H DT h BEET 3,

1.3. TZTik p-7uv 7D module DEIY S LoD X Y ZEEFEMAEICE L TH
2Tt %2ELD, COMEREIIRO2OOFELBBHL THEL TV S, Pug
FHIE b & b L source algebra L BRI NS b DI & 2 FAMEENIC>VLTHEREDBD
T Puig A & Figh 353, £id Donovan FRETLRL b Lo ion 3, ¥1-
FERMEEZSZ 5 bimodule BH 2 ROEEDOb DO TCHN, PuigRfit 32t
Puig, Scott iC X > TASNTV>3, ( Remark 7.5 |3], Theorem 1.6 [1] )

The detailed version of this paper will be submitted for publication elsewhere.
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Donovan F# 1.4. (1980 [2]) X 6h =K% p & defect group D I LT, k ko
BB D % defect group & L TR p- 70 v 7 OFHEHESIIERME L 2L 0Tik
ZVHp?

Puig F48 (OFERER) 1.5. (1999 [3]) Donovan FEDhDFARESE & h3\> Puig A
fﬁ':ﬁg&if: {)0)0

1.6. Lie Rl BMiitIz, BREGF(q) LicEBREN g 2WL T LT ERAIL & b,
iz q HEERL LTRENS, pHIOSEAOAULEF (AL, ¢-1%Y)
ZHERHET. p DALRETHNIL, plocal structure i g ILRFE TR b DIz
BoTw3aIiddw, ThoDEp 7y 285 LRFHRMICEDZS5420TH
%, g DMEICREFEL &\ LHEEATENUL, Donovan FRDEHNETITHESNh=Z L
o3, ¥ I CHEARMENE AN, —2DRBIITCORBRDERZ ML VgD
NEOHOBEITMETETEEDI LY, —75 Hiss, Kessar i3 GU,(q) R EDET g %
BEIE LKIT n 28> L T unipotent 71 v 7 DFFHEIEET ( id Puig FAESEFI ) %
HHE T3, [4

1.7. ¢ 2827 T L L THRE GF(q) L Chevalley # G2(g) T 3-local structure %
H$ET3 L) LRBEOKOEKZEZZDES Ty 7BOBHEEMAET S L
T35, WE. M(3) %1527 exponent 3 D extra special group £ FiTh3bDL T3,
g% mod 9 T24,5 FIXTICARDE ZFid. Ga(q) iz M(3) & ABZILED Sylow
388t P 285 P OIEFLEE: M(3) i2 i3 16 O semidihedral group SDye HSEEE
PR L 7= BT & ABIC 22> TV T, EU 3-local structure 2§§-> T3, T
FERILUTOEE 18 TH 5, KB, R\ {EHD bimodule CHOFFEMMHL D C Puig
FAETH 3, UTERI18BLUZDIADE A2 Tikp=3L, ) T Lichk3,

Theorem 1.8. Assume that g is even and

g=4or 7 (mod9).
Then the principal 3-block of Go(gq) and the principal 3-block of G2(4) are Morita equiv-
alent. Here a A(P)-projective trivial source G2(4) X Ga(g)-module and its O-dual induce

this Morita equivalence as bimodules, where P is a common Sylow 3-subgroup of G2(4)
and Ga(g) and A(P) = {(z,z) € G2(4) x G2(q) | = € P}.

Cor. 1.9. EH 1.8 DFRAT TIX Hiss DFAX [5] Table 1 =BT 3 FATTIPoRA <
FRA=F—qit1 tbh3,

2. EH 1.8 FBAS

2.1. BT g & Theorem 1.8 DE&HAZHE=LTWwB LT3, LT Galg) % Glg) LE&RRT
3., 2512 B(G(g) X Glg) DX Ty 7 LT3, £7 B(Glg)) & B(C(4)) D stable
equivalence of Morita type ( Definition 2.2 % R X, ) Z5%&ICFBBL TH» 5, simple
modules N{TE %% HE L. LT Linckelmann DFEH ( Theorem 2.3 ) % {f- THRK
RiICFHRETH 5 C L E2HAT 3,

Definition 2.2. ([6]) Let A and B be O-algebras, M (= pM,) a (B, A)-bimodule, and
N (= aNp) an (A, B)-bimodule. We say that M and N induce a stable equivalence of
Morita type between A and B, if

(i) M is projective as a left B-module and as a right A-module,
(ii) N is projective as a left A-module and as a right B-module,
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(iii) M % N = B® X for a projective (B, B)-bimodule X and N % M=AaY

for a projective (A, A)-bimodule Y.
For k-algebras we define a stable equivalence of Morita type similarly.

Theorem 2.3. (Linckelmann [6]) Let G and H be two finite groups and b and b’ central
idempotents of OG and OH respectively. Set

A=0Gb, B=0OHY,A=k®0 A and B =k ®¢ B.
Let M be a (B, A)-bimodule which is projective as both a left and a right module, such
that the functor M ®, — induces a steble equivalence of Morita type between A and B.
Then the following hold.

(i) Up to isomorphism, M has a unigue indecomposable non-projective direct sum-
mand M’ as a (B, A)-bimodule and k®o M’ i3, up to isomorphism, the unique
indecomposable non-projective direct summand of k®oM as a (B, A)-bimodule.

(ii) If M is indecomposable as a (B, A)-bimodule, then for any simple A-module
S, the B-module M ®4 S is indecomposable and non-projective as a B-module.

(iii) If for any simple A-module S, the B-module M®,.S is simple, then the functor
M ®,4 — induces a Morita equivalence.

2.4. T ZTIREIX B(G(g)) & B(G(A)) ZWERDH KT 2DTHL, G(g) DED
$EEZARAT 2, 2D G(g) I3SL(3,q) Lt ARLMAM AL IS Iz DiEHK 20
K (N(g) LBEELT 3,) 2 I PORL Z(P)DIERLEEL LTH>Z L 2HAT
3, SZTE37uy 7&B(N(g), B(N(4)) 2FRH ( Puig ) AificH 2 LikE3-
7uy 23 B(PSL(3,q)) & B(PSL(3,4)) 2'#5H ( Puig ) FMETH 3 & \» 5 B OERA
(FEH25)oBWTEL, ELTH»IE5 B(G(g)) £ B(N(q)) D stable eqivalence
of Morita type %5 % 2 R\VEH % b bimodule M; 28T 22 IxT3, (2DLE
BLT Broué SE¥E ( Theorem 2.7 ) ZFAT 3, ) %5 THif, B(G(g)) & B(N(q)) .
B(N(q)) & B(N(4)). B(N(4)) & B(G(4)) 9 stable equivalence of Morita type % £h
Fh5 X % bimodules Z &8 L T B(G(g)) & B(G(4)) D stable equivalence of Morita
type 25| ZH¥ %, Broué DEE %~ 3 BT B2 Braver morphism & BN 3 3
% Definition 2.6 THAL T,

Theorem 2.5. (Kunugi [7]) Let G be the projective special linear group PSL(3,q) for
a power q of a prime such that ¢ = 4 or 7 (mod 9) ( so that e Sylow 3-subgroup Q
of G is elementary abelian of order 9 ). Let (K, O, k) be a splitting 3-modular system
for all subgroups of G. Then the principal 3-block A of OG is Morita equivalent to the
principal 3-block Ay of O[PSL{(3,4)]. This equivalence is defined by an (Ay, A)-bimodule
M which is a A(Q)-projective 3-permtation O[PSL(3,4) x G]-module.

Definition 2.6. ([8,9]) For an OG-module V and a p-subgroup P of G, we set
(2.1) Brp(V) = VP /(O Trb(v9) + PVP)
Q

where VP denotes the set of fixed points of V under P and Q runs over all proper
subgroups of P and

(2.2) 'D'g(v) = z v

z€P/Q
for a subgroup Q of P and v € V9. ( P is the maximal ideal of ©. )
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Theorem 2.7. (Broué [9])) Let G be a finite group with e Sylow p-subgroup P and
H a subgroup of G containing Ng(P). Assume that G and H have the same fusion
on p-subgroups contained in P ( that is, the same p-local structure ). Let b and ¥/ be
central primitive idempotents of OG and OH respectively for the principal blocks

A=0Gb and B=OHVY
( having a common defect group P. ) For a subgroup R of P, set
ER = Bl‘R(b) and FR = BrR(b’).

Let M be a (B, A)-bimodule and N be-an (A, B)-bimodule. For each subgroup R of P
set

Mg = Braw)(M) and N = Braw(N).
Assume that

(1) M is a direct summand of the restriction of A from G x G to H x G.
(ii) For each non-trivial subgroup R of P, Mg and N induce a Morita equivalence
between kCg(R)br and kCy(R)V g.

Then M and N induce a stable equivalence of Morita type between A and B.

3. B(Giq)) & B(N(g)) 9 STABLE EQUIVALENCE OF MORITA TYPE%2 5 X %
BIMODULE

3.1. " RICHBGCOBAROL EOGIZ KEOH-M#E»OE OG-MBFELATTF VY
AMTBIETOG-MEEE HICRHIRLZ: ) OH-IB %2 GARL L hda@hEr T
%, OG DHflic OH, OGO EhEFhETOy IREELE2ITBLE, E/uv 2ic
BT2b0%, HANHRLTE/0y JlBT2L0DRBRT L, GARBL LT
PROETOy LB TEILODORBRTHERTEIILICL S, CZTG(Q) L2D
BB N PHTZDE3-Tuy IREETTe L f 2{E>T fOG(q)e ¥ BT 3,
R%Z PDO1TRWEROEIH L LT, A(R) i2B87 3 Brauer morphism #f&L T
IARLT BT3B L Broué DEE (Theorem 3.2 [8]) IZ & - T fOG(q)e HE D
E ATz vertex DEBENEFRBOEMICIHET 20 L v ) LT 3HRBB O N3,
( BRAICT NS vertex AP DEBENETF M, 2> TW»T, 2hHDFAD bimodule
t%3,) fOGeid A(R) 2347 % Brauer morphism 289 & frkCq()(R)Er & 72 5,
Z ZTEep, TR ENEFN kCq,(R), kCwnig(R) DEI Ty In7ay I REELT
H3, WHLBED RTHL T, fOG(g)ett nonprojective AFELTM, L5V
& D vertex DPIVLEFEF O Ltb2 3,

3.2. fOG(q)e X EHVIHIFIRPFLLTEL T3, KA T, 305D permu-
tation module 2fED D>, HIRL =D L LW Lo, 20PTM, BHIEMA
ZAICEL TV 3HDRRSB, ( 2D L Z vertex A(R) D permutation module 33 vertex
R’ @ permutation module % ¥ A 72 vertex DEBLAIMELZOEAIC 3 3 D213 Mackey 2
BRTRFEADZILNTES, £7-Glg) & N(q) DRITIIV: { DD HEED 3-subgroup
WBAL T Green HEDH 2 RBTHHZ L OHRRICERLS, )
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4. SIMPLE MODULES DT & %

41. I T32WMITESIT24 CHBAL /- Xk 5 1AM L TE S bimodule D323
RETHHANS, TDLEIhdexact sequence ¥ exact sequence BT L2 HRY
ICHIETT 3, 79 5 %9 trivial module D X % il B simple module i 2 K
permutation module DfF & EZRHTEVLT, 2DEREATFOTEEERDZ Lo
R HERDETZLITES,
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ON THE ZD.,, CATEGORY !

MICHEL VAN DEN BERGH

ABSTRACT In this paper we give a direct proof of the properties of the ZD, category
which was introduced in the classification of noetherian, hereditary categories with Serre
duality by [dun Reiten and the author.

1. INTRODUCTION

Below k is a field. All categories will be k-linear. An abelian or triangulated category
A is Ext-finite if for all objects A, B € A one has that @; Ext'(A, B) is finite dimensional.
If A is triangulated and Ext-finite then we say that A satisfies Serre duality [1] if there
exists an auto-equivalence F' of A together with isomorphisms

Hom4(A, B) — Hom (B, FA)*

natural in A, B (where (—)" is the k-dual). If A is abelian and Ext-finite then we say
that A satisfies Serre duality if this is the case for D*(A). The following result can be
extracted from (5, Ch. 1].

Theorem 1.1. Assume thet C is an Ext-finite hereditary cetegory without injectives or
projectives. Then the following are equivalent

(1) C has almost split sequences.
(2) C satisfies Serre duality.
(3) There is an auto-equivalence V : C — C together with natural isomorphisms

(1.1) Homc(A, B) — ExtL(B,V A)*

Furthermore the functor V coincides with the Auslander-Reiten translate T when evaluated
on objects.

In the classification of noetherian Ext-finite hereditary categories with Serre duality in
[5] we considered a category C defined by the following pullback diagram

mod(k) & mod{k) —— mod(k)
(1.2) T ]
c — gr(klz])

where the horizontal map sends (V}, V2) to Vi @ V5 and the vertical map is localizing at
z followed by restricting to degree zero. It was shown by a rather indirect argument that
C is a noetherian, Ext-finite, hereditary abelian category without injectives or projectives

1The paper is in a final form and no version of it will be submitted for publication elsewhere.

- 103 -



which satisfies Serre duality. It was also shown that the AR-quiver of C has two compo-
nents, one equal to ZA,, (a “wing") and the other equal to ZD,,. For this reason C was
called the “ZD,.-category”.

The aim of this paper is to give a direct proof of the above facts. In addition we will
also establish a link with one-dimensional A, singularities.

2. ELEMENTARY PROPERTIES

It is easy to see that C, as defined in the introduction is a noetherian abelian category. It
will be convenient to consider the locally noetherian Grothendieck category C associated
to C. It follows for example by [3, Prop. 2.14] that D*(C) and D&(C) are equivalent. Hence
the Ext-groups between objects in C may be computed in C.

The objects of C are quadruples (M, Vp, V1, ¢) where M is a graded k[z}-module, V5, V;
are k-vector spaces and ¢ is an isomorphism of k[z] modules M, — (Vo & V}) ®; k|z,z™}).
Objects in C are given by the quadruples (M, Vp, Vi, ¢) in which M is finitely generated.

Sending (M, Vo, V1, ¢) to M defines an faithful exact functor € — Gr(k[z]) which we
call the restriction functor and which we denote by ().

We write M(n) = (M(n), Vo, V1, ¢) where we have identified M(n), with M, through
multiplication with z*. Furthermore we define o(M) = (M, V1, Wy, ¢).

We define 7 ¢ € and F C C respectively as the inverse images of the z-torsion and
z-torsion free modules in Gr(k[z]). 7 and F are defined similarly, but starting from C.

By €, we denote the full subcategory of € with objects the quadruples (M, V5, W, ¢) in
which z acts invertibly on M. . :

We denote by (—), the functor C — C, which sends (M, Vp, W1, ¢) to (M, Vo, Vi, 9).
Clearly if M € C and N € C; then the canonical maps

(2.1) Homg(M, N) — Homg (M, N) — Homg_ (M., N)
are isomorphisms. We list a few other obvious facts.
(O1) (7, F) forms a torsion pair in €. That is Hom(7", F) = 0 and for any M € C there
exists an exact sequence (necessarily unique)
0-T-M-oF-=0
with T € 7 and F € F.
(02) fT€ T and M €C then
Homg (T, M) = Homyy(T, M)
Homg(M, T) = Homyyy)(M, T)
(03) The restriction functor defines an equivalence between 7 and Tors(k[z]) where
Tors(k[z]) denotes the z-torsion modules is Gr(k[z]).

(O4) The functor €; — Mod(k) ® Mod(k) which sends (M, Vp, V1,6) to Vo ® V, is an
equivalence of categories.

Combining (04) with (2.1) yields in particular
(05) If N € C; then Homg(—, N) is exact. Hence the objects in C; are injective in C.

We now describe the indecomposable injectives in €. For n € Z let E, be the graded
injective klz]-module given by k[z,z~']/z"+'k[z]. Since E, € Tors(k(z]) there exists by
(03) a corresponding object in 7 which we denote by the same symbol. From (02) it
follows that Hom(—, E,) is exact and hence E, is injective in C.
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To construct other injectives we note that by (O5) we know that the objects in C. are
injective in C. Since by (04) C; is equivalent to Mod(k) ® Mod(k) there must be two
corresponding indecomposable injectives in C. They are given by

EO = (k[z, 1-1]7 k’ 07 idk[z.z“])
E' = (k[z,z7"],0, k, idxjz.c-1)

Proposition 2.1. (1) (En)n, E®, E! forms a complete list of indecomposable injectives
inC.
(2) Every object in C has injective dimension one (and hence C end C are hereditary
[5, Prop. A.3)).
(3) C is Ext-finite.

Proof. Since the listed injectives are clearly indecomposable (1) follows if we can show
that any indecomposable object can be embedded in a direct sum of them [4].

We prove (1) and (2) together by showing that every object M € C has a resolution of
length at most two whose terms consist of direct sums of the injectives given in (1). By
(01) it is clearly sufficient to prove this claim separately in the cases M € T and M € F.

Assume first that M € 7. Then M has an injective resolution

(2.2) 0 M—Ig— I, =0
in Tors(k[z]). By (O3) this resolution corresponds to one in C. Furthermore by the
structure of the injectives in Gr(k[z]) the I; are direct sums of the E, in Gr(k[z]). Again
by (O3) the same is true in C.

Now assume that M € F. Consider the short exact sequence
(2.3) O M- M —-M/M—-0

M; lies in €; and hence by (O4) is a direct sum of copies of E® and E'. M,/M is z-
divisible and lies in 7 and so by (03) M,/M is a direct sum of copies of E,. Whence
(2.3) is the kind of resolution we were looking for.

To prove (3) we note that if E, F are indecomposable injectives as in (1) then dim Homg(E, F) <
1. Thus it suffices to show that every M € C has an injective resolution consisting in
every degree of a finite number of indecomposable injectives. This follows easily from the
construction. O

Proposition 2.2. If F € FandT €T then Exté-(F, T) = 0. In particular every object
inCisoftheform FOET with FeF andT e T.

Proof. It follows from (0O2) that Hom(F,-) is exact on T. Since by the proof of the
previous proposition T has a C injective resolution inside 7, we are done. O

Now we describe the Ext-groups between objects in F.

Lemma 2.3. Assume that F = (F,V5,V1,9), F' = (F', Vs, V{,¢') are objects in F. Then
there ezists an ezact sequence of the form
(2.4)
0 — Homgs(F, F') — Homyz(F, F') — Homy(Vo, V) ® Homy (W1, V) — Ext}_;(F, F)Yy—0
Proof. We start with the short exact sequence

0—-F o F, - F./F—-0

- 105 -



which according to the proof of lemma 2.1 is an injective resolution of F', both in € and
in Gr(k[z]).

Applying Hom¢(F, —), Home sy (F, —) and comparing yields a commutative diagram
with exact rows and columns.

0 —— Homc(F, F) ——— HOIm,(Vb,Vé) ) Homk(Vl,V{) —_— Homd(f’, FLIF'Y ——— Exté(F. Fy——0

l |

0 —— Homg,(x[z])(F, F'} —— Hom(Vbo & V1, V§ & V) ——— Homgr [z} (F, Fz/F') ————0

Hom(V, V{) @ Hom(Vh, V3)

0
(2.4) now follows from the previous diagram through an easy diagram chase. a
Proposition 2.4. C has neither injectives nor projectives.

Proof. Since T is equivalent to the z-torsion modules in gr(k[z]), it is easy to see that 7
does not contain any injective or projectives.

If 0 # (F,Vp, V1, ¢) in F then by considering the faithful restriction functor to gr(k[z])
we see that Home (F,0F(—n)) = 0 for n >» 0. On the other hand V4 or V} # 0. It follows
from the previous lemma that Ext}(F,o F(—~n)) # 0 for n>»> 0. Hence F is not projective.
A similar argument shows that F is not injective. O

Remark 2.5. The reason why we called this section “Elementary properties” is that the
stated results hold in greater generality. For example, suitably adapted versions would be
valid for the pullback of

mod(k)®*™ —— mod(k)

[

gr(k(z])
for any m. By contrast, the results in the next section require m = 2.

3. SERRE DUALITY

§ Our next aim is to prove that C satisfies Serre duality. First we construct a Serre
functor on F. Put VM = o(M)(-1).

The first step in proving Serre duality is constructing a “trace map” ny : Ext} (M, VM) —
k for M € F which should corresponds to the identity map in Hom¢ (M, M) under the
isomorphism (1.1).

We now use (2.4) to construct the trace map 9f for F' = (F,Vp, Wi, ¢) € F. In this case
VF = (F(-1),W, V, ¢) and we have an exact sequence

Homy,j(F, VF) — Homy(Vp, Vo) ® Homy (W, Vi) — Ext}(F,VF) — 0
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Lemma 3.1. The composition

(3.1) Homyy)(F, VF) — Homy(Ve, Vo) ® Homy(Vi, Vi) 2t T4,

is the zero map.

Proof. To see this note that Homy;(F, V F) = Hom(F, F(-1)) and furthermore that (3.1)
can be extended to a commutative diagram.

Homyz)(F, F(~1)) — Homy(Vp & V1, Vo & V) — Homy(Vs, Vo) @ Homy (3, V1)

l'!:/l/
vp +Tryy
k

By choosing a basis for F as graded k[z]-module one easily sees that every element of
Hom(F, F(—1)) C Hom(F, F) is nilpotent. Since nilpotent elements have zero trace it
follows that the composition

Homyp(F, F(~1)) — Homy(Vo ® i, Vo @ Vi) 5 &
is zero. This proves what we want. (]

From lemma 3.1 together with (2.4) there exists a unique map nr : Ext}(F,VF) — k
which makes the following diagram commutative.

Homyy,)(F, VF) — Hom(Vy, Vo) @ Hom(V;, Vi) — Ext}(F,VF) — 0

T
nr

k

To continue it will be convenient to use the Yoneda multiplication on Exts(—,—). In
order to have compatibility with the notation for compositions of maps we will write the
Yoneda multiplication as a pairing

Extz(B,C) x Extz(A, B) — Ext}(A,C)
We extend 7nr to a map Ext*(F,VF) — k by letting it act trivially on Hom(F, V F).

Lemma 3.2. Let F,G € F and assume that f € Ext;(F,G) and g € Ext3(G,VF). Then
we have nr(gf) = ne(V(f)9)-

Proof. We may assume that f and g are homogeneous. Furthermore the cases where f,g
are both of degree 0 or of degree 1 are trivial. Hence we may assume that (deg f,degg) =

(0,1) or (deg f,deg g) = (1,0).
Let us consider the first possibility. We check that ne(—f) = ne(V(f)—) as maps
Ext!(G,VF) — k. This amounts to the commutativity of

Ext!(G,VF) — Ext(G,VG)

(3.2) 1 ncl

Ext!(F,VF) = k
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Assume that F = (F,V,, V},9), G = (G, Wy, W,,80). Then f induces maps fo: Vo — Wy
and f) : Vi — W,. Elementary linear algebra yields that we have a commutative diagram

Hom(W,, Vo) ® Hom(W,,V}) ——  Hom(W), W,) ® Hom(W,, W)
l Trwg + Trw, l

Hom(Ve, Vo) ® Hom(Vi, V;) —otT, k

This diagram, together with the definition of n yields the commutativity of (3.2).
Now we consider the possibility (deg f,degg) = (1,0). Since we trivially have

(3.3) vxoV =nx

it is sufficient to prove that avr(V(9)V(f)) = na(V(f)g). Replacing (Vf,g) by (g, f)
this reduces to the previous case.

We are now in a position to prove Serre duality for objects in F. We will show that
the pairing

(3.4) Home(F,G) x Ext}(G,VF) - Ext'(F,VF) 25 k: (f,9) = nr(gf)

is non-degenerate. By lemma 3.2 the non-degeneracy of (3.4) for all F,G is equivalent to
the non-degeneracy of the pairing

(35)  Ext}(F,G) x Home(G,VF) — Ext}(F, VF) % k: (f,9) — nr(of)

for all F,G. It follows also easily from lemma 3.2 that (3.4) and (3.5) are natural in F
and G.

Lemma 3.3. If we have and exact sequence

in F and if we have non-degeneracy of (3.4) and (3.5) for two out of the three pairs
(F1,G), (F,G), (F;,G) then we also have it for the third one. A similar statement holds
for an ezact sequence

(3.7) 0—’01—’0—’02—’0

Proof. Assume that we have an exact sequence of the form (3.6). We claim that the
following diagram with exact rows is commutative.

¢ — Hom(Fz,G) — Hom(F,G) — Hom(F1,G) — Ext!(F2,G) — Ext!(F,G) — Ext!(F,G) —~ 0
fes t b }a jo fon

0 = Ext!(G,VFz)* = Ext!(G,VF)* = Ext}(G,VF)* = Hom(G,VF2)* =~ Hom(G,VF)* = Hom(G,VF)* =0

Here the maps labeled by a are obtained from (3.4) whereas those labeled by 3 are
obtained from (3.5).

The commutativity of this diagram follows easily from lemma 3.2 together with the
observation that all horizontal arrows are obtained by Yoneda multiplying with elements
of suitable Ext-groups. For example the connecting maps are obtained from multiplying
with the element of Ext!(F;, F}) representing the exact sequence (3.6).

If we now have non-degeneracy for two out of the three pairs (F},G), (F,G), (F2,G)
then we also have it for the third pair because of the five-lemma.

The case where we have an exact sequence as in (3.7) is treated similarly. a
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To continue we define a some canonical objects in F. Let ¢ € N. Then we write
F(?a = (x—ak[zl’ k,0, idk[x:.:l:“‘])
Fola = (I_ak[I],O, k, idk[,,,-ll)

(the reason for this notation will become clear in Section §3).

Lemma 3.4. Every object F in F has a finite filtration 0 = Fy C --- C F = F such
that the corresponding subquotients are among the Fg,.

Proof. By the structure of C; there must be a surjective map ¢ : F, — E* wherei =0 or
i = 1. Hence im ¢ is a non-trivial quotient. Since it is easy to see that the subobjects of
E* in C are of the form F§, we are done. a

Using (2.4) we can compute the Hom and Ext-groups between the Fj,. The results are
given in the next lemma.

. i l .F " N ! < t

0 otherwise

k ifi=1-janda>"b

Ext!(Foa, Fiy) = {0 otherwise

Proof. The claim for Hom is trivial, so we concentrate on Ext.
We use (2.4). This immediately yields that Ext!(Fg,, Fj) =0if j#1 -4 fj=1-1
then we have the following exact sequence.

(3.8) Homyy,)(z~°k[z], z~%k[z]) — k — Ext}(Fa,, F3,) — 0

This yields that Ext}(Fg,, Fg,) = & if and only if Homyy(z2k[z], z~%k[z]) = 0, i.. if and
only if a > b. O

We are now in a position to prove the main result of this section.
Theorem 3.6. C satisfies Serre duality.

Proof. We show first that C satisfies Serre duality for objects F, G in F. We will show the
non-degeneracy of (3.4) and (3.5) by induction of rky;j(F), rkk(G). This reduces us to
the case where F = Fi,, G = F},. So we need to check the non-degeneracy of

(3.9) Home (Fl,, Fi) x Exti(Fgy, Fiam1) = Exti(F,, Foaoy) —k
(3.10) Exti(Fig, F) x Home(Fjy, Fay_1) = Exti(Fiy, Foqoy) —k

where i’ = 1 — i. We will concentrate ourselves on (3.10). (3.9) is similar. By (3.5) the
only non-trivial case is given by j = 1—i and @ > b. In that case all vector spaces involved
are equal to k and what we want to prove follows from inspecting (3.8).

Now we show that C has almost split sequences. By Theorem 1.1 this implies that C
satisfies Serre duality.

By Proposition 2.2 it is clearly sufficient to construct almost split sequences ending
in indecomposable objects in F and 7. First let¢ F € F be indecomposable. Since
Ext}(F, VF) = Home/(F, F)*, Ext}(F, V F) has a simple socle as (left or right) Hom¢ (F, F)
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module. Let ¢ be a non-zero element this socle. It is well-known, and easy to see that ¢
defines the almost split sequence in F ending in F.

0=-VF-aM-—=F—=0

But this is also an almost split sequence in C since if T € 7 then Hom(T, F) = 0.
Now let T € 7. Then there exists an almost split sequence in 7

(3.11) 0—-T'-T' -T—0

(since T is equivalent to the category of z-torsion modules over k[z]).

We have to prove that any pullback for C — T of (3.11) with C indecomposable is split.
Clearly we only have to consider the case C € F. But then it follows from Proposition
2.2 that the pullback is split. This finishes the proof. O

4. RELATION WITH ONE-DIMENSIONAL GRADED TYPE A,-SINGULARITIES

Let C be the hereditary category which was described in the previous section. We will
now show that C can be considered as a limit of certain graded simple singularities.

If m € N then the graded simple A.n,_;-singularity of dimension one is by definition
the graded subring R, of k[z] ® k[z] generated by u = (z,z) and v = (z™,0). It is easy
to see that R & k[u, v]/(¢™v —u®™) and hence this is equivalent to the classical definition
(see for example [2]). We put C,, = mod(Rn,).

Let us consider k[z] as being diagonally embedded in k[z] @ k[z]. That is we identify =
with (z,z). Clearly we have

(Rm): = klz, z7 Y| @ k[z,27!]
Hence if M € Mod(R,,) then M, is canonically a sum of two k[z, z~!]-modules which we
denote by M? and M respectively. This allows us to define the following functor.
Unm : C = C : M > (M, (M2)o, (M})q,id)
Clearly U, is faithful. We have inclusions
kfz] C -++ C Rpmy1 C R C -+ Ry = k2] ® k[z]
Dualizing these yield restriction functors

Co— -+ = Cp = Cyy — - -+ — mod(k[z])
It is clear that these restriction functors are compatible with the functors (Up)m. Define
Co as the 2-direct limit of the C,,. That is the objects in Co, are the objects in [[,, Cm
and we put
Home,, (M, N) = injlim Hom¢, (M, N)
The functors (Unm)m define a functor Uy, : Coo — C.

Proposition 4.1. The functor U,, defined above is an equivalence.

Proof. From the definition it is clear that U, is faithful. So we only have to show that it
is full and essentially surjective.

We will first show that Uy, is full. Let M,N € C,, and let f : M — N be a homo-
morphism in . So f is in fact a k[z]-linear homomorphism f : M — N such that the
localization f; is k[z,z7!] @ k[z,z~!]-linear.

Let y = (z,0). Then y* € R,, for n > m and R, as subring of R, is generated by
z and y". To prove fullness of Uy it is sufficient that f is y™-linear for n > 0. Let
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T be the torsion submodule of N and consider the k[z] linear map M — N given by
f™ = f(y"=) — y*f(—). Since after localizing at z, f is y linear, it follows that the
image of f™ lies in T". Since T is rightbounded it is clear that f™ must be zero if n > 0.
This proves what we want.

Now we prove essential surjectivity. First let F € F. Then we claim that F C F; is
stable under multiplication by y™ for n 3> 0. First note that yF is a finitely generated
k[z]-submodule of F,. Hence z"yF C F. Since z"y = y"*! this proves what we want.

Now let T € 7. Then as graded k[z]-module T has right bounded grading and since
k[z]<m = (Rn)<m for n > m it follows that for n 3> 0 we may consider T as a graded
R,-module. This proves what we want. a

5. REPRESENTATION THEORY

In section we construct the AR-quiver of C. From the above discussion it follows that
the components of the AR-quiver of C lie either in 7" or in F. Since 7 is equivalent to
the z-torsion modules in gr(k[z]) it has a unique component which is ZA.,. So the main
difficulty is represented by the component(s) in F.

We now describe the indecomposable torsion free objects in C as well as the associated
Auslander-Reiten quiver (see [5]). Using Proposition 4.1 this could be easily obtained
by using a graded version of the results in [2]. However for completeness we give an
independent proof here.

For m > 0 denote by F,,, the unique indecomposable projective R,,-module in with
grading starting in degree —a (thus F,, = Fino(a)). For m = 0 we let gy, Fiy, be the two
indecomposable Ry modules whose gradings starts exactly at 0. We also put Fi, = Fgy(a)
(as in Section §3).

Finally to simplify the notation we will write F¥ (i = 0, if m # 0) for Un(F%,).

Proposition 5.1. The indecomposable objects in F are given by Fi . Furthermore the
associated Auslander-Reiten quiver is given by Figure !

Proof. By Serre duality it follows that Ext}(F:, VF} ) is one dimensional. Therefore its
unique (up to scalar multiplication) non-zero element represents the almost split sequence
ending in Ff .

Let us now explicitly construct non-split extensions between F:  and VF: . First note

VFma = Fm.a—l
where for simplicity we have written Fy, = F3, @ F},, and
VFga = Fy l_—il

To construct the extension associated to F,,, we note that F,,_; .., and Fp41,. are
naturally submodules of F,, , whose sum is Fi,, and whose intersection is Fi, o—1. Hence
the exact sequence

(5.1) 0—- Fm,a—l - Fpo1a-1® Fm+l.a - Fm.a -0

yields the sought extension. . )
To construct the extension associated to Fg, we note that F1, maps surjectively to Fg,
with kernel Fy.*;. Thus in this case the sought extension is

(52) OQF&:iI'*FlaQFéa—’Fm,a_’O
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FIGURE 1. The Auslander-Reiten quiver of F

It is now easy to assemble the almost split sequences given by (5.1) and (5.2) into the
translation quiver given by Figure 1.

To show that Figure 1 is the entire AR-quiver of F (and not just a component) we have
to show that there are no other indecomposable objects.

So assume that F is an indecomposable object in F, not occurring among the F;, .. By
lemma 3.4 there exist a non-zero map Fg, — F for some ,a. Using the defining property
of AR-sequences we may use this to construct a non-zero map Fy, for some i (possibly
@) and m, and for b arbitrarily large.

Now note that the only non-trivial torsion free quotients of F}, are F, itself and Fg;'
(if m # 0). Since all these quotients possess a non-trivial element in degree —b it follows
that Home(F:,, F) = 0 for b > 0. This finishes the proof. ]
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STABLE EQUIVALENCES INDUCED FROM
GENERALIZED TILTING MODULES II !

TAKAYOSHI WAKAMATSU

1. INTRODUCTION

Let A and B be finite dimensional algebras over a field K. We suppose that gT, is
a generalized tilting module and (p, %) an admissible system for a symmetric algebra,
where \M ®4 May 2 sM,4 and A M ®4 M, AA aDA4. Then the transformed system
(¢7,4T) is defined over the bimodule pMZ = gT ®4 Hom,(T, M)p and we have two
symmetric algebras A(p,¥) = A® M & DA and A(¢7,¥T) = B@® MT @ DB under the
assumption (1) the canonical map gT ® 4 Hom4(T, M)p LA pHom4 (T, T ®4 M)p defined
by 8(t® f)(t') = t® f(t') is bijective. In the previous note[2], we have shown the existence
of a stable equivalence

S:mod — A(p, %) =~ mod - A(¢”,¢")
by using the assumptions (2) the class C(T4) = gen*(T4) N[),5o KerExt}(T,?) is con-
travariantly finite in mod—A and, dually, D(DTp) = cog"(DT) N, KerExt%(?, DT)
covariantly finite in mod— B, and (3) the modules M, and T ® 4 M, are in the class
C(T4). Those essumptions (1) to (3) are satisfied if we suppose
(a) the module 4 M, is of the form ®( X.Y) AX ®k Y, with all Yy’s are in the class C(T,),
and

(b) one of the algebras A and B is representation-finite.

The purpose of the present note is to give an example of a couple of an admissible system
(p,%) and a generalized tilting module gT4 for which the symmetric algebras A(yp, %) and
A(pT, ¢T) are stably equivalent but not derived equivalent. Such an example means that
our stable equivalence & is not induced from Morita theory of derived categories.

2. AN EXAMPLE

Define an algebra A by the quiver
8
Qa): o
0
a

with the relations o® =0, v =0, 8-a=0and 4-8 = 0. It is checked that the algebra A
is representation-finite with only eight non-isomorphic indecomposable modules. We also

Lo

YThe detailed version of this paper will be submitted for publication elsewhere.
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have AA=(1)®(122) andDAA=(112)®(g)'

Choose a generalized tilting module as T4 = ( 1 1 2 9 ) 23] ( ) Then, the quiver

[ SV ]

Q(B) of B=End(T,)isgivenby 1 = 2 and we have
)

2
1 1 2
BB=(1 2 )GB and DBp = 9 1 e(l).
1
1

2
1 1 2
Now, weset JM4 = s2Ae,®xe; DAL = 1 9 @ 1 and ¢ = 0 the zero

map from s M ®4 M4 to 4M,4. Since our module 4M,4 is canonically isomorphic to its
dual 4DMj4, we have a map 9 : 4 M ®4 M4 — sDA, and (p, ) becomes an admissible
system for a symmetric algebra. Then, the assumptions (a) and (b) are satisfied and,
therefore, the symmetric algebras A = A(p, 1) and T = A(p7, ¥T) are stably equivalent.

In order to prove that the algebras A and I are not derived equivalent, we use the
following well-known result. The proof can be seen in the paper [1] by Usami.

i R

Lemma 1. If the algebras A and ' are derived eguivalent, there exists a regular matriz
P € Mat,(Z) and their Cartan matrices satisfy the equation *P-C, - P = Cp.

WehaveCA=(g g)since
= (1)l (" 7)o"y ?)fe (M0 )
e )

Similarly, we have Cr = ( 130 3 ) from

le3=(1 ' l)e{(

fil'g =

and

— =
S’

& —
P
— - L
e’ | ]
Sy’ Sa—”
& Se——

37

— 7~
[\

—

and

=N = N

2
GB{O}GB(I),
2

where e; (resp. f;) stands for the primitive idempotent element in the algebra A (resp.
B) corresponding to the vertex in Q(A) (resp. Q(B)) indexed by i and n is the common
number of non-isomorphic simple A- or B-modules.

- 114 -



a ¢

) € Mato(Z), then we have
8ac + 3(ad + bc) + 5bd 8¢? + 6cd + 5d°
Hence, *P - C, - P = Cr implies that

5¢% + 3(c + d)? + 2d* = 8¢? + 6¢cd + 5d° = 4,

and this is impossible for integers ¢, d € Z. Therefore, the algebras A and I" are not
derived equivalent by the previous lemma.

‘P-CA~P=( 8a2 + 6ab + 562 8ac+3(ad+bc)+5bd)_
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STABILITY OF FROBENIUS ALGEBRAS WITH POSITIVE GALOIS
COVERINGS !

KUNIO YAMAGATA ?

ABSTRACT. A finite dimensional self-injective algebra will be determined when it is
stably equivalent to a positive self-injective algebra of Dynkin, tilted or quasi-tilted
type.

1. INTRODUCTION

In a series of joint work with A. Skowronski, we have been studying self-injective
algebras with Galois coverings by repetitive algebras [10] [11] [12] [13], and [4]. One
of the aims of the work is to characterize self-injective algebras ring theoretically or
module categorically which have Galois coverings by the repetitive algebras. A ring
theoretical criterion theorem was found in [1i] for a self-injective algebra to have a
Galois covering by a repetitive algebra. On the other hand, study of the module
category over a self-injective algebra depends on the type of a repetitive algebra which
defines a Galois covering. In this survey paper, some of main theorems related to
module categories in the joint work are arranged into two theorems (Theorems 2, 3).
The proofs, however, are not unified (and refer the proofs in the references mentioned
above), but a common idea of the proofs is to find an ideal so that a criterion theorem
is applicable to conclude the existence of a Galois covering by a repetitive algebra.

Throughout this paper, K will be a fixed (commutative) field, and by an alge-
bra we mean a basic and associative K-algebra which is not necessarily finite dimen-
sional, but with a complete set of orthogonal primitive idempotents, that is, with
a set of orthogonal primitive idempotents, say {e;}ic; of an algebra A, such that
A =@, Ae; = P, e A K-category R is a category whose hom-sets are K-
spaces and composition of morphisms are K-bilinear. Then, K-categories (finite K-
categories, respectively) are in one-to-one correspondence with algebras having fixed
complete set of orthogonal! primitive idempotents (finite dimensional algebras with
identity, respectively). We freely identify K-categories with K-algebras. A will be a
finite dimensional, connected self-injective algebra, and B and A will be finite dimen-
sional algebras. Two finite dimensional self-injective algebras A;, A, are said to be
socle equivalent if A;/soc A = A,/ soc A; where soc is the socle of an algebra, and
stably equivalent if their stable categories modA; and modA; of the categories of finite
dimensional modules are isomorphic.

'The paper is in a final form and no version of it will be submitted for publication elsewhere.

2Supported by the Japan Society for the Promotion of Science, Grant in Aid for Science Research
{C) (1) No. 155 400 12.
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2. REPETITIVE CATEGORIES

2.1. Let B be a K-category, and B, = B, DB, = DB the copies of B and PB,
respectively. The repetitive category B of B is the direct sum of K-spaces B =
@D,.cz(Br ® DB,) with multiplication:

(2, £:)) - (X5(cj 9)) = Tilbics, bugi + ficinn)
for b;,¢; € B; and f;,g; € DB; for i € Z. The category may be written as a matrix
algebra without identity in the following way:

(.. - 0 )
B,.1 DB,
B, DB,
B
o )

where all B, lie on the diagonal, and B is the set of those matrices that all but finitely
many entries are zero. Summation and multiplication are defined as ones of matrices

with DB® DB — 0 zero map. BisaK -category whose object set is the disjoint union
of copies of Obj(B) in each B,,.

o)
I

2.2. A group G of automorphisms of a K-category B is said to be admissible if any
automorphism of G acts freely on Obj(B), and the G-orbit sets of Ob](B) is finite.
The category B/G is then naturally defined by the G-orbits of B—obJects and B-
morphisms. See [1] for details. The orbit category B/G is clearly finite dimensional
and self-injective. . A

An automorphism v of B is called the Nakayame automorphism of B if the restric-
tion to any B, & DB, is identity onto B, © DB,;;. An automorphism ¢ of Bis
said to be positive if ¢(B,) C Y. .(Bi® DB;) (n € Z) or, equivalently, ¢(0bj(B,)) C
Uis, Obj(B;) (n € Z), and strictly positive if  is positive and ¢(B,) # B, for all n.

Importance of the orbit categories by repetitive categories may be suggested by
the classification theorem of representation-finite self-injective algebras over an alge-
braically closed field, which was proved by C. Riedtmann (8] [9] (and also by D. Hughes
- J. Waschbiisch [3]). Also, D. Happel (1991) showed that the bounded category
D¥(mod B) of a finite dimensional algebra B is embedded into the stable category

modB of the category of finite dimensional modules over B. Moreover, Db(mod B) is
isomorphic to modB if and only if gldim B < 0.

2.3. (1) A typical example of the orbit algebras by repetitive algebras is §/ {vg) which
is isomorphic to the trivial extension algebra B x DB.
(2) Let A be 4-dimensional, local and self-injective algebras such that

A= B/(¢); B=klzl/(z?), ¢* = ¢z
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for a positive automorphisms ¢, 1, and they are socle equivalent. Those algebras were
first presented by T. Nakayama and C. Nesbitt in 1938 [5]. J. Rickard showed that
such algebras are isomorphic if they are stably equivalent (see [15] [6]). Thus it should
be noted that a socle equivalence does not imply a stable equivalence, in general.

3. TYPE OF SELF-INJECTIVE ALGEBRAS

3.1. An algebra B is called quasi-tilted algebra if B & Endy(T) where T is a tilting
object in a hereditary abelian K-category H, that is, Hom#(X,Y’) and Ext},(X,Y) are
finite dimensional and Ext%(X,Y) = 0 for all objects X,Y of H. This is equivalent
to the statement that gldim{B) < 2 and every finitely generated indecomposable B-
module X has pd(X) < 1 or id(X) < 1. An algebra is said to be canonical [7] if
its ordinary quiver has a unique source w and a unique sink o, and consists of paths
P1y--+Pn (n > 2) from w to o, which meet each other only at w and o. Moreover, in
case n = 2 there is no non-trivial relation (i.e., the algebra is hereditary), and in case
n > 3 the length of each path is more than 1 and relations are

n+p+p3=0,prtAp+p=0(i=4,..,n)
for A\; £ 0,1 and A; # A; foralli# 5 .

Theorem 1. [2] An algebra B is quasi-tilted if and only if B & Enda(T') where T is a
tilting module over a hereditary algebra or a canonical algebra A.

3.2. Let Abe 8 self-injective algebra. A is said to be positive (strictly positive, respec-
tively) if A = B/ (zpuE) for some algebra B and positive (strictly positive, respectively)
automorphism ¢ of B. (See [16].) A positive self-injective algebra A is said to be of

(i) (A-)tilted type if B is a tilted algebra of type A,

(ii) canonical type if B is the endomorphism algebra of a tilting module over a
canonical algebra,

(iii) quasi-tilted type if B is a quasi-tilted algebra.

Thus, by Theorem 1, a positive self-injective algebra A is of quasi-tilted type if and
only if A is of tilted type or canonical type.

4. MAIN THEOREMS

4.1. Some of main results on the module categories in [10] [12] [13] [4] are stated as
follows.

Theorem 2. A self-injective algebra A is stably equivalent to a positive self-injective
algebra of A-tilted type if and only if A is socle equivalent to a positive self-injective
algebra of A-tilted type. Moreover, in case K is algebraically closed, those statements
are equivalent to the statement that A is isomorphic to e positive self-injective algebra
of A-tilted type.

Theorem 3. The followings are equivalent.
(1) A is stably equivalent to a strongly positive self-injective algebra of quasi-tilted type.
(2) A is isomorphic to a strongly positive self-injective algebra of quasi-tilted type.
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4.2. Theorem 2 was first proved in [10] for algebras of non-Dynkin type, and later in
[13] for algebras of Dynkin type (A = Ag, Bn, Ca, Dy (n 2> 4), Es, Ev, Eg, Fy,G2). On
the other hand, Theorem 3 was proved in [12] for non-Dynkin type, and recently in [4]
for canonical type where a new characterization of a quasi-tilted algebra is given and
a precise observation is required for the form of Auslander-Reiten components.

In any case, however, we have to find an ideal I satisfying the annihilator condition
ra(I) = el for some e = €2, and then, apply the following criterion theorem for the
existence of a positive Galois covering.

Criterion Theorem 4 . [11] A self-injective algebra A is positive if there is an ideal
I of A such that, for some idempotent e of A, the following conditions are satisfied:

(1) ra(l) = eI,

(2) The canonical algebra epimorphism eAe — eAe/ele splits.
In E{lis case, A is isomorphic to Bf{pvg) for B = A/I and a positive automorphism ¢
of B.

The idea of the application of the criterion theorem is to construct another self-
injective algebra A by meking use of the annihilator condition (1) (see [11]), so that A
has both conditions (1) and (2), and A and A are socle equivalent. Thus we can know
the existence of a positive Galois covering of A up to socle. The converse of Theorem
4 is also true [14] and refer to the survey paper [16].
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FROBENIUS AND QUASI-FROBENIUS PROPERTY FOR mod C

YuJ1 YOSHINO

§1. Introduction

This is a survey report of my recent work [8], and we shall omit every proofs of the
result in this monograph. The reader should refer to the original paper (8] ! for the detail.

In the following R always denotes a commutative Noetherian ring, and mod R is the
category of finitely generated R-modules. We are interested in the subcategories G and
‘H of mod R that are defined as follows:

Definition 1. G is defined to be the full subcategory of mod R consisting of all modules
X € mod R that satisfy

Exth(X,R)=0 and Exti(TrX,R)=0 forany i> 0.

We also define H to be the full subcategory consisting of all modules with the first half
of the above conditions, therefore a module X € modR is an object in H if and oaly if

Exth(X,R) =0 forany i>0.

Note that G C H and that G is called the subcategory of modules of G-dimension zero.
See [2] for the G-dimension of modules.

Recently, D.Jorgensen and L.M.Sega [5] reported that they constructed an example of
an artinian ring R, on which G # H. However, we still expect that the equality G = H
holds in many cases.

The main purpose of this paper is to characterize functorially these two subcategories
and to get the conditions under which a subcategory C of H is contained in G.

First we settle the notation which we shall use later. When we say C is a subcategory
of mod R, we always mean the following;:

o C is essential in modR, ie. if X =Y inmodRandif X €C,thenY € C.
e C is full in mod R, i.e. Homg(X,Y) = Homg(X,Y) for X,Y €C.
o C is additive and additively closed in modR, i.e. forany X,Y € modR, X®Y €C
ifandonlyif X €eCand Y €C.
o C contains all projective modules in mod R.
Of course G and H are subcategories in this sense.

Let C be any subcategory of mod R. As in the general notation we denote the associated
stable category by C. Of course, there is a natural functor C — €. We should note that
the transpose Tr and the syzygy (! are well-defined functors over tha stable category C:

Tr: (C)® - modR §:C— modR.

IThe detailed version [8] of this paper has been submitted for publication elsewhere.
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We also note just from the definition that Tr gives dualities on G and also on mod R.

For an additive category A, a contravariant additive functor from A to the category
(Ab) of abelian groups is referred to as an .A-module, and a natural transform between two
A-modules is referred to as an A-module morphism. We denote by Mod.A the category
consisting of all A-modules and all .A-module morphisms. Note that Mod.A is obviously
an abelian category. An A-module F is called finitely presented if there is an exact
sequence

Hom4( , X)) — Homyu( ,Xo) — F — 0,

for some Xp, X) € A- We denote by mod.A the full subcategory of Mod.A consisting of
all finitely presented .A-modules.

1t follows easily from Yoneda’s lemma that an .A-module is projective in mod A if and
only if it is isomorphic to Hom4( , X) for some X € .A. Also note that the functor A to
mod.A which sends X to Hom4( ,X) is a full embedding.

Now let C be 2 subcategory of mod R and let C be the associated stable category. Then
the category of finitely presented C-modules modC and the category of finitely presented
C-modules mod( are defined as in the above course. Note that for any F' € modC (resp.
G € mod(C) and for any X € C (resp. X € C), the abelian group F(X) (resp. G{(X)) has
naturally an R-module structure, hence F' (resp. G) is in fact a contravariant additive
functor from C (resp. C) to mod R. As we stated above there is a natural functor C — C.
We can define from this the functor : : modC — modC by sending F € modC to the
composition functor of C — C with F. Then it is well known and is easy to prove that
¢ gives an equivalence of categories between modC and the full subcategory of modC
consisting of all finitely presented C-modules F' with F(R) = 0.

§2. Frobenius property of modG

Let C be a subcategory of mod R. We say that C is closed under kernels of epimorphisms
if it satisfies the following condition:

If0—- X —-Y — Z — 0is an exact sequence in modR, and if Y, Z € C, then
X eC.

(In Quillen’s terminology, all epimorphisms from modR in C are admissible.)
We say that C is closed under extension or extension-closed if it satisfies the following
condition:

f0—- X —-Y — Z — 0is an exact sequence in mod R, and if X,Z € C, then
Y eC.

A subcategory C is said to be a resolving subcategory if it is extension-closed and
closed under kernels of epimorphisms. Also C is said to be closed under € if it satisfies
that QX € C whenever X € C. Similarly to this, the closedness under Tr is defined.

Note that the categories G and H are resolving subcategories and that G is closed under
Tr.

We note that, if a subcategory C of modR is closed under kernels of epimorphisms,
then it is closed under Q. And if a subcategory C of mod R is extension-closed and closed
under 2, then it is resolving.

The following proposition is shown straightforward from the definitions. Note that the
proof of the proposition is completely similar to that of [7, Lemma (4.17)), in which it is
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proved that modC is an abelian category when R is a Cohen-Macaulay local ring and C
is the category of maximal Cohen-Macaulay modules.

Proposition 2. Let C be a subcategory of mod R which is closed under kernels of epimor-
phisms. Then mod( is an abelian category with enough projectives.

A category A is said to be a Frobenius category if it is an abelian category with enough
. projectives and with enough injectives, and if the class of projective objects in A co-
incides with the clasee of injective objects in 4. Likewise, a category A is said to be
a quasi-Frobenius category if it is an abelian category with enough projectives and all
projective objects in .4 are injective.
The following theorem is the first result I have got and that motivated me to the detail
study on the category modC.

Theorem 3. LetC be a subeategory of mod R that is closed under kernels of epimorphisms.
If C € H then mod( is e quasi-Frobenius category.

The proof of the theorem is not difficult. It is enough to notice that the injective objects
in modC are nothing but half-exact functors as a functor on C. See [8, Theorem 3.5].

Theorem 4. Let C be a subcategory of mod R. And suppose the following conditions.
(1) C is a resolving subcategory of modR.
(2) CCH.
(3) The functor 2 : C — C yields a surjective map on the set of isomorphism classes
of the objects in C.
Then modC is a Frobenius category. In particular, modG is a Frobenius category.

From the third assumption in the theorem, the syzygy functor §2 gives an automorphism
on the category C, hence there exists a cosyzygy functor ). Using this fact we can easily
prove the theorem as in the same course of the proof of the previous theorem.

Now let us consider the following four conditions for a resolving subcategory C of mod R:

(A) C is a subcategory of H.

(B) mod( is a quasi-Frobenius category.
(C) modC is a Frobenius category.

(D) C is a subcategory of G.

Then, the following implications hold:

(A) = (B) <= (C) <= (D)

The first implication follows from Theorem 3 and the third will follow from 4 (under a
suitable condition on syzygy functor). Of course it is obvious that second implication
always holds. Qur program is that we analyze closely the reverse implications. Actually,
in the next section we shall show that

e (B) = (A) holds if R is a henselian local ring.

e (C) = (D) holds under the validity of the Auslander-Reiten conjecture.

e (B) = (C) holds if C is of finite type (by Nakayama Theorem).

§3. Main theorems

In this section we always assume that R is a henselian local ring with maximal ideal
m and with the residue class field k = R/m. In the following, what we shall need from
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this assumption is the fact that X € modR is indecomposable only if Endg(X) is a
(noncommutative) local ring. In fact it is easy to see that modC is a Krull-Schmidt
category for any subcategory C € modR.

We can prove the converse of Theorem 3 under this assumption.

Theorem 5. Let C be a resolving subcategory of mod R, where R is a henselian local ring.
Suppose that modC is e quasi-Frobenius category. Then C C H.

In a sense H is the largest resolving subcategory C of modR for which mod( is a
quasi-Frobenius category.

The proof of this theorem is not so easy. Essential part of the proof is to show that if
mod( is quasi-Frobenius, then any object X € C satisfies Ext}Q(X ,R) = 0. The reader
should refer to the paper [8, Theorem 4.2] for the complete proof.

As to the implication (C') == (D) in the last paragraph of the previous section, we can
show the following result.

Theorem 6. Let R be a henselian local ring as above. Suppose that
(1) C is a resolving subcategory of mod R.
(2) modC is e Frobenius category.
(3) There is no nonprojective module X € C with Exty( , X)l¢ =0.
ThenC CG.

Remark 7. We conjecture that G should be the largest resolving subcategory C of modR
such that modC is a Frobenius category.
Theorem 6 together with Theorem 4 say that this is true modulo Auslander-Reiten
conjecture:
(AR) If Ext%(X, X @ R) = 0 for any i > 0 then X should be projective.

In fact, if the conjecture (AR) is true, then the third assumption of Thereom 6 is
automatically satisfied.

The proof of Theorem 6 is not short, and we restrict ourselves to say that the following
lemma is essential in its proof.

Lemma 8. Let R be a henselian local ring and let C be an extension-closed subcategory
of mod R. For objects X,Y € C, we assume the following:

(1) There is a monomorphism ¢ in Mod(C:

v : Homp( ,Y)|g — Ext'( , X)le

(2) X is indecomposable in C.

3)Y#oinC.
Then the module X is isomorphic to a direct summand of QY.

Let A be any additive category. We denote by Ind(.A) the set of nonisomorphic modules

which represent all the isomorphism classes of indecomposable objects in .A. If Ind(A) is
a finite set, then we say that A is a category of finite type. The following theorem is a

main theorem of the paper (8], which claims that any resolving subcategory of finite type
in H are contained in G. See [8, Theorem 5.5]

Theorem 9. Let R be a henselian local ring and let C be a subcategory of mod R which
satisfies the following conditions.
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(1) C is a resolving subcategory of mod R.
(2) CCH.
(3) C is of finite type.

Then, mod(C is a Frobenius category and C C G.

We should remark about the proof of Theorem 9. Since we assume that C is of finite
type, the category mod( is isomorphic to the module category of certain artinian algebra
A that is called the Auslander algebra of C:

modC = modA

Note that the ring A is a finite (noncommutative) algebra over a commutative artinian
ring. Since we assume that C C H, we know that modC, hence mod A, is a quasi-Frobenius
category. (See Theorem 3.) This means that the artinian ring A is left selfinjective. It
is known by Nakayam’s Theorem (cf. [6] for example) that A is right selfinjective as
well, and therefore, using the duality between mod A and mod A°?, we can conclude that
mod A, hence mod(, is a Frobenius category.

To prove that C C G in the theorem, we use Theorem 6. Actually, since we have shown
that mod(C is a Frobenious category, it is enough to check the following statement:

(*) If X € C such that X % Q in C, then we have Exth( ,X)|¢ # 0.
This can be proved by using the same idea of Nakayama which we can see in the monograph
of Yamagata [6].
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